Adachi, K. (2020). Matrix-based introduction
to multivariate data analysis (2nd ed.). Springer. https://doi.org/10.1007/978-981-15-4103-2
Akaike, H. (1998–1969). Information theory and an
extension of the maximum likelihood principle. In E. Parzen, K. Tanabe,
& G. Kitagawa (Eds.), Selected papers of Hirotugu Akaike
(pp. 199–213). Springer (Original work published 1969). https://doi.org/10.1007/978-1-4612-1694-0_15(Original
work published 1969)
Albers, S. (2010). PLS and success factor studies
in marketing. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H.
Wang (Eds.), Handbook of partial least squares: concepts, methods
and applications (pp. 409–425). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32827-8
American Educational Research Association,
American Psychological Association, & National Council on
Measurement in Education (Eds.). (2011). Standards for educational
and psychological testing. American Educational Research
Association.
Asparouhov, T., & Muthén, B. (2009).
Exploratory structural equation modeling. Structural Equation
Modeling: A Multidisciplinary Journal, 16(3), 397–438. https://doi.org/10.1080/10705510903008204
Bagozzi, R. P., & Yi, Y. (1988). On the
evaluation of structural equation models. Journal of the Academy of
Marketing Science, 16(1), 74–94. https://doi.org/10.1007/BF02723327
Baron, R. M., & Kenny, D. A. (1986). The
moderator–mediator variable distinction in social psychological
research: Conceptual, strategic, and statistical considerations.
Journal of Personality and Social Psychology, 51(6),
1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bartlett, M. S. (1950). Tests of significance in
factor analysis. British Journal of Statistical Psychology,
3(2), 77–85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
Bartlett, M. S. (1951). The effect of
standardization on a χ2 approximation in factor analysis.
Biometrika, 38(3/4), 337–344. https://doi.org/10.2307/2332580
Bayonne, E., Marin-Garcia, J. A., &
Alfalla-Luque, R. (2020). Partial least squares (PLS) in operations
management research: insights from a systematic literature review.
Journal of Industrial Engineering and Management,
13(3), 565–597. https://doi.org/10.3926/jiem.3416
Beatty, P. C., & Willis, G. B. (2007).
Research synthesis: the practice of cognitive interviewing. Public
Opinion Quarterly, 71(2), 287–311. https://doi.org/10.1093/poq/nfm006
Bentler, P. M. (1983). Some contributions to
efficient statistics in structural models: Specification and estimation
of moment structures. Psychometrika, 48(4), 493–517.
https://doi.org/10.1007/BF02293875
Bentler, P. M. (1990). Comparative fit indexes in
structural models. Psychological Bulletin, 107(2),
238–246. https://doi.org/10.1037/0033-2909.107.2.238
Berrío, Á. I., Gómez-Benito, J., &
Arias-Patiño, E. M. (2020). Developments and trends in research on
methods of detecting differential item functioning. Educational
Research Review, 31, 100340. https://doi.org/10.1016/j.edurev.2020.100340
Böckenholt, U. (2017). Measuring response styles
in Likert items. Psychological Methods, 22(1), 69–83.
https://doi.org/10.1037/met0000106
Borsboom, D. (2005). Measuring the mind:
conceptual issues in contemporary psychometrics. Cambridge
University Press.
(ボースブーム,D. 仲嶺
真(監訳)仲嶺 真・下司 忠大・三枝 高大・須藤 竜之介・武藤
拓之(訳)(2022).心を測る:
現代の心理測定における諸問題 金子書房)
Borsboom, D., Mellenbergh, G. J., & van
Heerden, J. (2004). The concept of validity. Psychological
Review, 111(4), 1061–1071. https://doi.org/10.1037/0033-295X.111.4.1061
Bowling, S. R., Khasawneh, M. T., Kaewkuekool,
S., & Cho, B. R. (2009). A logistic approximation to the cumulative
normal distribution. Journal of Industrial Engineering and
Management, 2(1), 114–127. https://doi.org/10.3926/jiem.2009.v2n1.p114-127
Brown, A., & Maydeu-Olivares, A. (2011). Item
response modeling of forced-choice questionnaires. Educational and
Psychological Measurement, 71(3), 460–502. https://doi.org/10.1177/0013164410375112
Browne, M. W. (1968). A comparison of factor
analytic techniques. Psychometrika, 33(3), 267–334. https://doi.org/10.1007/BF02289327
Browne, M. W. (2001). An overview of analytic
rotation in exploratory factor analysis. Multivariate Behavioral
Research, 36(1), 111–150. https://doi.org/10.1207/S15327906MBR3601_05
Chalmers, R. P. (2018). Model-based measures for
detecting and quantifying response bias. Psychometrika,
83(3), 696–732. https://doi.org/10.1007/s11336-018-9626-9
Chen, W.-H., & Thissen, D. (1997). Local
dependence indexes for item pairs using item response theory.
