様々な論理の補間性の状況

定義


中間命題論理
CIP をもつ中間命題論理は次の7個だけ(Maksimova (1977)).
論理 ULIP UIP LIP CIP
  \(\mathbf{Int}\), \(\mathbf{IPC}\)   Kurahashi (202?)
  New!
  Pitts (1992)   Maksimova (1982)   Schütte (1962)
  \(\mathbf{KC}\)\(\mathbf{Int} + (\neg p \lor \neg \neg p)\)   Kurahashi (202?)
  New!
  Maksimova (2014)   Maksimova (1982)   Gabbay (1971)
  \(\mathbf{LP}_2\)\(\mathbf{Int} + (p \lor (p \to q \lor \neg q))\)   local tabularity   local tabularity   Shimura (1992)   Maksimova (1977)
  \(\mathbf{LV}\)\(\mathbf{LP}_2 + (p \to q) \lor (q \to p) \lor (p \leftrightarrow \neg q)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1977)
  \(\mathbf{LC}\)\(\mathbf{Int} + (p \to q) \lor (q \to p)\)   local tabularity   local tabularity   Kuznets and Lellmann (2018)   Maksimova (1977)
  \(\mathbf{LS}, \mathbf{LC}_2\)\(\mathbf{LP}_2 + (p \to q) \lor (q \to p)\)   local tabularity   local tabularity   Maksimova (1982)   Maksimova (1977)
  \(\mathbf{Cl}\), \(\mathbf{CPC}\)\(\mathbf{Int} + (p \lor \neg p)\)
\(\mathbf{Int} + (\neg \neg p \to p)\)
  local tabularity   local tabularity   Lyndon (1959)   Craig (1957)

様相命題論理
サーベイ論文(Maksimova (1991))

論理 ULIP UIP LIP CIP
  \(\mathbf{N}^+\mathbf{A}_{m, n}\) \((\mathbf{N} + \dfrac{\neg \Box A}{\neg \Box \Box A}) \oplus (\Box^n p \to \Box^m p) \)   Sato (202?)
  New!
     
  \(\mathbf{NRA}_{m, n}\) \(\mathbf{NR}\oplus (\Box^n p \to \Box^m p) \)   Sato (202?)
  New!
     
