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1 Population dynamics

Let N(t) be the population at time t. The

simplest mathematical model of the popula-

tion dynamics is given by

dN(t)

dt
= bN(t)− dN(t), N(0) = N0,

where b and d denote the birth and death

rates, respectively. The solution is given by

N(t) = N0e
(b−d)t.

Here r := b− d is called the Malthusian pa-

rameter, which determines whether the pop-

ulation increases or decreases:

• If r > 0, then the population N(t) in-

creases exponentially to +∞ as t → +∞.

• If r < 0, then the population N(t) de-

creases exponentially to 0 as t → +∞.

However, the infinitely increasing population

seems unrealistic. The following modified model

is called the logistic equation, developed by

Verhulst:

dN(t)

dt
= rN(t)

[
1− N(t)

K

]
,

where K is called the carrying capacity.

This equation has two steady states: N = 0

and K. We can check that 0 is unstable and

K is stable.

2 Insect outbreak

The model for budworm population dynam-

ics, considered by Ludwig et al. (1978) is

dN(t)

dt
= rBN(t)

[
1− N(t)

KB

]
− BN2

A2 +N2
.

We perform nondimensionalization by intro-

ducing

u =
N

A
, r =

ArB
B

, q =
KB

A
, τ =

Bt

A
.

We then have

du

dτ
= ru

(
1− u

q

)
− u2

1 + u2
=: f(u).

The steady states are the solutions of

ru

(
1− u

q

)
− u2

1 + u2
= 0.

It is obvious that u = 0 is always one of the

steady state, which is unstable. The existence

and stability of other solutions can be studied

by considering the following equation:

r

(
1− u

q

)
=

u

1 + u2
.
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1 Difference equation

Let f be a smooth function. The follow-

ing recurrence relation is called a difference

equation:

ut+1 = f(ut), t = 0, 1, 2, . . . .

The equilibrium point u∗ is a solution of

u∗ = f(u∗).

To investigate the stability of u∗, we write

ut = u∗ + vt, |vt| ≪ 1.

By the Taylor expansion, we obtain

vt+1 ≈ λvt,

where λ := f ′(u∗). We then see that

• If |λ| < 1, then u∗ is stable.

• If |λ| > 1, then u∗ is unstable.

For example, ut+1 = cosut has only one

stable equilibrium point u∗ ≈ 0.739. ut+1 =

sinut has only one stable equilibrium point

u∗ = 0, which stablity can be checked by writ-

ing a cobweb plot.

Exercise Find all equilibrium points of ut+1 =

ute
1−ut and investigate their stability.

2 Logistic map

The difference form of the logistic equation

is

N(t+ 1)−N(t) = rdN(t)

[
1− N(t)

Kd

]
.

By changing the variable as

N(t) =
1 + rd
rd

Kdut, r = 1 + rd,

we arrive at

ut+1 = rut(1− ut),

which is called a logistic map.

We assume that 0 < u0 < 1 and r > 0.

If r < 1, then there exists only one stable

equilibrium u∗ = 0. If r > 1, then another

equilibrium point u∗ = 1 − r−1 exists. It is

stable for 1 < r < 3, but unstable for r > 3.

For r > 3, we consider the following second

iteration:

ut+2 =f(f(ut))

=r [rut(1− ut)] [1− rut(1− ut)] .

The equilibrium points u∗2 of this equation can

correspond to a 2-periodic solution. We write

them by p and q, that is, f(p) = q, f(q) = p

and p ̸= q. By a calculation, we obtain

p, q =
r + 1±

√
(r + 1)(r − 3)

2r
.

The stability of the 2-periodic solution can be

checked by

λ2 :=
d

du
f2(u)

∣∣∣∣
u=p,q

= f ′(p)f ′(q).

That is, if |λ2| < 1, then it is stable, whereas

if |λ2| > 1, then it is unstable. We can check

that if 3 < r < 1 +
√
6, then the 2-periodic

solution is stable. For r > 1+
√
6, the period-

doublings to 4, 8, 16,...-periodic solutions oc-

cur as r increases. For r > r∞ ≈ 3.57, a

chaotic behavior appears.
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1 Lotka-Volterra model

Let N(t) and P (t) be the populations of

prey and predator at time t, respectively. The

Lotka-Volterra model is given by

dN

dt
= N(a− bP ),

dP

dt
= P (cN − d),

where a, b, c and d are positive parameters.

More precisely, aN denotes the growth term

of prey; −bNP and cNP denote the effects

of predation in decreasing the prey popula-

tion and increasing the predator population,

respectively; −dP denotes the death rate of

the predator population. Let

τ = at, α =
d

a
, u(τ) =

cN(τ)

d
, v(τ) =

bP (τ)

a
.

The Lotka-Volterra model can then be rewrit-

ten as

du

dτ
= u(1− v),

dv

dτ
= αv(u− 1).