Journal of Educational and Behavioral Statistics,
22(3), 265–289. https://doi.org/10.2307/1165285
Cho, E. (2023). Interchangeability between factor
analysis, logistic IRT, and normal ogive IRT. Frontiers in
Psychology, 14, 1267219. https://doi.org/10.3389/fpsyg.2023.1267219
Choi, Y.-J., & Asilkalkan, A. (2019). R
packages for item response theory analysis: descriptions and features.
Measurement: Interdisciplinary Research and Perspectives,
17(3), 168–175. https://doi.org/10.1080/15366367.2019.1586404
Cliff, N. (1988). The
eigenvalues-greater-than-one rule and the reliability of components.
Psychological Bulletin, 103(2), 276–279. https://doi.org/10.1037/0033-2909.103.2.276
Conners, C. K., Erhardt, D., & Sparrow, E. P.
(1999). Conners’ adult ADHD rating scales (CAARS): technical
manual. Multi-Health Systems North Tonawanda, NY.
Cronbach, L. J. (1951). Coefficient alpha and the
internal structure of tests. Psychometrika, 16(3),
297–334. https://doi.org/10.1007/BF02310555
Curran, P. G. (2016). Methods for the detection
of carelessly invalid responses in survey data. Journal of
Experimental Social Psychology, 66, 4–19. https://doi.org/10.1016/j.jesp.2015.07.006
Demerouti, E., Bakker, A. B., Vardakou, I., &
Kantas, A. (2003). The convergent validity of two burnout instruments: A
multitrait-multimethod analysis. European Journal of Psychological
Assessment, 19(1), 12–23. https://doi.org/10.1027//1015-5759.19.1.12
Drasgow, F., Levine, M. V., & Williams, E. A.
(1984). Appropriateness measurement with polychotomous item response
models and standardized indices (Issue ADA141365). Model Based
Measurement Laboratory, University of Illinois.
Dunn, A. M., Heggestad, E. D., Shanock, L. R.,
& Theilgard, N. (2018). Intra-individual response variability as an
indicator of insufficient effort responding: comparison to other
indicators and relationships with individual differences. Journal of
Business and Psychology, 33(1), 105–121. https://doi.org/10.1007/s10869-016-9479-0
Ferrando, P. J., & Lorenzo-Seva, U. (2007).
An item response theory model for incorporating response time data in
binary personality items. Applied Psychological Measurement,
31(6), 525–543. https://doi.org/10.1177/0146621606295197
Flora, D. B. (2020). Your coefficient alpha is
probably wrong, but which coefficient omega is right? A tutorial on
using R to obtain better reliability estimates. Advances in Methods
and Practices in Psychological Science, 3(4), 484–501. https://doi.org/10.1177/2515245920951747
Fornell, C., & Larcker, D. F. (1981).
Evaluating structural equation models with unobservable variables and
measurement error. Journal of Marketing Research,
18(1), 39–50. https://doi.org/10.2307/3151312
Gessaroli, M. E., & De Champlain, A. F.
(1996). Using an approximate chi-square statistic to test the number of
dimensions underlying the responses to a set of items. Journal of
Educational Measurement, 33(2), 157–179.
