Appendix to a review article

T. Kuniya, K. Shibuya, Y. Tokuda, H. Nakamura, T. Moromizato

1. Parameters

Parameter	Description	Value
S	Susceptible population (unvaccinated)	-
E	Exposed population (unvaccinated)	-
I	Infectious population (unvaccinated)	-
R	Removed population (unvaccinated)	-
S_1	Susceptible population (vaccinated once)	-
E_1	Exposed population (vaccinated once)	-
I_1	Infectious population (vaccinated once)	-
R_1	Removed population (vaccinated once)	-
S_2	Susceptible population (vaccinated twice)	-
E_2	Exposed population (vaccinated twice)	-
I_2	Infectious population (vaccinated twice)	-
R_2	Removed population (vaccinated twice)	-
S_3	Susceptible population (vaccinated more than 3 times)	-
E_3	Exposed population (vaccinated more than 3 times)	-
I_3	Infectious population (vaccinated more than 3 times)	-
R_3	Removed population (vaccinated more than 3 times)	-
t	Time	-
τ	Class age (time elapsed since the recovery)	-
a	Class age (time elapsed since the vaccination)	-
β	Infection rate	Estimated using data in [9]
ε	Onset rate	0.2 (incubation period $1/\varepsilon = 5$ days) [4]
γ	Removal rate	0.1 (infection period $1/\gamma = 10$ days) [1]
λ	Force of infection	Equation (1)
$1-\sigma$	Efficacy of the first vaccination	0.46 [6]
v_n	Vaccination rate (for n-th)	Estimated using data in [7]
T	Duration between the vaccination	150 days or 180 days
1-p(a)	Efficacy of full vaccination at class age a	$0.8e^{-0.003a}$ (estimated using data in [6])
δ	Detection rate	0.5 (estimated using data in [5])
N	Total population in each prefecture	[8]
$\psi(a)$	Waning rate of natural immunity	$0.65 \left(1 - e^{-20e^{-0.01a}}\right)$ (assumed from [2])

See [3] for the details of how to estimate each parameter.

2. Model

Before vaccination policy (January 14, 2020 - February 16, 2021).

$$\begin{split} S'(t) &= -\beta S(t)I(t), \\ E'(t) &= \beta S(t)I(t) - \varepsilon E(t), \\ I'(t) &= \varepsilon E(t) - \gamma I(t), \\ \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial \tau}\right)R(t,\tau) &= 0, \quad R(t,0) = \gamma I(t). \end{split}$$

Under vaccination policy (February 17, 2021 - present).

• Unvaccinated population:

$$S'(t) = -\lambda(t)S(t) - v_1S(t),$$

$$E'(t) = \lambda(t)S(t) - (\varepsilon + v_1)E(t),$$

$$I'(t) = \varepsilon E(t) - (\gamma + v_1)I(t),$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial \tau}\right)R(t,\tau) = -v_1R(t,\tau), \quad R(t,0) = \gamma I(t).$$

• Vaccinated once:

$$S'_{1}(t) = v_{1}S(t) - \sigma\lambda(t)S_{1}(t) - v_{2}S_{1}(t),$$

$$E'_{1}(t) = v_{1}E(t) + \sigma\lambda(t)S_{1}(t) - (\varepsilon + v_{2})E_{1}(t),$$

$$I'_{1}(t) = v_{1}I(t) + \varepsilon E_{1}(t) - (\gamma + v_{2})I_{1}(t),$$

$$R'_{1}(t) = v_{1} \int_{0}^{\infty} R(t, \tau)d\tau + \gamma I_{1}(t) - v_{2}R_{1}(t).$$

• Vaccinated more than twice (n = 2, 3):

$$S_n(t,0) = \begin{cases} v_2 S_1(t), & n = 2, \\ v_3 \int_T^{\infty} S_2(t,a) da + v_4 \int_T^{\infty} S_3(t,a) da, & n = 3, \end{cases}$$

$$E_n(t,0) = \begin{cases} v_2 E_1(t), & n = 2, \\ v_3 \int_T^{\infty} E_2(t,a) da + v_4 \int_T^{\infty} E_3(t,a) da, & n = 3, \end{cases}$$

$$I_n(t,0) = \begin{cases} v_2 I_1(t), & n = 2, \\ v_3 \int_T^{\infty} I_2(t,a) da + v_4 \int_T^{\infty} I_3(t,a) da, & n = 3, \end{cases}$$

$$R_n(t,0) = \begin{cases} v_2 R_1(t), & n = 2, \\ v_3 \int_T^{\infty} R_2(t,a) da + v_4 \int_T^{\infty} R_3(t,a) da, & n = 3, \end{cases}$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) S_n(t, a) = -p(a)\lambda(t)S_n(t, a) - q_n(a)S_n(t, a),$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) E_n(t, a) = p(a)\lambda(t)S_n(t, a) - [\varepsilon + q_n(a)]E_n(t, a),$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) I_n(t, a) = \varepsilon E_n(t, a) - [\gamma + q_n(a)]I_n(t, a),$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) R_n(t, a) = \gamma I_n(t, a) - q_n(a)R_n(t, a),$$

where

$$q_n(a) = \begin{cases} 0, & a < T, \\ v_{n+1}, & \text{otherwise.} \end{cases}$$