The equilibrium points of this model are

(u∗, v∗) = (0, 0), (1, 1).

In the u-v phase plane, we have

dv

du
= α

v(u− 1)

u(1− v)
.

By solving this, we have

αu+ v − lnuαv = H,

where H > Hmin = 1+α. This forms a closed

trajectory in the u-v phase plane. The solu-

tion is the periodic solution moving on this

trajectory.

2 Phase plane analysis

We consider the following general system of

ordinary differential equations:

dx

dt
= f(x, y),

dy

dt
= g(x, y).

The equilibrium point (x∗, y∗) satisfies

f(x∗, y∗) = g(x∗, y∗) = 0.

Let A be the Jacobian matrix at (x∗, y∗), that

is,

A =

[
∂f(x∗,y∗)

∂x
∂f(x∗,y∗)

∂y
∂g(x∗,y∗)

∂x
∂g(x∗,y∗)

∂y

]
.

Let λ1, λ2 be the eigenvalues of A. The sta-

bility of equilibrium point (x∗, y∗) can be in-

vestigated as follows:

• If both Re λ1 and Re λ2 are negative,

then (x∗, y∗) is asymptotically stable.

• If either or both Re λ1 and Re λ2 are

positive, then (x∗, y∗) is unstable.

Let τ and ∆ be the trace and determinant of

A. We then have

λ1, λ2 =
τ ±

√
τ2 − 4∆

2
.

That is, the stability is determined only by τ

and ∆.

Exercise Answer the stability of all equilib-

rium points of the following system:

dx

dt
= x(3− 2x− y),

dy

dt
= y(2− x− y).
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1 Competition

Let us consider the competition of two species

whose populations areN1 andN2, respectively.

The Lotka-Volterra competition model is

given by

dN1

dt
= r1N1

(
1− N1

K1
− b12

N2

K1

)
,

dN2

dt
= r2N2

(
1− N2

K2
− b21

N2

K2

)
,

where all parameters are positive. Let

u1 =
N1

K1
, u2 =

N2

K2
, τ = r1t, ρ =

r2
r1
,

a12 = b12
K2

K1
, a21 = b21

K1

K2
.

Then, the model can be rewritten as

du1
dτ

= u1(1− u1 − a12u2) =: f1(u1, u2),

du2
dτ

= ρu2(1− u2 − a21u1) =: f2(u1, u2).

The equilibrium points (u1, u2) = (u∗1, u
∗
2) are

(u∗1, u
∗
2) =(0, 0), (1, 0), (0, 1),(

1− a12
δ

,
1− a21

δ

)
, δ = 1− a12a21.

The stability of each equilibrium point can

be investigated by using the Jacobian matrix.

There are four cases: (i) a12 < 1 and a21 < 1.

(ii) a12 > 1 and a21 > 1. (iii) a12 < 1 < a21.

(iv) a21 < 1 < a12. The dynamics can also

be investigated by drawing nullclines in the

u1-u2 plane.

2 Mutualism

The mutualism can be modeled by the fol-

lowing system:

dN1

dt
= r1N1

(
1− N1

K1
+ b12

N2

K1

)
,

dN2

dt
= r2N2

(
1− N2

K2
+ b21

N2

K2

)
.

Similar to the competition model, this system

can be rewritten as

du1
dτ

= u1(1− u1 + a12u2) =: g1(u1, u2),

du2
dτ

= ρu2(1− u2 + a21u1) =: g2(u1, u2).

The equilibrium points are

(u∗1, u
∗
2) =(0, 0), (1, 0), (0, 1),(

1 + a12
δ

,
1 + a21

δ

)
, δ = 1− a12a21.

We can easily check that (0, 0), (1, 0) and (0, 1)

are always unstable. If δ < 0, then the fourth

equilibrium point does not exist, and hence,

the solution goes to infinity as t increases. If

δ > 0, then the fourth equilibrium point exists

and it is a stable node.
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1 Basic enzyme reaction

Let S be a substrate, E be an enzyme, SE

be a complex and P be a product. The basic

enzyme reaction can be represented by

S + E ⇌k1
k−1

SE
k2−→ P + E.

Let [·] denote concentration and let

s = [S], e = [E], c = [SE], p = [P ].

We then have the following system:

ds

dt
= −k1es+ k−1c,

de

dt
= −k1es+ (k−1 + k2)c,

dc

dt
= k1es− (k−1 + k2)c,

dp

dt
= k2c

with initial condition

s(0) = s0, e(0) = e0, c(0) = p(0) = 0.

We easily see that the first three equations of

the system are independent of p. Moreover,

de

dt
+

dc

dt
= 0 ⇔ e+ c = e0.

Hence, the system can be reduced to

ds

dt
= −k1e0s+ (k1s+ k−1)c,

dc

dt
= k1e0s− (k1s+ k−1 + k2)c.