Goldberg, L. R. (1993). The structure of
phenotypic personality traits. American Psychologist,
48(1), 26–34. https://doi.org/10.1037/0003-066X.48.1.26
Guttman, L. (1945). A basis for analyzing
test-retest reliability. Psychometrika, 10(4),
255–282. https://doi.org/10.1007/BF02288892
Guttman, L. (1953). Image theory for the
structure of quantitative variates. Psychometrika,
18(4), 277–296. https://doi.org/10.1007/BF02289264
Haebara, T. (1980). Equating logistic ability
scales by a weighted least squares method. Japanese Psychological
Research, 22(3), 144–149. https://doi.org/10.4992/psycholres1954.22.144
南風原 朝和(2000).局所独立性 Retrieved July
4, 2022 from https://www.p.u-tokyo.ac.jp/~haebara/local_ind/
Haenlein, M., & Kaplan, A. M. (2004). A
beginner’s guide to partial least squares analysis. Understanding
Statistics, 3(4), 283–297. https://doi.org/10.1207/s15328031us0304_4
萩生田 伸子・繁桝
算男(1996).順序付きカテゴリカルデータへの因子分析の適用に関するいくつかの注意点 心理学研究,67(1),
1–8. https://doi.org/10.4992/jjpsy.67.1
Hair, J. F. (Ed.). (2017). A primer on
partial least squares structural equation modeling (PLS-SEM)
(Second edition). Sage.
Hair, J. F., Hult, T. M., Ringle, C. M.,
Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least
squares structural equation modeling (PLS-SEM) using R: a workbook.
Classroom Companion: Business. Springer.
Hancock, G. R., Stapleton, L. M., & Mueller,
R. O. (2019). Structural equation modeling. In The reviewer’s guide
to quantitative methods in the social sciences (2nd ed., pp.
445–456). Routledge.
林 邦好・冨田 誠・田中
豊(2008).主成分分析における軸の回転について 計算機統計学,19(2),
89–101. https://doi.org/10.20551/jscswabun.19.2_89
Henseler, J., Ringle, C. M., & Sarstedt, M.
(2012). Using partial least squares path modeling in advertising
research: basic concepts and recent issues. In S. Okazaki (Ed.),
Handbook of research on international advertising (pp.
252–276). E. Elgar.
Höhne, J. K., & Schlosser, S. (2018).
Investigating the adequacy of response time outlier definitions in
computer-based web surveys using paradata SurveyFocus. Social
Science Computer Review, 36(3), 369–378. https://doi.org/10.1177/0894439317710450
堀 一輝・牧野
直道(2024).測定モデルユーザーのための次元性評価法総論 日本テスト学会誌,20,
135–167. https://doi.org/10.24690/jart.20.1_135
堀
啓造(2005).因子分析における因子数決定法――並行分析を中心にして―― 香川大学経済論叢,77(4),
35–70.
星野 崇宏・岡田 謙介・前田
忠彦(2005).構造方程式モデリングにおける適合度指標とモデル改善について
:
展望とシミュレーション研究による新たな知見 行動計量学,32(2),
209–235. https://doi.org/10.2333/jbhmk.32.209
Hu, L., & Bentler, P. M. (1999). Cutoff
criteria for fit indexes in covariance structure analysis: Conventional
criteria versus new alternatives. Structural Equation Modeling: A
Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Huang, J. L., Curran, P. G., Keeney, J., Poposki,
E. M., & DeShon, R. P. (2012). Detecting and deterring insufficient
effort responding to surveys. Journal of Business and
Psychology, 27(1), 99–114. https://doi.org/10.1007/s10869-011-9231-8
Hwang, H., Sarstedt, M., Cheah, J. H., &
Ringle, C. M. (2020). A concept analysis of methodological research on
composite-based structural equation modeling: bridging PLSPM and GSCA.
Behaviormetrika, 47(1), 219–241. https://doi.org/10.1007/s41237-019-00085-5
Jackson, D. N., Wroblewski, V. R., & Ashton,
M. C. (2000). The impact of faking on employment tests: does forced
choice offer a solution? Human Performance, 13(4),
371–388. https://doi.org/10.1207/S15327043HUP1304_3
Kaiser, H. F. (1970). A second generation little
jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
Kaiser, H. F. (1974). An index of factorial
simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
Kaiser, H. F. (1981). A revised measure of
sampling adequacy for factor-analytic data matrices. Educational and
Psychological Measurement, 41(2), 379–381. https://doi.org/10.1177/001316448104100216
Kaiser, H. F., & Rice, J. (1974). Little
jiffy, mark IV. Educational and Psychological Measurement,
34(1), 111–117. https://doi.org/10.1177/001316447403400115
Kang, H., & Ahn, J.-W. (2021). Model setting
and interpretation of results in research using structural equation
modeling: a checklist with guiding questions for reporting. Asian
Nursing Research, 15(3), 157–162. https://doi.org/10.1016/j.anr.2021.06.001
Karabatsos, G. (2003). Comparing the aberrant
response detection performance of thirty-six person-fit statistics.