  \(\mathbf{E}\) \(\mathbf{Cl} + \dfrac{A \leftrightarrow B}{\Box A \leftrightarrow \Box B}\)   Tabatabai, Iemhoff, and Jalali (2021)   Pattinson (2013)    
  \(\mathbf{EC}\) \(\mathbf{E} + (\Box p \land \Box q \to \Box (p \land q))\)   ×   ×   ×   × Tabatabai, Iemhoff, and Jalali (2021)
  \(\mathbf{EN}\) \(\mathbf{E} + \dfrac{A}{\Box A}\)   Tabatabai, Iemhoff, and Jalali (2021)      
  \(\mathbf{ECN}\) \(\mathbf{EC} + \dfrac{A}{\Box A}\)   ×   ×   ×   × Tabatabai, Iemhoff, and Jalali (2021)
  \(\mathbf{M}\) \(\mathbf{Cl} + \dfrac{A \to B}{\Box A \to \Box B}\)   Tabatabai, Iemhoff, and Jalali (2021)   Santocanale and Venema (2010)    
  \(\mathbf{MC}\) \(\mathbf{M} + (\Box p \land \Box q \to \Box (p \land q))\)   Tabatabai, Iemhoff, and Jalali (2021)      
  \(\mathbf{MN}\) \(\mathbf{M} \oplus \dfrac{A}{\Box A}\)   Tabatabai, Iemhoff, and Jalali (2021)      
  \(\mathbf{MNP}\) \(\mathbf{MN} \oplus \neg \Box \bot\)   ?   ?   ?   ?
  \(\mathbf{MND}\) \(\mathbf{MN} \oplus (\Box p \to \Diamond p)\)   ?   ?   ?   ?
  \(\mathbf{MN4}\) \(\mathbf{MN} \oplus (\Box p \to \Box \Box p)\)   ?   ?   ?   ?
  \(\mathbf{MNP4}\) \(\mathbf{MNP} \oplus (\Box p \to \Box \Box p)\)   ?   ?   ?   ?
  \(\mathbf{MND4}\) \(\mathbf{MND} \oplus (\Box p \to \Box \Box p)\)   ?   ?   ?   ?
  \(\mathbf{K}\) \(\mathbf{MCN}\)
\(\mathbf{N} + (\Box(p \to q) \to (\Box p \to \Box q))\)
  Kurahashi (2020)   Ghilardi (1995)
    Visser (1996)
  Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\mathbf{KD}\)\(\mathbf{K} \oplus \neg \Box \bot\)
\(\mathbf{K} \oplus (\Box p \to \Diamond p)\)
  Kurahashi (2020)   Iemhoff (2019)     Rautenberg (1983)
  \(\mathbf{KT}\)\(\mathbf{K} \oplus (\Box p \to p)\)   Kurahashi (2020)   Bílková (2007)   Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\mathbf{KB}\)\(\mathbf{K} \oplus (p \to \Box \Diamond p)\)   Kurahashi (2020)   Kurahashi (2020)   Kuznets (2016)  
  \(\mathbf{KDB}\)\(\mathbf{K} \oplus (\neg \Box \bot) \oplus (p \to \Box \Diamond p)\)   Kurahashi (2020)   Kurahashi (2020)   Kuznets (2016)  
  \(\mathbf{KTB}\)\(\mathbf{K} \oplus (\Box p \to p) \oplus (p \to \Box \Diamond p)\)   Kurahashi (2020)   Kurahashi (2020)   Kuznets (2016)   Rautenberg (1983)
  \(\mathbf{K4}\)\(\mathbf{K} \oplus (\Box p \to \Box \Box p)\)   ×   × Bílková (2007)   Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\mathbf{K} \oplus (\Box p \to \Box^{n+1} p)\)   ×   × \(\mathbf{K4}\) より   Kuznets (2016)   Gabbay (1972)
  \(\mathbf{wK4}\)\(\mathbf{K} \oplus (p \land \Box p \to \Box \Box p)\)   ×   ×   ×   × Karpenko and Maksimova (2010)
  \(\mathbf{DL}\)\(\mathbf{wK4} \oplus (p \to \Box \Diamond p)\)   ×   ×   ×   × Karpenko and Maksimova (2010)
  \(\mathbf{K5}\)\(\mathbf{K} \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{KD5}\)\(\mathbf{K} \oplus \neg \Box \bot \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{K45}\)\(\mathbf{K} \oplus (\Box p \to \Box \Box p) \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{KD45}\)\(\mathbf{K} \oplus \neg \Box \bot \oplus (\Box p \to \Box \Box p) \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  
  \(\mathbf{KB5}\)\(\mathbf{K} \oplus (p \to \Box \Diamond p) \oplus (\Diamond p \to \Diamond \Box p)\)   local tabularity
Kurahashi (2020)
  local tabularity
Maksimova (2014)
  Kuznets (2016)  

CIP をもつ \(\mathbf{S4}\) の無矛盾正規拡大は 36 個以下(Maksimova (1979))で30個は持つが残り6個は未解決.
CIP を持つ中間命題論理の modal companion のみを考えればよい.