In the initial stage of the complex, c, we can

assume that dc/dt ≈ 0 (quasi-steady state ap-

proximation) and we get

c =
e0s

s+Km
, Km =

k−1 + k2
k1

,

where Km is called the Michaelis constant.

The equation of s can be rewritten as

ds

dt
= − k2e0s

s+Km
.

2 Autocatalysis and inhibition

Autocatalysis is represented by

A+X ⇌k1
k−1

2X.

If the concentration of A is constant a, then

dx

dt
= k1ax− k−1x

2,

which is no other than the logistic equation.

If the reaction system is

A+X ⇌k1
k−1

2X, B +X
k2−→ C,

and the concentration of B is constant b, then

dx

dt
= (k1a− k2b)x− k−1x

2.

In this case, a transcritical bifurcation oc-

curs at k1a− k2b = 0.

If the reaction system is

A+X
k1−→ 2X, X + Y

k2−→ 2Y, Y
k3−→ B,

then

dx

dt
= k1ax− k2xy,

dy

dt
= k2xy − k3y,

which is equivalent to the Lotka-Volterra model.

Thomas (1975) formulated the following equa-

tions of the uric acid u and the oxygen v:

du

dt
= a− u− ρR(u, v) = f(u, v),

dv

dt
= α(b− v)− ρR(u, v) = g(u, v),

R(u, v) =
uv

1 + u+Ku2
.

Exercise A gene product with autocatalysis

can be represented by

dx

dt
= s+ k1

x2

1 + x2
− k2x.

Suppose that s = 0 and k1, k2 > 0. Show

a condition for which the equation has two

positive equilibrium points. Moreover, answer

their stability.



第6回「応用数学特論 III, IIIa」 2022年11月14日

教科書：J.D. Murray, Mathematical Biology, Springer, 1993.

1 Limit cycle

We consider the following system in the po-

lar coordinates:

dr

dt
= r(1− r2),

dθ

dt
= 1.

We can easily check that the equilibrium pont

r∗ = 0 is unstable and r∗ = 1 is stable. Hence,

(x, y) = (r cos θ, r sin θ) converges to a closed

orbit with radius 1. This is a limit cycle.

We consider the following general system:

dx

dt
= f(x, y),

dy

dt
= g(x, y).

The following theorem gives a sufficient con-

dition for the existence of a limit cycle.

Poincaré-Bendixson Theorem� �
Suppose that

1) R is a bounded closed set in the x−y

plane.

2) f and g are continuously differen-

tiable in a domain that includes R.

3) R does not include any equilibria.

4) There is an orbit C that stays in R.

Then, C is either a closed orbit or an orbit

approaching to a limit cycle.� �
We now apply the Poincaré-Bendixson the-

orem to the following system:

dr

dt
= r(1− r2) + µr cos θ,

dθ

dt
= 1.

If we find rM > rm > 0 such that r′ > 0 at r =

rm and r′ < 0 at r = rM , then the following

set R (confined set) satisfies the condition of

the Poincaré-Bendixson theorem:

R = {(x, y) = (r cos θ, r sin θ) : rm ≤ r ≤ rM}.

If µ < 1, we can set

rm = 0.999
√
1− µ, rM = 1.001

√
1 + µ.

2 Simple two-species oscillators

Schnackenberg (1979) considered the follow-

ing reaction mechanism which will admit pe-

riodic solutions:

X ⇌k1
k−1

A, B
k2−→ Y, 2X + Y

k3−→ 3X.

The nondimensional form is

du

dt
= a−u+u2v = f(u, v),

dv

dt
= b−u2v = g(u, v),

where a and b are positive constants. The

equilibrium point (u∗, v∗) is

u∗ = a+ b, v∗ =
b

(a+ b)2
.

The trace τ and determinant ∆ of the Jaco-

bian matrix can be calculated as

τ =
b− a

a+ b
− (a+ b)2, ∆ = (a+ b)2 > 0.

To apply the Poincaré-Bendixson theorem, (u∗, v∗)

should be unstable. This holds if

τ > 0 ⇔ b− a > (a+ b)3.

To depict a parameter region where a limit

cyle exists, we rewrite the condition τ > 0 in

terms of u∗, that is,

τ > 0 ⇔ a <
u∗[1− (u∗)2]

2
.

Since b = u∗ − a, we obtain the following pa-

rameter boundary:

a =
x(1− x2)

2
, b =

x(1 + x2)

2
, x > 0.
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1 Flows on the circle

Consider the following differential equation:

θ′ = f(θ), f(θ) = f(θ + 2π).

This equation corresponds to a vector field

on the circle. Examples are as follows:

• θ′ = sin θ.

• θ′ = ω (ω: constant).

Two people, A and B, are running around a

circular track. To run once around the track,

they take T1 and T2 seconds (T1 < T2), re-

spectively. If they start together, how long

does it take for A to lap B once? Let

θ′1 = ω1, θ′2 = ω2.