Applied Measurement in Education, 16(4), 277–298. https://doi.org/10.1207/S15324818AME1604_2
加藤 健太郎・山田 剛史・川端
一光(2014).Rによる項目反応理論 オーム社
Kiers, H. A. L., & Ten Berge, J. M. F.
(1994). The Harris-Kaiser independent cluster rotation as a method for
rotation to simple component weights. Psychometrika,
59(1), 81–90. https://doi.org/10.1007/BF02294267
King, G. (1986). How not to lie with statistics:
avoiding common mistakes in quantitative political science. American
Journal of Political Science, 30(3), 666. https://doi.org/10.2307/2111095
北岡 和代・増田 真也・荻野 佳代子・中川
秀昭(2011).バーンアウト測定尺度 Maslach Burnout Inventory-General
Survey(MBI-GS)の概要と日本版について 北陸公衆衛生学会誌,37,
34–40.
Kleinman, M., & Teresi, J. A. (2016). Differential
item functioning magnitude and impact measures from item response theory
models. Psychological Test and Assessment Modeling,
58(1), 79–98.
Kolen, M. J., & Brennan, R. L. (2014).
Test equating, scaling, and linking (3rd ed.). Springer.
Kong, X. J., Wise, S. L., & Bhola, D. S.
(2007). Setting the response time threshold parameter to differentiate
solution behavior from rapid-guessing behavior. Educational and
Psychological Measurement, 67(4), 606–619. https://doi.org/10.1177/0013164406294779
Kopf, J., Zeileis, A., & Strobl, C. (2015).
Anchor selection strategies for DIF analysis. Educational and
Psychological Measurement, 75(1), 22–56. https://doi.org/10.1177/0013164414529792
小杉
考司(2018).言葉と数式で理解する多変量解析入門 北大路書房
Kreuter, F. (Ed.). (2013). Improving surveys
with paradata: analytic use of process information. Wiley
series in survey methodology. John Wiley & Sons.
Krosnick, J. A. (1991). Response strategies for
coping with the cognitive demands of attitude measures in surveys.
Applied Cognitive Psychology, 5(3), 213–236. https://doi.org/10.1002/acp.2350050305
Kuder, G. F., & Richardson, M. W. (1937). The
theory of the estimation of test reliability. Psychometrika,
2(3), 151–160. https://doi.org/10.1007/BF02288391
Landy, F. J. (1986). Stamp collecting versus
science: Validation as hypothesis testing. American
Psychologist, 41(11), 1183–1192. https://doi.org/10.1037/0003-066X.41.11.1183
Likert, R. (1932). A technique for the
measurement of attitudes. Archives of psychology. New
York.
Lin, H.-M., Lee, M.-H., Liang, J.-C., Chang,
H.-Y., Huang, P., & Tsai, C.-C. (2020). A review of using partial
least square structural equation modeling in e-learning research.
British Journal of Educational Technology, 51(4),
1354–1372. https://doi.org/10.1111/bjet.12890
Little, R. J. A. (1988). A test of missing
completely at random for multivariate data with missing values.
Journal of the American Statistical Association,
83(404), 1198–1202. https://doi.org/10.1080/01621459.1988.10478722
Lord, F. M. (1980). Applications of item
response theory to practical testing problems. L. Erlbaum
Associates.
Lord, F. M., & Novick, M. R. (1968).
Statistical theories of mental test scores. Addison-Wesley
series in behavioral science quantitative methods. Addison-Wesley.
Magno, F., Cassia, F., & Ringle, C. M.
(2022). A brief review of partial least squares structural equation
modeling (PLS-SEM) use in quality management studies. The TQM
Journal, ahead-of-print(ahead-of-print). https://doi.org/10.1108/TQM-06-2022-0197
Mantel, N., & Haenszel, W. (1959).