• Force of infection:

$$\lambda(t) = \beta \left[I(t) + I_1(t) + \sum_{n=2}^{3} \int_0^\infty I_n(t, a) da \right].$$
 (1)

• Let

$$M_0(t) := E(t) + I(t) + \int_0^\infty \psi(\tau) R(t,\tau) d\tau, \quad M_1(t) := E_1(t) + I_1(t) + R_1(t),$$

$$M_n(t) := \int_0^\infty [E_n(t,a) + I_n(t,a) + R_n(t,a)] da, \quad n \ge 2.$$

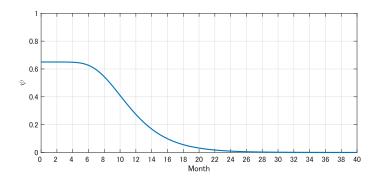
- Natural infection (with waning): $\sum_{n=0}^{3} M_n(t)$.
- Vaccine (with waning): $(1-\sigma)S_1(t) + \sum_{n=2}^3 \int_0^\infty [1-p(a)]S_n(t,a)da$.
- Natural infection (with waning) + vaccine (with waning): $\sum_{n=0}^{3} M_n(t) + (1 \sigma)S_1(t) + \sum_{n=2}^{3} \int_0^{\infty} [1 p(a)]S_n(t, a)da$.
- Partial immunity: 1 S(t).

How to estimate $\beta = \beta(t)$ and δ See [3].

How to estimate the vaccination rates

Note that $v_1 \times [S(t) + E(t) + I(t) + R(t)] \times N$ is the number of the first vaccination at time t. Hence, we estimate $v_1 = v_1(t)$ as

$$v_1(t) = \frac{(number\ of\ the\ first\ vaccination\ at\ time\ t)}{[S(t) + E(t) + I(t) + \int_0^\infty R(t,\tau)d\tau] \times N}.$$


In a similar manner, we estimate $v_n = v_n(t)$ $(n \ge 2)$ as

$$v_n(t) = \begin{cases} \frac{(number\ of\ the\ second\ vaccination\ at\ time\ t)}{[S_1(t) + E_1(t) + I_1(t) + R_1(t)] \times N}, & n = 2, \\ \frac{(number\ of\ the\ n-th\ vaccination\ at\ time\ t)}{\int_T^\infty [S_{n-1}(t,a) + E_{n-1}(t,a) + I_{n-1}(t,a) + R_{n-1}(t,a)] da \times N}, & n \geq 3. \end{cases}$$

How to predict

We fixed the infection rate and vaccination rates using the latest 1 week data.

Waning rate of natural immunity

References

- [1] R.M. Anderson, H. Heesterbeek, D. Klinkenberg, T.D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic?, The Lancet 395 (2020) 21–27.
- [2] H. Chemaitelly et al., Duration of immune protection of SARS-CoV-2 natural infection against reinfection in Qatar, medRxiv. https://doi.org/10.1101/2022.07.06.22277306
- [3] T. Kuniya, Appendix to a review article for The Tokyo Foundation for Policy Research, http://www2.kobe-u.ac.jp/~tkuniya/appendix, accessed on July 11, 2022.
- [4] N.M. Linton, T. Kobayashi, Y. Yang, et al., Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data, J. Clin. Med. 9 (2020) 538.
- [5] m3.com, 自然感染による抗体保有率、東京 2.80%・大阪 3.78%に, https://www.m3.com/news/open/irvoishin/1017268, accessed on March 8, 2022.
- [6] NIID 国立感染症研究所,新型コロナワクチンの有効性を検討した症例対照研究の暫定報告(第三報), https://www.niid.go.jp/niid/ja/2019-ncov/2484-idsc/10966-covid19-71.html, accessed on March 7, 2022
- [7] https://info.vrs.digital.go.jp/opendata/, accessed on October 4, 2022.
- [8] https://www.stat.go.jp/data/nihon/02.htm, accessed on October 4, 2022.
- [9] https://www3.nhk.or.jp/news/special/coronavirus/data/, accessed on October 4, 2022.