We then have that ωi = 2π/Ti, i = 1, 2. By

considering the phase difference ϕ = θ1 − θ2,

we obtain the answer to the above question as

2π

ω1 − ω2
=

(
1

T1
− 1

T2

)−1

.

The following equation corresponds to the

nonuniform oscillator:

θ′ = ω − a sin θ,

where ω and a are positive constants. For

a < ω, there is no equilibrium. An equilibrium

arises in a saddle-node bifurcation at a = ω,

and it splits into two equilibria for a > ω. For

a < ω, the period of oscillation (from θ to

θ + 2π) is caluculated as

T =

∫ 2π

0

1

ω − a sin θ
dθ.

We can calculate it as

T =
2π√

ω2 − a2
.

2 Firefly’s flashing rhythm

Assume that θ is the phase of the firefly’s

flashing rhythm and θ = 0 corresponds to the

instant when a flash is emitted. The model is

as follows:

θ′ = ω + a sin(Θ− θ),

where ω and a are positive constants and Θ is

the phase of the periodic stimulus satisfying

Θ′ = Ω,

where Ω is a positive constant. Let ϕ = Θ− θ

be the phase difference and

τ = at, µ =
Ω− ω

a
,

we obtain the following dimensionless equa-

tion:

ϕ′ = µ− sinϕ.

For µ ≥ 0, we see that

• If µ = 0, then the firefly and the stim-

ulus eventually keep flashing simultane-

ously.

• If 0 < µ < 1, then the firefly’s rhythm

is phase-locked to the stimulus.

• A saddle-node bifurcation occurs at µ =

1.

• If µ > 1, then the phase drift occurs.

The period of phse drift (from ϕ to ϕ+

2π) can be calculated as

T =
2π√

(Ω− ω)2 − a2
.

The situation for µ < 0 is similar. The phase

locking by the stimulus is possible if |µ| ≤ 1,

that is, Ω satisfies

ω − a ≤ Ω ≤ ω + a.

This range is called the range of entrainment.
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1 The SIR epidemic model

In 1927, Kermack and McKendrick proposed

a mathematical model for epidemics, which is

called the SIR epidemic model. Here, S(t),

I(t) and R(t) denote the susceptible, infec-

tive and removed populations at time t ≥ 0,

respectively. The model in a simple form is

given by the following system of ordinary dif-

ferential equations:

dS(t)

dt
= −βS(t)I(t),

dI(t)

dt
= βS(t)I(t)− γI(t),

dR(t)

dt
= γI(t), t > 0.

where β > 0 is the infection rate and γ > 0 is

the removal rate. The initial condition is

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0.

We can easily confirm that the total popu-

lation N := S + I + R is constant. Since

N = S0 + I0 > 0, S′(t) < 0 and R′(t) > 0,

0 < S(t) + I(t) < N for all t > 0.

If S(0) ≈ N , then the infective population in

the initial invasion phase is governed by the

following equation:

dI(t)

dt
= βNI(t)− γI(t), t > 0.

Hence, the infective populatin increases as time

evolves if βN − γ > 0. This condition can be

rewritten as

R0 :=
βN

γ
> 1.

R0 is called the basic reproduction num-

ber. We can obtain the following threshold

statement.

R0 > 1 ⇒ the outbreak occurs.

R0 < 1 ⇒ there is no outbreak.

R0 means the average number of secondary

cases produced by an infected individual dur-

ing their entire infectious period in a com-

pletely susceptible population. Note that γe−γt

is the probability density function of recovery

occurring, and hence,∫ +∞

0
tγe−γtdt =

1

γ

is the average duration in the infectious state.

2 The final size equation

Let Ncr := γ/β. We then see that if S(0) <

Ncr, then the infective population is monotone

decreasing, whereas if S(0) > Ncr, then it is

not monotne. We have

dI

dS
= −1 +

Ncr

S
.

By integraion, we have, for t > 0,

I(t) = I(0) + S(0)− S(t) +Ncr log
S(t)

S(0)
.

Since S(t) → S(∞) > 0 and I(t) → 0 as t →
+∞, we obtain

S(∞) = S(0)e−
N−S(∞)

Ncr .

Let p = (N − S(∞))/N be the final size of

epidemic. We then have

1− p =

(
1− I(0)

N

)
e−R0p.

For I(0) ≈ 0, we have

1− p∞ = e−R0p∞ .

This equation is called the final size equa-

tion.

Exercise� �
Show that p∞ > 0 if and only if R0 > 1.� �
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1 SIR model with demography

Let b > 0 be the birth rate and µ > 0 be

the mortality rate. The SIR model with

demography is given by

dS

dt
= b− βSI − µS,

dI

dt
= βSI − (γ + µ)I,

dR

dt
= γI − µR.

This model has two equilibrium points. The

first one is the disease-free equilibrium:

E0 = (S0, 0, 0) =

(
b

µ
, 0, 0

)
.