Statistical aspects of the analysis of data from retrospective studies
of disease. Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/22.4.719
Maruyama, G., & Ryan, C. S. (2014).
Research methods in social relations (8th ed.). John Wiley
& Sons Inc.
Maslach, C., & Jackson, S. E. (1981). The
measurement of experienced burnout. Journal of Organizational
Behavior, 2(2), 99–113. https://doi.org/10.1002/job.4030020205
Maslach, C., Jackson, S. E., & Leiter, M.
(1996). Maslach Burnout Inventory Manual (3rd ed.). Consulting
Psychologists Press.
増田 真也(1997).日本語版 Maslach Burnout
Inventory の妥当性の検討 健康心理学研究,10(2), 44–53. https://doi.org/10.11560/jahp.10.2_44
Maydeu-olivares, A., Hernández, A., &
Mcdonald, R. P. (2006). A multidimensional ideal point item response
theory model for binary data. Multivariate Behavioral Research,
41(4), 445–472. https://doi.org/10.1207/s15327906mbr4104_2
Mayekawa, S. (1994). Equivalent path models in
linear structural equation models. Behaviormetrika,
21(1), 79–96. https://doi.org/10.2333/bhmk.21.79
McDonald, R. P. (1978). Generalizability in
factorable domains: “domain validity and generalizability.”
Educational and Psychological Measurement, 38(1),
75–79. https://doi.org/10.1177/001316447803800111
McDonald, R. P. (1999). Test theory: a
unified treatment (0th ed.). Psychology Press. https://doi.org/10.4324/9781410601087
McKinley, R. L., & Mills, C. N. (1985). A
comparison of several goodness-of-fit statistics. Applied
Psychological Measurement, 9(1), 49–57. https://doi.org/10.1177/014662168500900105
McNeish, D., & Wolf, M. G. (2020). Thinking
twice about sum scores. Behavior Research Methods,
52(6), 2287–2305. https://doi.org/10.3758/s13428-020-01398-0
Meijer, R. R., Niessen, A. S. M., & Tendeiro,
J. N. (2016). A practical guide to check the consistency of item
response patterns in clinical research through person-fit statistics:
examples and a computer program. Assessment, 23(1),
52–62. https://doi.org/10.1177/1073191115577800
Meijer, R. R., & Sijtsma, K. (2001).
Methodology review: evaluating person fit. Applied Psychological
Measurement, 25(2), 107–135. https://doi.org/10.1177/01466210122031957
Messick, S. (1995). Validity of psychological
assessment. American Psychologist, 50(9), 741–749. https://doi.org/10.1037/0003-066X.50.9.741
三浦 麻子・小林
哲郎(2016).オンライン調査における努力の最小限化(Satisfice)傾向の比較
:
IMC違反率を指標として メディア・情報・コミュニケーション研究,1,
27–42.
Mulaik, S. A., James, L. R., Van Alstine, J.,
Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of
goodness-of-fit indices for structural equation models.
Psychological Bulletin, 105(3), 430–445. https://doi.org/10.1037/0033-2909.105.3.430
Muraki, E. (1992). A generalized partial credit
model: application of an EM algorithm. Applied Psychological
Measurement, 16(2), 159–176. https://doi.org/10.1177/014662169201600206
村山
航(2012).妥当性:概念の歴史的変遷と心理測定学的観点からの考察 教育心理学年報,51,
118–130. https://doi.org/10.5926/arepj.51.118
岡田
謙介(2011).クロンバックのαに代わる信頼性の推定法について――構造方程式モデリングによる方法・McDonaldのωの比較―― 日本テスト学会誌,7,
37–50. https://doi.org/10.24690/jart.7.1_37
岡田
謙介(2015).心理学と心理測定における信頼性について――Cronbachのα係数とは何なのか,何でないのか―― 教育心理学年報,54,
71–83. https://doi.org/10.5926/arepj.54.71
Oppenheimer, D. M., Meyvis, T., & Davidenko,
N. (2009). Instructional manipulation checks: Detecting satisficing to
increase statistical power. Journal of Experimental Social
Psychology, 45(4), 867–872. https://doi.org/10.1016/j.jesp.2009.03.009
Orlando, M., & Thissen, D. (2000).