\(\mathbf{Int}\) の modal companion

論理 ULIP UIP LIP CIP
  \(\mathbf{S4}\)\(\Gamma(\mathbf{Int}, \omega, \omega)\)
\(\mathbf{KT4}\)
\(\mathbf{K} \oplus (\Box p \to p) \oplus (\Box p \to \Box \Box p)\)
  ×   × Ghilardi and Zawadowski (1995)   Maksimova (1982)
    Fitting (1983)
  Gabbay (1972)
  \(\Gamma(\mathbf{Int}, \omega, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{Int}, \omega, 1)\)\(\mathbf{S4} \oplus (\Box(\Box (p \to \Box p) \to p) \to (\Box \Diamond \Box p \to p))\)   ?   ?   ?   Maksimova (1987)
  \(\Gamma(\mathbf{Int}, 2, \omega)\)   ?   ?   ?   Maksimova (1980)
  \(\Gamma(\mathbf{Int}, 2, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{Int}, 2, 1)\)   ?   ?   ?   Maksimova (?)
  \(\mathbf{S4.1}\)\(\Gamma(\mathbf{Int}, 1, \omega)\)
\(\mathbf{S4} \oplus (\Box \Diamond p \to \Diamond \Box p)\)
  ?   ?   Maksimova (1982)   Gabbay (1972)
  \(\Gamma(\mathbf{Int}, 1, 2)\)   ?   ?   ?   ?
  \(\mathbf{Grz}\)\(\Gamma(\mathbf{Int}, 1, 1)\)
\(\mathbf{K} \oplus (\Box (\Box (p \to \Box p) \to p) \to p)\)
  Kurahashi (2020)   Visser (1996)   Maksimova (2014)   Boolos (1980)

\(\mathbf{KC}\) の modal companion

論理 ULIP UIP LIP CIP
  \(\mathbf{S4.2}\)\(\Gamma(\mathbf{KC}, \omega, \omega)\)
\(\mathbf{S4} \oplus (\Diamond \Box p \to \Box \Diamond p)\)
  ?   ?   Kuznets (2016)   Gabbay (1972)
  \(\Gamma(\mathbf{KC}, \omega, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{KC}, \omega, 1)\)\(\mathbf{S4.2} \oplus (\Box(\Box (p \to \Box p) \to p) \to (\Box \Diamond \Box p \to p))\)   ?   ?   ?   Maksimova (1987)
  \(\Gamma(\mathbf{KC}, 2, \omega)\)   ?   ?   ?   Maksimova (1980)
  \(\Gamma(\mathbf{KC}, 2, 2)\)   ?   ?   ?   ?
  \(\Gamma(\mathbf{KC}, 2, 1)\)   ?   ?   ?   Maksimova (?)
  \(\mathbf{S4.2.1}\)\(\Gamma(\mathbf{KC}, 1, \omega)\)
\(\mathbf{S4} \oplus (\Box \Diamond p \leftrightarrow \Diamond \Box p)\)
  ?   ?   Maksimova (1982)   Gabbay (1972)
  \(\Gamma(\mathbf{KC}, 1, 2)\)   ?   ?   ?   ?
  \(\mathbf{Grz.2}\)\(\Gamma(\mathbf{KC}, 1, 1)\)
\(\mathbf{Grz} \oplus (\Diamond \Box p \to \Box \Diamond p)\)
  Kurahashi (202?)
  New!
  Maksimova (2014)   Maksimova (2014)   Rautenberg (1983)

\(\mathbf{LP}_2\) の modal companion

論理 ULIP UIP LIP CIP
  \(\Gamma(\mathbf{LP}_2, \omega, 1)\)\(\mathbf{S4.04}\)
\(\mathbf{S4} \oplus (p \land \Box \Diamond \Box p \to \Box p)\)
  local tabularity   local tabularity   Shimura (1992)   Schumm (1976)
  \(\Gamma(\mathbf{LP}_2, 2, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LP}_2, 1, \omega)\)   ×   local tabularity   × Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LP}_2, 1, 2)\)   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{GW}\)\(\Gamma(\mathbf{LP}_2, 1, 1)\)
\(\mathbf{Grz} \oplus (\neg p \to \Box(p \to \Box p))\)
  local tabularity   local tabularity   Shimura (1992)   Schumm (1976)