The second one is the endemic equilibrium:

E∗ = (S∗, I∗, R∗)

=

(
γ + µ

β
,
µ

β

(
bβ

µ(γ + µ)
− 1

)
,
γI∗

µ

)
.

The disease-free equilibrium E0 always exists.

The endemic equilibrium E∗ exists if and only

if
bβ

µ(γ + µ)
> 1.

In fact, for this model, the basic reproduction

number R0 is defined by

R0 =
bβ

µ(γ + µ)
,

and R0 = 1 is the threshold value for the ex-

istence of E∗. More precisely, by peforming

stability analysis, one can see that

• If R0 < 1, then the disease-free equilib-

rium E0 is asymptotically stable, and

no endemic equilibrium E∗ exists.

• If R0 > 1, then the disease-free equilib-

rium E0 is unstable, the endemic equlib-

rium E∗ exists, and it is stable.

That is, R0 determines whether the disease

dies out or persists. In this case, a forward

transcritical bifurcation occurs at R0 = 1.

2 Control of disease

If the infection rate β is reduced to (1−e)β,

0 < e < 1 by social distancing, then we obtain

Re =
(1− e)bβ

µ(γ + µ)
= (1− e)R0,

and the threshold value is changed to Re = 1.

This Re is called the effective (or, control)

reproduction number. The condition Re < 1

can be rewritten as

e > 1− 1

R0
= e∗.

That is, to suppress the epidemic, the reduc-

tion rate e of infection rate should be greater

than the critical value e∗. A similar conclu-

sion can be obtained if b is reduced to (1−e)b

by vaccination.

The following model is called an asymp-

tomatic transmission model:

dS

dt
= −(β1E + β2I)S,

dE

dt
= (β1E + β2I)S − εE,

dI

dt
= εE − γI.

The basic reproduction number is R0 = R1+

R2, where

R1 =
β1N

ε
, R2 =

β2N

γ
, N : total population.

If R1 < 1, then R0 < 1 is equivalent to T < 1,

where

T =
R2

1−R1
.

This T is called the type reproduction num-

ber. If we can reduce only the infection rate

β2 of symptomatic transmission to (1 − e)β2
by quarantine, then the condtion for disease

suppression is

e > 1− 1

T
.
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1 Diffusion and traveling wave

Let ∆x,∆t > 0 and

xi = i∆x, i = 0,±1,±2, . . . ,

tn = n∆t, n = 0, 1, 2, . . . .

Let N(x, t) be number of individuals in posi-

tion x ∈ R at time t ≥ 0. The following model

is obtained by assuming random walk.

N(xi, tn+1) =
1

2
N(xi−1, tn) +

1

2
N(xi+1, tn).

By Taylor expansion, we obtain

∂N(xi, tn)

∂t
∆t =

1

2

∂2N(xi, tn)

∂x2
(∆x)2

+O((∆t)2 + (∆x)4).

We then obtain by ∆t → 0

∂N

∂t
= D

∂2N

∂x2
, D =

1

2
lim
∆t→0

(∆x)2

∆t
.

This equation is called a diffusion equation,

and D is called a diffusion coefficient.

If a logistic term rN(1−N) is added, the fol-

lowing Fisher-KPP equation is obtained.

∂N

∂t
= D

∂2N

∂x2
+ rN(1−N).

This equation belongs to the class of reaction-

diffusion equations. Let z = x − ct and

substituting N(x, t) = U(z), we obtain

DU ′′(z) + cU ′(z) + rU(1− U) = 0.

This solution is called a traveling wave. We

can easily check that

N(x, t) = N(x+ cT, t+ T ),

which implies that a wave in position x at time

t moves to position x+ cT at time t+ T .

2 Geographical spread of disease

The SI(R) epidemic model can be extented

to the following reaction-diffusion equations.
∂S

∂t
= D

∂2S

∂x2
− βSI,

∂I

∂t
= D

∂2I

∂x2
+ βSI − γI,

where S = S(x, t) and I = I(x, t), x ∈ R,
t ≥ 0. By changing the variables, we obtain

∂S

∂t
=

∂2S

∂x2
− SI,

∂I

∂t
=

∂2I

∂x2
+ SI − λI,

where λ = γ/(βS0) = 1/R0. Let z = x − ct,

U(z) = S(x, t) and V (z) = I(x, t), we obtain

U ′′ + cU ′ − UV = 0,

V ′′ + cV ′ + V (U − λ) = 0.

We seek a traveing wave solution (U, V ) sat-

isfying

0 ≤ U(−∞) < U(+∞) = 1,

V (−∞) = V (∞) = 0.

Liniearizing near the leading edge of the wave

(where S → 1) gives

V ′′ + cV ′ + V (1− λ) = 0,

which solution is

V (z) = C exp
−c±

√
c2−4(1−λ)
2

z .