Likelihood-based item-fit indices for dichotomous item response theory
models. Applied Psychological Measurement, 24(1),
50–64. https://doi.org/10.1177/01466216000241003
Padilla, M. A., & Divers, J. (2016). A
comparison of composite reliability estimators: coefficient omega
confidence intervals in the current literature. Educational and
Psychological Measurement, 76(3), 436–453. https://doi.org/10.1177/0013164415593776
Peterson, C. H., Peterson, N. A., & Powell,
K. G. (2017). Cognitive interviewing for item development: validity
evidence based on content and response processes. Measurement and
Evaluation in Counseling and Development, 50(4), 217–223.
https://doi.org/10.1080/07481756.2017.1339564
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y.,
& Podsakoff, N. P. (2003). Common method biases in behavioral
research: A critical review of the literature and recommended remedies.
Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Raju, N. S. (1988). The area between two item
characteristic curves. Psychometrika, 53(4), 495–502.
https://doi.org/10.1007/BF02294403
Raju, N. S., van der Linden, W. J., & Fleer,
P. F. (1995). IRT-based internal measures of differential functioning of
items and tests. Applied Psychological Measurement,
19(4), 353–368. https://doi.org/10.1177/014662169501900405
Rasch, G. (1980). Probabilistic models for
some intelligence and attainment tests. University of Chicago
Press. (Original work published 1960)
Reckase, M. D. (2019). Logistic multidimensional
models. In W. J. van der Linden (Ed.), Handbook of item response
theory: Volume one, models (pp. 189–209). CRC Press.
Reise, S. P. (2012). The rediscovery of bifactor
measurement models. Multivariate Behavioral Research,
47(5), 667–696. https://doi.org/10.1080/00273171.2012.715555
Revelle, W., & Rocklin, T. (1979). Very
simple structure: an alternative procedure for estimating the optimal
number of interpretable factors. Multivariate Behavioral
Research, 14(4), 403–414. https://doi.org/10.1207/s15327906mbr1404_2
Roberts, J. S. (2019). Generalized graded
unfolding model. In W. J. van der Linden (Ed.), Handbook of item
response theory: Volume one, models (pp. 369–392). CRC Press.
Rönkkö, M., McIntosh, C. N., & Antonakis, J.
(2015). On the adoption of partial least squares in psychological
research: Caveat emptor. Personality and Individual
Differences, 87, 76–84. https://doi.org/10.1016/j.paid.2015.07.019
Roussos, L. A., & Ozbek, O. Y. (2006).
Formulation of the DETECT Population Parameter and Evaluation of DETECT
Estimator Bias. Journal of Educational Measurement,
43(3), 215–243. https://doi.org/10.1111/j.1745-3984.2006.00014.x
Samejima, F. (1969). Estimation of latent ability
using a response pattern of graded scores. Psychometrika,
34(S1), 1–97. https://doi.org/10.1007/BF03372160
Schafer, J. L., & Graham, J. W. (2002).
Missing data: Our view of the state of the art. Psychological
Methods, 7(2), 147–177. https://doi.org/10.1037/1082-989X.7.2.147
Schaufeli, W. B., Salanova, M., Lez-Roma, V. G.,
& Bakker, A. B. (2002). The measurement of engagement and burnout: a
two sample confirmatory factor analytic approach. Journal of
Happiness Studies, 3, 71–92. https://doi.org/10.1023/A:1015630930326
Schaufeli, W. B., Shimazu, A., Hakanen, J.,
Salanova, M., & De Witte, H. (2019). An ultra-short measure for work
engagement: the UWES-3 validation across five countries. European
Journal of Psychological Assessment, 35(4), 577–591. https://doi.org/10.1027/1015-5759/a000430
Schmid, J., & Leiman, J. M. (1957). The
development of hierarchical factor solutions. Psychometrika,
22(1), 53–61. https://doi.org/10.1007/BF02289209
Schwarz, G. (1978). Estimating the dimension of a
model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Shimazu, A., Schaufeli, W. B., Kosugi, S.,
Suzuki, A., Nashiwa, H., Kato, A., Sakamoto, M., Irimajiri, H., Amano,
S., Hirohata, K., Goto, R., & Kitaoka-Higashiguchi, K. (2008). Work
engagement in Japan: validation of the Japanese version of the Utrecht
Work Engagement Scale. Applied Psychology, 57(3),
510–523. https://doi.org/10.1111/j.1464-0597.2008.00333.x
Shirkey, E. C., & Dziuban, C. D. (1976). A
note on some sampling characteristics of the measure of sampling
adequacy (MSA). Multivariate Behavioral Research,
11(1), 125–128. https://doi.org/10.1207/s15327906mbr1101_9
Sitarenios, G. (2022). Short versions of tests:
best practices and potential pitfalls. Journal of Pediatric
Neuropsychology, 8, 101–115. https://doi.org/10.1007/s40817-022-00126-0
Smith, R. M., Schumacker, R. E., & Busch, M.