\(\mathbf{LV}\) の modal companion

論理 ULIP UIP LIP CIP
  \(\Gamma(\mathbf{LV}, \omega, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LV}, 2, 1)\)   local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LV}, 1, \omega)\)   ×   local tabularity   × Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LV}, 1, 2)\)   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{GV}\)\(\Gamma(\mathbf{LV}, 1, 1)\)
\(\mathbf{GW} \oplus (\Diamond \Box p \land \Diamond \Box q \land \Diamond \Box r \to \Diamond \Box (p \land q) \lor \Diamond \Box (p \land r) \lor \Diamond \Box (q \land r))\)
  local tabularity   local tabularity
Maksimova (2014)
  Kurahashi (202?)
  New!
  Maksimova (1980)

\(\mathbf{LC}\) の modal companion は CIP を持たない(Maksimova (1982)

\(\mathbf{LS}\) の modal companion

論理 ULIP UIP LIP CIP
  \(\mathbf{S4.4}\)\(\Gamma(\mathbf{LS}, \omega, 1)\)
\(\mathbf{S4} \oplus (p \land \Diamond \Box p \to \Box p)\)
  local tabularity   local tabularity   Shimura (1992)   Schumm (1976)
  \(\Gamma(\mathbf{LS}, 2, 1)\)1点 \(\leq\) 2点クラスター
の論理
  local tabularity   local tabularity   Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\mathbf{K3.2}\)\(\Gamma(\mathbf{LS}, 1, \omega)\)   ×   local tabularity   × Kurahashi (202?)
  New!
  Maksimova (1980)
  \(\Gamma(\mathbf{LS}, 1, 2)\)2点クラスター \(\leq\) 1点
の論理
  ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{GW.2}\)\(\Gamma(\mathbf{LS}, 1, 1)\)
\(\mathbf{GW} \oplus (\Diamond \Box p \to \Box \Diamond p)\)
  local tabularity   local tabularity
Maksimova (2014)
  Maksimova (1982)   Schumm (1976)

\(\mathbf{Cl}\) の modal companion

論理 ULIP UIP LIP CIP
  \(\mathbf{S5}\)\(\Gamma(\mathbf{Cl}, \omega, 0)\)
\(\mathbf{S4} \oplus (\Diamond p \to \Box \Diamond p)\)
  local tabularity
Kurahashi (2020)
  local tabularity   Fitting (1983)   Schumm (1976)
  \(\Gamma(\mathbf{Cl}, 2, 0)\)2点からなるクラスターの論理   ×   local tabularity   × Maksimova (1982)   Maksimova (1980)
  \(\mathbf{Triv}\)\(\Gamma(\mathbf{Cl}, 1, 0)\)
\(\mathbf{K} \oplus (p \leftrightarrow \Box p)\)
  local tabularity   local tabularity
Maksimova (2014)
  Maksimova (1982)   Maksimova (1980)

証明可能性論理

論理 ULIP UIP LIP CIP
  \(\mathbf{GL}\)\(\mathbf{K} \oplus (\Box(\Box p \to p) \to \Box p)\)   Kurahashi (2020)   Shavrukov (1993)
    Visser (1996)
  Shamkanov (2011)   Smoryński (1978)
    Boolos (1979)
  \(\mathbf{S}\)\(\mathbf{GL} + (\Box(\Box p \to p) \to \Box p)\)   ?   \(\mathbf{GL}\) の UIP から   未発表   Boolos (1980)
    Beklemishev (1987)
  \(\mathbf{D}\)\(\mathbf{GL} + \neg \Box \bot + (\Box(\Box p \lor \Box q) \to \Box p \lor \Box q)\)   ×   ×   ×   × Beklemishev (1989)
  \(\mathbf{I}\)Polymodal: 各様相演算子 \([n]\) に対する \(\mathbf{GL}\) に次を加える:\(m \leq n\) に対して
\(([m] p \to [n][m] p) \oplus (\langle m \rangle p \to [n] \langle m \rangle p)\)
  ?   ?   ?   ?
  \(\mathbf{J}\)Polymodal: \(\mathbf{I} \oplus ([m]p \to [m][n]p)\) for \(m \leq n\)   ×   × Shamkanov (2011)   Shamkanov (2011)  
  \(\mathbf{GLP}\)Polymodal: \(\mathbf{I} \oplus ([m]p \to [n] p)\) for \(m \leq n\)   ?   Shamkanov (2011)   ?
Shamkanov (2011) 参照
  Ignatiev (1993)
    Beklemishev (2010)
  \(\mathbf{wGL}_n\)\(\mathbf{K} \oplus (\Box (\Box^n p \to p) \to \Box p)\)   ?   ?   Iwata (2021)   Sacchetti (2001)
  \(\mathbf{R}\)Witness comparison \(\prec, \preccurlyeq\) の記号:
\(\mathbf{GL}\) と順序公理 + \(\dfrac{\Box A}{A}\)
  ×   ×   ×   × Sidon (1994)
  \(\mathbf{GR}\)Bimodal:\(\mathbf{GL}(\Box) \oplus (\triangle p \to \Box p) \oplus (\Box p \to \Box \triangle p)\)
\(\oplus (\Box p \to (\Box \bot \lor \triangle p)) \oplus (\Box \neg p \to \Box \neg \triangle p) + \dfrac{\Box A}{A}\)
  ?
Kogure and Kurahashi (202?) 参照
  Kogure and Kurahashi (202?)
  New!
  Kogure and Kurahashi (202?)
  New!
  Sidon (1994)
  \(\mathbf{CS}\)Bimodal:\(\mathbf{GL}(\Box) \oplus \mathbf{GL}(\triangle)\)
\(\oplus (\Box p \to \triangle \Box p) \oplus (\triangle p \to \Box \triangle p)\)
  ?   ?   ?   ?
  \(\mathbf{CSM}\)Bimodal:\(\mathbf{CS} \oplus (\Box p \to \triangle p)\)   ?   ?   ?   ?
  \(\mathbf{CDC}\)Bimodal:\(\mathbf{CSM} \oplus (\triangle p \to \Box (\triangle \bot \lor p))\)   ?   ?   ?   ?
  \(\mathbf{CSM} \oplus (\triangle (\Box p \to p))\)   ?   ?   ?   ?
  \(\mathbf{GLT}\)Bimodal:\(\mathbf{CSM} \oplus (\triangle p \leftrightarrow \triangle \Box p)\)   ?   ?   ?   ?
  \(\mathbf{GF}\)Bimodal:\(\mathbf{GL}(\Box) \oplus \mathbf{KD}(\triangle)\)
\(\oplus (\Box p \to \Box \triangle p) \oplus (\Box p \to \triangle \Box p)\)
\((\Box p \leftrightarrow (\Box \bot \lor \triangle p)) \oplus (\triangle p \to \triangle ((\triangle q \to q) \lor \triangle p))\)
  ?   ?   ?   ?
  \(\mathbf{PF}\)Bimodal:\(\mathbf{GL}(\Box) \oplus \mathbf{S4.2}(\triangle)\)
\(\oplus (\Box p \to \Box \triangle p) \oplus (\Box p \to \triangle \Box p) \oplus (\neg \Box p \to \triangle \neg \Box p)\)
  ?   ?   ?   ?
  \(\mathbf{IL}\)   ?   ?   ?   Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{ILP}\)   ?   ?   ?   Hájek (1992)
    Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{ILM}\)   ×   ×   ×   × Ignatiev
    Visser (1997)
  \(\mathbf{ILW}\)   ×   ×   ×   × Areces, Hoogland, and de Jongh (2001)
  \(\mathbf{ILW}^*\)   ×   ×   ×   × Visser (1997)
  \(\mathbf{ILF}\)   ?   ?   ?   ?
Areces, Hoogland, and de Jongh (2001) 参照
  \(\mathbf{il}\)   ?   ?   ?   de Rijke (1992)
  \(\mathbf{ilp}\)   ?   ?   ?   de Rijke (1992)
  \(\mathbf{ilm}\)   ?   ?   ?   de Rijke (1992)
  \(\mathbf{IL}^-(\mathbf{J2}_+, \mathbf{J5})\)   ?   ?   ?   Iwata, Kurahashi, and Okawa (2024)
  \(\mathbf{CL}\)   ×   ×   ×   × Iwata, Kurahashi, and Okawa (2024)
  \(\mathbf{IL}^-\)   ×   ×   ×   × Iwata, Kurahashi, and Okawa (2024)
  \(\mathbf{IL}^-(\mathbf{P})\)   ?   ?   ?   Iwata, Kurahashi, and Okawa (2024)
直観主義様相命題論理
論理 ULIP UIP LIP CIP
  \(\mathbf{iM}\) 直観主義 \(\mathbf{M}\)   Tabatabai, Iemhoff, and Jalali (2022)      
  \(\mathbf{iK}\) 直観主義 \(\mathbf{K}\)   ?   Iemhoff (2019)   ?  
  \(\mathbf{iKD}\) 直観主義 \(\mathbf{KD}\)   ?   Iemhoff (2019)   ?  
  \(\mathbf{iK4}\) 直観主義 \(\mathbf{K4}\)   ×   × van der Giessen (2022)   ?   ?
  \(\mathbf{iKT}\) 直観主義 \(\mathbf{KT}\)   ?   ?   ?   Czermak (1975)
  \(\mathbf{iS4}\) 直観主義 \(\mathbf{S4}\)   ×   × van der Giessen (2022)   Boričić (1991)   Czermak (1975)
  \(\mathbf{iGL}\) 直観主義 \(\mathbf{GL}\)   ?   ?   ?   van der Giessen and Iemhoff (2021)
  \(\mathbf{iSL}\) \(\mathbf{iGL} \oplus (p \to \Box p)\)
\(\mathbf{iK} \oplus ((\Box p \to p) \to p)\)
  ?   Litak and Visser (202?)   ?   van der Giessen and Iemhoff (202?)
  \(\mathbf{KM}\) \(\mathbf{iSL} \oplus (\Box p \to ((q \to p) \lor p))\)   ?   ?   ?   Muravitsky (2014)
  \(\mathbf{IEL}^-\) \(\mathbf{iK} \oplus p \to \Box p\)   ?   ?   ?   Su and Sano (2019)
  \(\mathbf{IEL}\) \(\mathbf{IEL} \oplus \Box p \to \neg \neg p\)   ?   ?   ?   Su and Sano (2019)
  \(\mathbf{PLL}\) \(\mathbf{iK} \oplus (p \to \Box p) \oplus (\Box \Box p \to \Box p) \oplus (\Box p \land \Box q \to \Box (p \land q))\)   ?   Iemhoff (2024)   ?  

様相述語論理
論理 ULIP UIP LIP CIP
  \(\mathbf{QK}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QK4}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QT}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QS4}\)   ×   ×   Maksimova (1982)  
  \(\mathbf{QS4.1}\)   ×   ×   ?  
  \(\mathbf{QS4.2}\)   ×   ×   ?  
  \(\mathbf{QS4.1.2}\)   ×   ×   ?  
  \(\mathbf{QGL}\)   ×   ×   ?   ?
Leivant (1981) の証明に誤りあり
Avron (1984) 参照
  \(\mathsf{QPL}(\mathbf{PA})\)   ×   ×   ×   × Vardanyan
Boolos (1993) 参照
  \(\mathbf{NQGL}\) \(\mathbf{QGL} + \dfrac{\Box^{n+1} \bot \to A \quad (\forall n \in \omega)}{A}\)   ×   ×   ×   × Iwata and Kurahashi (2020)
  \(\mathbf{QS5}\)   ×   ×   ×   × Fine (1979)
  \(\mathbf{}\)   ×   ?   ?