If a traveling wave solution exists, c and λ

must satisfy

c ≥ 2
√
1− λ, λ < 1.

λ < 1 is equivalent to R0 > 1.



第11回「応用数学特論 III, IIIb」 2022年12月19日

教科書：J.D. Murray, Mathematical Biology, Springer, 1993.

1 Infection age

Let τ be the infection age that implies the

time elapsed since the infection. Let i(t, τ) be

the infective population at time t with infec-

tion age τ . Let S(t) and R(t) be the suscepti-

ble and recovered populations at time t. The

infection age-structured SIR epidemic

model is given by
S′(t) = −λ(t)S(t),

it(t, τ) + iτ (t, τ) = −γ(τ)i(t, τ),

i(t, 0) = λ(t)S(t),

R′(t) =
∫∞
0 γ(τ)i(t, τ)dτ,

where λ(t) denotes the force of infection

given by

λ(t) =

∫ ∞

0
β(τ)i(t, τ)dτ.

β(τ) and γ(τ) are age-dependent infection rate

and recovery rate, respectively. Let

Γ(τ) = e−
∫ τ
0 γ(σ)dσ

be the survival probability at the infective state.

By integrating along the characteristic line,

we obtain

i(t, τ) =


i(t− τ, 0)Γ(τ), t− τ > 0,

i(0, τ − t)
Γ(τ)

Γ(τ − t)
, τ − t > 0.

We consider the initial invasion phase (S, i, R) ≈
(N, 0, 0). Let v(t) = λ(t)N be the newly in-

fected population. We then obtain the re-

newal equation

v(t) = g(t) +

∫ t

0
Ψ(τ)v(t− τ)dτ,

where

g(t) = N

∫ ∞

t
β(τ)i(0, τ − t)

Γ(τ)

Γ(τ − t)
dτ,

Ψ(τ) = Nβ(τ)Γ(τ).

Hence, the basic reproduction number R0 is

given by

R0 =

∫ ∞

0
Ψ(τ)dτ = N

∫ ∞

0
β(τ)Γ(τ)dτ.

2 Equilibrium

The infection age-structured SIR epidemic

model with demography is given by
S′(t) = b− λ(t)S(t)− µS(t),

it(t, τ) + iτ (t, τ) = − [µ+ γ(τ)] i(t, τ),

i(t, 0) = λ(t)S(t),

R′(t) =
∫∞
0 γ(τ)i(t, τ)dτ − µR(t).

The disease-free equilibrium is given by (S, i, R) =

(b/µ, 0, 0). By considering the initial invasion

phase (S, i, R) ≈ (b/µ, 0, 0) as in the previous

model, we obtain

R0 =
b

µ

∫ ∞

0
β(τ)e−µτΓ(τ)dτ.

The endemic equilibrium is give by (S, i, R) =

(S∗, i∗, R∗), where

S∗ =
b

λ∗ + µ
, i∗(τ) = λ∗S∗e−µτΓ(τ),

R∗ =
1

µ

∫ ∞

0
γ(τ)i∗(τ)dτ, λ∗ =

∫ ∞

0
β(τ)i∗(τ)dτ.

We obtain the characteristic equation of λ∗ as

1 =
b

λ∗ + µ

∫ ∞

0
β(τ)e−µτΓ(τ)dτ =: Φ(λ∗).

Since Φ(λ∗) is monotone decreasing and con-

verges to zero as λ∗ → ∞, we can see that

if Φ(0) > 1, then a positive λ∗ exists. Since

R0 = Φ(0), we can conclude that the endemic

equilibrium exists if R0 > 1.

Exercise� �
Find the basic reprodution number R0 of

the following model.

S′(t) = b− λ(t)S(t)− µS(t),

et(t, τ) + eτ (t, τ) = − [µ+ ε(τ)] e(t, τ),

it(t, τ) + iτ (t, τ) = − [µ+ γ(τ)] i(t, τ),

e(t, 0) = λ(t)S(t),

i(t, 0) =
∫∞
0 ε(τ)e(t, τ)dτ,

λ(t) =
∫∞
0 β(τ)i(t, τ)dτ.� �
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1 Steepness of wave front

Let u = u(x, t) and consider the reaction-

diffusion equation

∂u

∂t
=

∂2u

∂x2
+ u(1− u).

Let z = x − ct and U(z) = u(x, t). It then

satisfies

U ′′ + cU ′ + U(1− U) = 0.

This equation has a motone nonincreasing so-

lution with U(−∞) = 1 and U(∞) = 0 for all

c > 2.

Since the wave solutions are invariant to any

shift z → z + constant, we can assume that

U(0) = 1/2. Let ε = 1/c2 and consider the

following transformation.

U(z) = g(ξ), ξ =
z

c
=

√
εz.

We then have

εg′′ + g′ + g(1− g) = 0,

g(−∞) = 1, g(0) =
1

2
, g(∞) = 0.