J. (1995). Using item mean squares to evaluate fit to the rasch
model. A paper presented at the Annual Meeting of the American
Educational Research Association, San Francisco, CA.
Stark, S., Chernyshenko, O. S., Drasgow, F.,
& Williams, B. A. (2006). Examining assumptions about item
responding in personality assessment: Should ideal point methods be
considered for scale development and scoring? Journal of Applied
Psychology, 91(1), 25. https://doi.org/10.1037/0021-9010.91.1.25
Steiger, J. H., & Lind, J. C. (1980).
Statistically based tests for the number of common factors. Paper
Presented at the Psychometric Society Annual Meeting.
Stocking, M. L., & Lord, F. M. (1983).
Developing a common metric in item response theory. Applied
Psychological Measurement, 7(2), 201–210. https://doi.org/10.1177/014662168300700208
Stout, W. (1987). A nonparametric approach for
assessing latent trait unidimensionality. Psychometrika,
52(4), 589–617. https://doi.org/10.1007/BF02294821
Stout, W., Habing, B., Douglas, J., Hae Rim Kim,
Roussos, L., & Jinming Zhang. (1996). Conditional covariance-based
nonparametric multidimensionality assessment. Applied Psychological
Measurement, 20(4), 331–354. https://doi.org/10.1177/014662169602000403
Streiner, D. L., & Norman, G. R. (2008).
Health measurement scales: a practical guide to their development
and use (4th ed). Oxford University Press.
Sturges, H. A. (1926). The choice of a class
interval. Journal of the American Statistical Association,
21(153), 65–66. https://doi.org/10.1080/01621459.1926.10502161
高橋 将宜・渡辺 美智子(2017).欠測データ処理:
Rによる単一代入法と多重代入法 共立出版
Takane, Y., & de Leeuw, J. (1987). On the
relationship between item response theory and factor analysis of
discretized variables. Psychometrika, 52(3), 393–408.
https://doi.org/10.1007/BF02294363
Thurstone, L. L. (1927). A law of comparative
judgment. Psychological Review, 34(4), 273–286. https://doi.org/10.1037/h0070288
Thurstone, L. L. (1947). Multiple-factor
analysis: a development and expansion of the vectors of mind.
University of Chicago Press.
豊田
秀樹(編)(2013).項目反応理論[中級編] 統計ライブラリー 朝倉書店
豊田 秀樹(2014).共分散構造分析
[R編] 東京図書
Tucker, L. R., & Lewis, C. (1973). A
reliability coefficient for maximum likelihood factor analysis.
Psychometrika, 38(1), 1–10. https://doi.org/10.1007/BF02291170
Yen, W. M. (1981). Using simulation results to
choose a latent trait model. Applied Psychological Measurement,
5(2), 245–262. https://doi.org/10.1177/014662168100500212
Yen, W. M. (1984). Effects of local item
dependence on the fit and equating performance of the three-parameter
logistic model. Applied Psychological Measurement,
8(2), 125–145. https://doi.org/10.1177/014662168400800201
Zhang, J. (2007). Conditional covariance theory
and detect for polytomous items. Psychometrika, 72(1),
69–91. https://doi.org/10.1007/s11336-004-1257-7
Zhang, J., & Stout, W. (1999). The
theoretical DETECT index of dimensionality and its application to
approximate simple structure. Psychometrika, 64(2),
213–249. https://doi.org/10.1007/BF02294536
Zwick, W. R., & Velicer, W. F. (1986).
Comparison of five rules for determining the number of components to
retain. Psychological Bulletin, 99(3), 432–442. https://doi.org/10.1037/0033-2909.99.3.432