Interpolation properties for several logics

Definitions


Intermediate Propositional Logics
Exactly seven intermediate propositional logics have CIP (Maksimova (1977)).
Logics ULIP UIP LIP CIP
  \(\mathbf{Int}\), \(\mathbf{IPC}\)   Kurahashi (202?)
  New!
  Pitts (1992)   Maksimova (1982)   Schütte (1962)
  \(\mathbf{KC}\)\(\mathbf{Int} + (\neg p \lor \neg \neg p)\)   Kurahashi (202?)
  New!
  Maksimova (2014)   Maksimova (1982)   Gabbay (1971)
  \(\mathbf{LP}_2\)\(\mathbf{Int} + (p \lor (p \to q \lor \neg q))\)   local tabularity   local tabularity   Shimura (1992)   Maksimova (1977)
  \(\mathbf{LV}\)\(\mathbf{LP}_2 + (p \to q) \lor (q \to p) \lor (p \leftrightarrow \neg q)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1977)
  \(\mathbf{LC}\)\(\mathbf{Int} + (p \to q) \lor (q \to p)\)   local tabularity   local tabularity   Kuznets and Lellmann (2018)   Maksimova (1977)
  \(\mathbf{LS}, \mathbf{LC}_2\)\(\mathbf{LP}_2 + (p \to q) \lor (q \to p)\)   local tabularity   local tabularity   Maksimova (1982)   Maksimova (1977)
  \(\mathbf{Cl}\), \(\mathbf{CPC}\)\(\mathbf{Int} + (p \lor \neg p)\)
\(\mathbf{Int} + (\neg \neg p \to p)\)
  local tabularity   local tabularity   Lyndon (1959)   Craig (1957)

Modal Propositional Logics
Survey paper (Maksimova (1991))

Logics ULIP UIP LIP CIP
  \(\mathbf{N}\mathbf{A}_{m, n}\) \((\mathbf{N} + \dfrac{\neg \Box A}{\neg \Box \Box A}) \oplus (\Box^n p \to \Box^m p) \)   Sato (202?)
  New!
     
  \(\mathbf{N}^+\mathbf{A}_{m, n}\) \((\mathbf{N} + \dfrac{\neg \Box A}{\neg \Box \Box A}) \oplus (\Box^n p \to \Box^m p) \)   Sato (202?)
  New!
     
  \(\mathbf{NRA}_{m, n}\) \(\mathbf{NR}\oplus (\Box^n p \to \Box^m p) \)   Sato (202?)
  New!
     
  \(\mathbf{E}\) \(\mathbf{Cl} + \dfrac{A \leftrightarrow B}{\Box A \leftrightarrow \Box B}\)   Akbar Tabatabai, Iemhoff, and Jalali (2021)   Pattinson (2013)    
  \(\mathbf{EC}\) \(\mathbf{E} + (\Box p \land \Box q \to \Box (p \land q))\)   ×   ×   ×   × Akbar Tabatabai, Iemhoff, and Jalali (2021)
  \(\mathbf{EN}\) \(\mathbf{E} + \dfrac{A}{\Box A}\)   Akbar Tabatabai, Iemhoff, and Jalali (2021)      
  \(\mathbf{ECN}\) \(\mathbf{EC} + \dfrac{A}{\Box A}\)   ×   ×   ×   × Akbar Tabatabai, Iemhoff, and Jalali (2021)
  \(\mathbf{M}\) \(\mathbf{Cl} + \dfrac{A \to B}{\Box A \to \Box B}\)   Akbar Tabatabai, Iemhoff, and Jalali (2021)   Santocanale and Venema (2010)    
  \(\mathbf{MC}\) \(\mathbf{M} + (\Box p \land \Box q \to \Box (p \land q))\)   Akbar Tabatabai, Iemhoff, and Jalali (2021)      
  \(\mathbf{MN}\) \(\mathbf{M} \oplus \dfrac{A}{\Box A}\)   Akbar Tabatabai, Iemhoff, and Jalali (2021)      
  \(\mathbf{MNP}\) \(\mathbf{MN} \oplus \neg \Box \bot\)   ?   ?   ?   ?
  \(\mathbf{MND}\) \(\mathbf{MN} \oplus (\Box p \to \Diamond p)\)   ?   ?   ?   ?
  \(\mathbf{MN4}\) \(\mathbf{MN} \oplus (\Box p \to \Box \Box p)\)   ?   ?   ?   ?
  \(\mathbf{MNP4}\) \(\mathbf{MNP} \oplus (\Box p \to \Box \Box p)\)   ?   ?   ?   ?
  \(\mathbf{MND4}\) \(\mathbf{MND} \oplus (\Box p \to \Box \Box p)\)   ?   ?   ?   ?
  \(\mathbf{K}\) \(\mathbf{MCN}\)
\(\mathbf{N} + (\Box(p \to q) \to (\Box p \to \Box q))\)
  Kurahashi (2020)   Ghilardi (1995)
    Visser (1996)
  Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\mathbf{KD}\)\(\mathbf{K} \oplus \neg \Box \bot\)
\(\mathbf{K} \oplus (\Box p \to \Diamond p)\)
  Kurahashi (2020)   Iemhoff (2019)     Rautenberg (1983)
  \(\mathbf{KT}\)\(\mathbf{K} \oplus (\Box p \to p)\)   Kurahashi (2020)   Bílková (2007)   Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\mathbf{KB}\)\(\mathbf{K} \oplus (p \to \Box \Diamond p)\)   Kurahashi (2020)   Kurahashi (2020)   Kuznets (2016)  
  \(\mathbf{KDB}\)\(\mathbf{K} \oplus (\neg \Box \bot) \oplus (p \to \Box \Diamond p)\)   Kurahashi (2020)   Kurahashi (2020)   Kuznets (2016)  
  \(\mathbf{KTB}\)\(\mathbf{K} \oplus (\Box p \to p) \oplus (p \to \Box \Diamond p)\)   Kurahashi (2020)   Kurahashi (2020)   Kuznets (2016)   Rautenberg (1983)
  \(\mathbf{K4}\)\(\mathbf{K} \oplus (\Box p \to \Box \Box p)\)   ×   × Bílková (2007)   Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\mathbf{K} \oplus (\Box p \to \Box^{n+1} p)\)   ×   ×   Kuznets (2016)   Gabbay (1972)
  \(\mathbf{wK4}\)\(\mathbf{K} \oplus (p \land \Box p \to \Box \Box p)\)   ×   ×   ×   × Karpenko and Maksimova (2010)
  \(\mathbf{DL}\)\(\mathbf{wK4} \oplus (p \to \Box \Diamond p)\)   ×   ×   ×   × Karpenko and Maksimova (2010)
  \(\mathbf{K5}\)\(\mathbf{K} \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{KD5}\)\(\mathbf{K} \oplus \neg \Box \bot \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{K45}\)\(\mathbf{K} \oplus (\Box p \to \Box \Box p) \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{KD45}\)\(\mathbf{K} \oplus \neg \Box \bot \oplus (\Box p \to \Box \Box p) \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{KB5}\)\(\mathbf{K} \oplus (p \to \Box \Diamond p) \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  

At most 36 consistent normal extensions of \(\mathbf{S4}\) have CIP (Maksimova (1979)).
30 of them are known to have CIP and the status of CIP for the remaining 6 is open.
It suffices to consider modal companions of intermediate logics having CIP.

Modal Companions of \(\mathbf{Int}\)

Logics ULIP UIP LIP CIP
  \(\mathbf{S4}\)\(\Gamma(\mathbf{Int}, \omega, \omega)\)
\(\mathbf{KT4}\)
\(\mathbf{K} \oplus (\Box p \to p) \oplus (\Box p \to \Box \Box p)\)
  ×   × Ghilardi and Zawadowski (1995)   Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\Gamma(\mathbf{Int}, \omega, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{Int}, \omega, 1)\)\(\mathbf{S4} \oplus (\Box(\Box (p \to \Box p) \to p) \to (\Box \Diamond \Box p \to p))\)   ?   ?   ?   Maksimova (1987)
  \(\Gamma(\mathbf{Int}, 2, \omega)\)   ?   ?   ?   Maksimova (1980)
  \(\Gamma(\mathbf{Int}, 2, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{Int}, 2, 1)\)   ?   ?   ?   Maksimova (?)
  \(\mathbf{S4.1}\)\(\Gamma(\mathbf{Int}, 1, \omega)\)
\(\mathbf{S4} \oplus (\Box \Diamond p \to \Diamond \Box p)\)
  ?   ?   Maksimova (1982)   Gabbay (1972)
  \(\Gamma(\mathbf{Int}, 1, 2)\)   ?   ?   ?   ?
  \(\mathbf{Grz}\)\(\Gamma(\mathbf{Int}, 1, 1)\)
\(\mathbf{K} \oplus (\Box (\Box (p \to \Box p) \to p) \to p)\)
  Kurahashi (2020)   Visser (1996)   Maksimova (2014)   Boolos (1980)

Modal Companions of \(\mathbf{KC}\)

Logics ULIP UIP LIP CIP
  \(\mathbf{S4.2}\)\(\Gamma(\mathbf{KC}, \omega, \omega)\)
\(\mathbf{S4} \oplus (\Diamond \Box p \to \Box \Diamond p)\)
  ?   ?   Kuznets (2016)   Gabbay (1972)
  \(\Gamma(\mathbf{KC}, \omega, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{KC}, \omega, 1)\)\(\mathbf{S4.2} \oplus (\Box(\Box (p \to \Box p) \to p) \to (\Box \Diamond \Box p \to p))\)   ?   ?   ?   Maksimova (1987)
  \(\Gamma(\mathbf{KC}, 2, \omega)\)   ?   ?   ?   Maksimova (1980)
  \(\Gamma(\mathbf{KC}, 2, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{KC}, 2, 1)\)   ?   ?   ?   Maksimova (?)
  \(\mathbf{S4.2.1}\)\(\Gamma(\mathbf{KC}, 1, \omega)\)
\(\mathbf{S4} \oplus (\Box \Diamond p \leftrightarrow \Diamond \Box p)\)
  ?   ?   Maksimova (1982)   Gabbay (1972)
  \(\Gamma(\mathbf{KC}, 1, 2)\)   ?   ?   ?   ?
  \(\mathbf{Grz.2}\)\(\Gamma(\mathbf{KC}, 1, 1)\)
\(\mathbf{Grz} \oplus (\Diamond \Box p \to \Box \Diamond p)\)
  Kurahashi (202?)
  New!
  Maksimova (2014)   Maksimova (2014)   Rautenberg (1983)

Modal Companions of \(\mathbf{LP}_2\)

Logics ULIP UIP LIP CIP
  \(\Gamma(\mathbf{LP}_2, \omega, 1)\)\(\mathbf{S4.04}\)
\(\mathbf{S4} \oplus (p \land \Box \Diamond \Box p \to \Box p)\)
  local tabularity   local tabularity   Shimura (1992)   Schumm (1976)
  \(\Gamma(\mathbf{LP}_2, 2, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LP}_2, 1, \omega)\)   ×   local tabularity   × Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LP}_2, 1, 2)\)   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{GW}\)\(\Gamma(\mathbf{LP}_2, 1, 1)\)
\(\mathbf{Grz} \oplus (\neg p \to \Box(p \to \Box p))\)
  local tabularity   local tabularity   Shimura (1992)   Schumm (1976)

Modal Companions of \(\mathbf{LV}\)

Logics ULIP UIP LIP CIP
  \(\Gamma(\mathbf{LV}, \omega, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LV}, 2, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LV}, 1, \omega)\)   ×   local tabularity   × Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LV}, 1, 2)\)   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{GV}\)\(\Gamma(\mathbf{LV}, 1, 1)\)
\(\mathbf{GW} \oplus (\Diamond \Box p \land \Diamond \Box q \land \Diamond \Box r \to \Diamond \Box (p \land q) \lor \Diamond \Box (p \land r) \lor \Diamond \Box (q \land r))\)
  local tabularity   local tabularity
Maksimova (2014)
  Kurahashi (202?)
  New!
  Maksimova (1980)

There is no modal companions of \(\mathbf{LC}\) having CIP (Maksimova (1982))

Modal Companions of \(\mathbf{LS}\)

Logics ULIP UIP LIP CIP
  \(\mathbf{S4.4}\)\(\Gamma(\mathbf{LS}, \omega, 1)\)
\(\mathbf{S4} \oplus (p \land \Diamond \Box p \to \Box p)\)
  local tabularity   local tabularity   Shimura (1992)   Schumm (1976)
  \(\Gamma(\mathbf{LS}, 2, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LS}, 1, \omega)\)   ×   local tabularity   × Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LS}, 1, 2)\)   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{GW.2}\)\(\Gamma(\mathbf{LS}, 1, 1)\)
\(\mathbf{GW} \oplus (\Diamond \Box p \to \Box \Diamond p)\)
  local tabularity   local tabularity
Maksimova (2014)
  Maksimova (1982)   Schumm (1976)

Modal Companions of \(\mathbf{Cl}\)

Logics ULIP UIP LIP CIP
  \(\mathbf{S5}\)\(\Gamma(\mathbf{Cl}, \omega, 0)\)
\(\mathbf{S4} \oplus (\Diamond p \to \Box \Diamond p)\)
  local tabularity
Kurahashi (2020)
  local tabularity   Fitting (1983)   Schumm (1976)
  \(\Gamma(\mathbf{Cl}, 2, 0)\)   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{Triv}\)\(\Gamma(\mathbf{Cl}, 1, 0)\)
\(\mathbf{K} \oplus (p \leftrightarrow \Box p)\)
  local tabularity   local tabularity
Maksimova (2014)
  Maksimova (1982)   Maksimova (1980)

Provability Logics

Logics ULIP UIP LIP CIP
  \(\mathbf{GL}\)\(\mathbf{K} \oplus (\Box(\Box p \to p) \to \Box p)\)   Kurahashi (2020)   Shavrukov (1993)
    Visser (1996)
  Shamkanov (2011)   Smoryński (1978)
    Boolos (1979)
  \(\mathbf{S}\)\(\mathbf{GL} + (\Box(\Box p \to p) \to \Box p)\)   ?       Boolos (1980)
    Beklemishev (1987)
  \(\mathbf{D}\)\(\mathbf{GL} + \neg \Box \bot + (\Box(\Box p \lor \Box q) \to \Box p \lor \Box q)\)   ×   ×   ×   × Beklemishev (1989)
  \(\mathbf{I}\)Polymodal: \(\mathbf{GL}\) for every \([n]\) + for \(m \leq n\)
\(([m] p \to [n][m] p) \oplus (\langle m \rangle p \to [n] \langle m \rangle p)\)
  ?   ?   ?   ?
  \(\mathbf{J}\)Polymodal: \(\mathbf{I} \oplus ([m]p \to [m][n]p)\) for \(m \leq n\)   ×   × Shamkanov (2011)   Shamkanov (2011)  
  \(\mathbf{GLP}\)Polymodal: \(\mathbf{I} \oplus ([m]p \to [n] p)\) for \(m \leq n\)   ?   Shamkanov (2011)   ?
cf. Shamkanov (2011)
  Ignatiev (1993)
    Beklemishev (2010)
  \(\mathbf{wGL}_n\)\(\mathbf{K} \oplus (\Box (\Box^n p \to p) \to \Box p)\)   ?   ?   Iwata (2021)   Sacchetti (2001)
  \(\mathbf{R}\)Witness comparison \(\prec, \preccurlyeq\):
\(\mathbf{GL}\) + order axioms + \(\dfrac{\Box A}{A}\)
  ×   ×   ×   × Sidon (1994)
  \(\mathbf{GR}\)Bimodal:\(\mathbf{GL}(\Box) \oplus (\triangle p \to \Box p) \oplus (\Box p \to \Box \triangle p)\)
\(\oplus (\Box p \to (\Box \bot \lor \triangle p)) \oplus (\Box \neg p \to \Box \neg \triangle p) + \dfrac{\Box A}{A}\)
  ?
cf. Kogure and Kurahashi (202?)
  Kogure and Kurahashi (202?)
  New!
  Kogure and Kurahashi (202?)
  New!
  Sidon (1994)
  \(\mathbf{CS}\)Bimodal:\(\mathbf{GL}(\Box) \oplus \mathbf{GL}(\triangle)\)
\(\oplus (\Box p \to \triangle \Box p) \oplus (\triangle p \to \Box \triangle p)\)
  ?   ?   ?   ?
  \(\mathbf{CSM}\)Bimodal:\(\mathbf{CS} \oplus (\Box p \to \triangle p)\)   ?   ?   ?   ?
  \(\mathbf{CDC}\)Bimodal:\(\mathbf{CSM} \oplus (\triangle p \to \Box (\triangle \bot \lor p))\)   ?   ?   ?   ?
  \(\mathbf{CSM} \oplus (\triangle (\Box p \to p))\)   ?   ?   ?   ?
  \(\mathbf{GLT}\)Bimodal:\(\mathbf{CSM} \oplus (\triangle p \leftrightarrow \triangle \Box p)\)   ?   ?   ?   ?
  \(\mathbf{GF}\)Bimodal:\(\mathbf{GL}(\Box) \oplus \mathbf{KD}(\triangle)\)
\(\oplus (\Box p \to \Box \triangle p) \oplus (\Box p \to \triangle \Box p)\)
\((\Box p \leftrightarrow (\Box \bot \lor \triangle p)) \oplus (\triangle p \to \triangle ((\triangle q \to q) \lor \triangle p))\)
  ?   ?   ?   ?
  \(\mathbf{PF}\)Bimodal:\(\mathbf{GL}(\Box) \oplus \mathbf{S4.2}(\triangle)\)
\(\oplus (\Box p \to \Box \triangle p) \oplus (\Box p \to \triangle \Box p) \oplus (\neg \Box p \to \triangle \neg \Box p)\)
  ?   ?   ?   ?
  \(\mathbf{IL}\)   ?   Horvat, Sierra Miranda, and Studer
  New!
  ?   Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{ILP}\)   ?   Horvat, Sierra Miranda, and Studer
  New!
  ?   Hájek (1992)
    Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{ILM}\)   ×   ×   ×   × Ignatiev
    Visser (1997)
  \(\mathbf{ILW}\)   ×   ×   ×   × Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{ILW}^*\)   ×   ×   ×   × Visser (1997)
  \(\mathbf{ILF}\)   ?   ?   ?   ?
cf. Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{il}\)   ?   ?   ?   de Rijke (1992)
  \(\mathbf{ilp}\)   ?   ?   ?   de Rijke (1992)
  \(\mathbf{ilm}\)   ?   ?   ?   de Rijke (1992)
  \(\mathbf{IL}^-(\mathbf{J2}_+, \mathbf{J5})\)   ?   ?   ?   Iwata, Kurahashi, and Okawa (2024)
  \(\mathbf{CL}\)   ×   ×   ×   × Iwata, Kurahashi, and Okawa (2024)
  \(\mathbf{IL}^-\)   ×   ×   ×   × Iwata, Kurahashi, and Okawa (2024)
  \(\mathbf{IL}^-(\mathbf{P})\)   ?   ?   ?   Iwata, Kurahashi, and Okawa (2024)
Intuitionistic Modal Propositional Logics
Logics ULIP UIP LIP CIP
  \(\mathbf{iM}\) intuitionistic \(\mathbf{M}\)   Akbar Tabatabai, Iemhoff, and Jalali (2022)      
  \(\mathbf{iK}\) intuitionistic \(\mathbf{K}\)   ?   Iemhoff (2019)   ?  
  \(\mathbf{iKD}\) intuitionistic \(\mathbf{KD}\)   ?   Iemhoff (2019)   ?  
  \(\mathbf{iK4}\) intuitionistic \(\mathbf{K4}\)   ×   × van der Giessen (2022)   ?   ?
  \(\mathbf{iKT}\) intuitionistic \(\mathbf{KT}\)   ?   ?   ?   Czermak (1975)
  \(\mathbf{iS4}\) intuitionistic \(\mathbf{S4}\)   ×   × van der Giessen (2022)   Boričić (1991)   Czermak (1975)
  \(\mathbf{iGL}\) intuitionistic \(\mathbf{GL}\)   ?   van der Giessen, Menéndez Turata, and Sierra Miranda
  New!
  ?   van der Giessen and Iemhoff (2021)
  \(\mathbf{iSL}\) \(\mathbf{iGL} \oplus (p \to \Box p)\)
\(\mathbf{iK} \oplus ((\Box p \to p) \to p)\)
  ?   Litak and Visser (202?)   ?   van der Giessen and Iemhoff (202?)
  \(\mathbf{KM}\) \(\mathbf{iSL} \oplus (\Box p \to ((q \to p) \lor p))\)   ?   ?   ?   Muravitsky (2014)
  \(\mathbf{IEL}^-\) \(\mathbf{iK} \oplus p \to \Box p\)   ?   ?   ?   Su and Sano (2019)
  \(\mathbf{IEL}\) \(\mathbf{IEL} \oplus \Box p \to \neg \neg p\)   ?   ?   ?   Su and Sano (2019)
  \(\mathbf{PLL}\) \(\mathbf{iK} \oplus (p \to \Box p) \oplus (\Box \Box p \to \Box p) \oplus (\Box p \land \Box q \to \Box (p \land q))\)   ?   Iemhoff (2024)   ?  

Modal Quantified Logics
Logics ULIP UIP LIP CIP
  \(\mathbf{QK}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QK4}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QT}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QS4}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QS4.1}\)   ×   ×   ?  
  \(\mathbf{QS4.2}\)   ×   ×   ?  
  \(\mathbf{QS4.1.2}\)   ×   ×   ?  
  \(\mathbf{QGL}\)   ×   ×   ?   ?
An error in Leivant (1981)
cf. Avron (1984)
  \(\mathsf{QPL}(\mathbf{PA})\)   ×   ×   ×   × Vardanyan
cf. Boolos (1993)
  \(\mathbf{NQGL}\) \(\mathbf{QGL} + \dfrac{\Box^{n+1} \bot \to A \quad (\forall n \in \omega)}{A}\)   ×   ×   ×   × Iwata and Kurahashi (2020)
  \(\mathbf{QS5}\)   ×   ×   ×   × Fine (1979)
  \(\mathbf{}\)   ×   ?   ?