We look for solutions in the following form:

g(ξ) = g0(ξ) + g1(ξ)ε+O(ε2)

for 0 < ε ≪ 1. The boundary condition be-

comes

g0(−∞) = 1, g0(0) =
1

2
, g0(∞) = 0,

gi(±∞) = gi(0) = 0, i = 1, 2, . . . .

Equating powers of ε, we get

O(1) : g′0(ξ) = −g0(1− g0),

O(ε) : g′1 + (1− 2g0)g1 = −g′′0 .

Solving these equations, we have

g0(ξ) =
1

1 + eξ
,

g1(ξ) =
eξ

(1 + eξ)2
ln

4eξ

(1 + eξ)2
.

The original function U then becomes

U(z) =
1

1 + ez/c
+

1

c2
ez/c

(1 + ez/c)2
ln

4ez/c

(1 + ez/c)2
+O

(
1

c4

)
.

We now investigate the steepness of the wave

front in terms of the wave speed c. Let s be a

measure of the steepness, which is the magni-

tude of the maximum of U ′. It attains as the

point where U ′′ = 0, that is,

g′′0 + g′′1ε+O(ε2) = 0.

We then see that z = ξ = 0 gives such a point,

that is,

s = −U ′(0) =
1

4c
+O

(
1

c5

)
.

This implies that the faster the wave moves,

the less steep is the wavefront.

2 Stability of wave solutions

To consider the stability of the wave solu-

tion uc(z) = U(z), let

u(z, t) = uc(z) + ωv(z, t), 0 < ω ≪ 1.

v satisfies

vt = [1− 2uc(z)]v + cvz + vzz.

The solution uc(z) is stable if limt→∞ v(z, t) =

0 or limt→∞ v(z, t) = u′c(z). Set v(z, t) =

g(z)e−λt with g(±L) = 0 for some L. We

then have

g′′ + cg′ + [λ+ 1− 2uc(z)] g = 0.

If g(z) = h(z)e−cz/2, we have

h′′+

[
λ−

{
2uc(z) +

c2

4
− 1

}]
h = 0, h(±L) = 0.

As 2uc(z) + c2/4 − 1 > 0, the standard the-

ory gives that all eigenvalues λ are real and

positive. Hence, v(z, t) = g(z)e−λt tends to

zero as t → ∞, which implies that the wave

equation uc is stable.
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1 Density-dependent diffusion

Let n = n(x, t) be the population density at

location x ∈ R and time t ≥ 0. Usually, the

flux J is supposed to be proportional to the

gradient of n:

J = −D
∂n

∂x
, D > 0.

If no newborn is crated, the rate of change of

the population in a region (x0, x1) is equal to

the rate of flow across the boundary:

∂

∂t

∫ x1

x0

n(x, t)dx = J(x0, t)− J(x1, t).

Let x1 = x0+∆x and ∆x → 0. We then have

∂n

∂t
= −∂J

∂x
=

∂

∂x

(
D
∂n

∂x

)
.

If D is a constant, we obtain the diffusion

equation ∂n
∂t = D ∂2n

∂x2 , which solution is

n(x, t) =
N

2
√
πDt

e−
x2

4Dt ,

where N > 0 is the total population.

If D depends on n, then it is called the

density-dependent diffusion. The flux is changed

to

J = −D(n)
∂n

∂x
,

dD

dn
> 0.

A typical form for D(n) is D0(n/n0)
m, where

D0, n0,m0 > 0 are positive constants. The

equation is then given by

∂n

∂t
= D0

∂

∂x

[(
n

n0

)m ∂n

∂x

]
.

An analytical solution is

n(x, t) =


n0

λ(t)

[
1−

{
x

r0λ(t)

}2
] 1

m

, |x| ≤ r0λ(t),

0, |x| > r0λ(t),

where

λ(t) =

(
t

t0

) 1
2+m

, r0 =
NΓ

(
1
m + 3

2

)
√
πn0Γ

(
1
m + 1

) ,
t0 =

r20m

2D0(m+ 2)
,

where Γ is the gamma function.

2 Chemotaxis

The chemically directed movement induced

by pheromones is called the chemotaxis. The

flux is J = Jdiffusion + Jchemotaxis, where

Jdiffusion = −D
∂n

∂x
, Jchemotaxis = nχ(a)

∂a

∂x
,

and a = a(x, t) is the concentration of an at-

tractant. A simple example of the model is as

follows:

∂n

∂t
= D

∂2n

∂x2
− χ0

∂

∂x

(
n
∂a

∂x

)
,

∂a

∂t
= hn− ka+Da

∂2a

∂x2
.

Here, the attractant is assumed to be pro-

duced as hn, diffuse with diffusion coefficient

Da, and exponentially decay as −ka.
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Pattern formation

The modeling of pattern formation in bi-

ology is one of the important applications of

the diffusion equation. Turing (1952) sug-

gested that chemical concentration can pro-

duce spatially heterogeneous patterns. We first

study the following basic system: for t > 0

and 0 < x < p,

ut = γf(u, v) + uxx,

vt = γg(u, v) + dvxx,

with boundary condition, for t > 0,

ux(t, 0) = ux(t, p) = vx(t, 0) = vx(t, p) = 0.

Here u = u(t, x) and v = v(t, x) are two chem-

ical species, γ is a parameter and d is the diffu-

sion coefficient. f and g are nonlinear reaction

terms such as

f(u, v) = a−u+u2v, g(u, v) = b−u2v, (1)

where a and b are parameters.

The spatially heterogeneous patterns can arise

by diffusion driven instability, which means

that an equilibrium solution, which is stable

in the absence of diffusion, is destabilized by

diffusion. The equilibrium solution (u0, v0) in

the absence of diffusion satisfies

f(u0, v0) = g(u0, v0) = 0.

The linearized system around (u0, v0) is

wt = γAw,

where

A =

[
fu(u0, v0) fv(u0, v0)

gu(u0, v0) gv(u0, v0)

]
.

The condition for (u0, v0) to be stable is as

follows:

trA = fu + gv < 0, (2)

detA = |A| = fugv − fvgu > 0, (3)

where fu = fu(u0, v0), etc.

The linearized system with diffusion is

wt = γAw +Dwxx,

where D =
[

1 0
0 d

]
. We now consider the

eigenvalue problem

∂2Wk

∂x2
+ k2Wk = 0,

∂Wk

∂x
= 0 (x = 0, p) .

Substituting w =
∑

k cke
λtWk into the lin-

eaized system, we obtain the following char-

acteristic equation:

λ2 + [k2(1 + d)− γ(fu + gv)]λ+ h(k2) = 0,

h(k2) = dk4 − γ(dfu + gv)k
2 + γ2|A|.

If this equation has a root λ with positive real

part, then the equilibrium solution (u0, v0) is

destabilized. We can check that the condition

for this to be satisfied is

dfu + gv > 0, (4)

(dfu + gv)
2 − 4d|A| > 0. (5)

For example, for reaction terms f and g

given by (1), conditions (2)-(4) are respec-

tively rewritten as follows.

0 < b− a < (a+ b)3.

(a+ b)2 > 0.

d(b− a) > (a+ b)3.

(a) Stable case (b) Unstable case

Exercise� �
Suppose that f and g are given by (1).

Rewrite (5) by using a, b and d.� �
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1 Fractals

Fractals are complex geometric shapes with

fine structure at arbitrarily small scales. Usu-

ally, they have some degree of self-similarity.

Fractal theory is related to the measurement

of biological structures at different magnifica-

tions. Now we give two examples of fractals.

Cantor set. Let S0 = [0, 1]. Removing its

open middle third, we obtain S1 = [0, 1/3) ∪
(2/3, 1]. Removing the open middle thirds of

two intervals in S1, we obtain S2. The limiting

set C = S∞ is the Cantor set. The Cantor

set has a total length of zero.

The von Koch curve. Let S0 be a line

segment. Sn is obtained by replacing the mid-

dle third of each eadge in Sn−1 by the other

two sides of an equilateral triangle. K = S∞
is the von Koch curve. The arc length be-

tween any two points on K is infinite.

2 Similarity dimension

For a self-similar fractal, let m be the num-

ber of copies and r be the scale factor. Then,

the similarity dimension d of it is defined

by

d =
lnm

ln r
.

For the Cantor set C, we have m = 2 and

r = 3. We then have d = ln 2/ ln 3 ≈ 0.63.

For the von Koch curve, we have m = 4 and

r = 3. We then have d = ln 4/ ln 3 ≈ 1.26.

3 Box dimension

Let S be a subset of RD, and N(ε) be the

minimun number of D-dimensional cubes of

side ε needed to cover S. The box dimen-

sion of S is defined by

d = lim
ε→0

lnN(ε)

ln(1/ε)
.

For the Cantor set, d can be calculated as

d = lim
n→∞

ln 2n

ln 3n
=

ln 2

ln 3
.

Let S0 be a squre divided into nine equal

squares, and then one of the squares is selected

at rondam and discarded. Then, the process is

repeated on each of the eight remaining small

squares. The limit is a nonself-similar fractal.

What is the box dimension of it?

S1 is covered by N = 8 squares of side ε =

1/3. S2 is covered by n = 82 squares of side

ε = 1/32. In general, N = 8n and ε = 1/3n,

and hence,

d = lim
n→∞

ln 8n

ln 3n
=

ln 8

ln 3
≈ 1.89.

Sierpinski carpet

Exercise� �
Consider a new kind of Cantor set by

removing the middle half of each sub-

interval, rather than the middle third.

Find the similarity dimension of the set.� �


