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背景 N は NP 完全 N の closed fragment は NP 完全 まとめ

導入

様相論理の充足可能性問題は [Ladner, 1977] に端を発し，
様々な論理で考えられてきた．
また， [Chagrov and Rybakov, 2003] により，
論理式の変数の個数に制限をかけた場合の
充足可能性も考察されている．
本発表では古典論理 Cl に必然化規則 (Nec) のみを
追加した様相論理 N と， N に閉論理式公理を追加した論理
全体について，制限のない場合と closed fragment に
制限した場合とが共にNP 完全であることを示す．
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背景 1．様相論理 N

様相論理 K

K は古典命題論理に公理 K と推論規則 (Nec) を追加したもの．
公理 K: □(A→ B) → (□A→ □B)

推論規則 (Nec):
A

□A

様相論理 N

N は古典命題論理に推論規則 (Nec) を追加したもの．
推論規則 (Nec):

A

□A
即ち，様相論理 K から公理 K を除外した論理に相当する．
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背景 1．N-モデル
Var を命題変数全体の集合，Fml を様相論式全体の集合とする．
定義 (N-モデル)

以下を満たす 3 つ組 (W, {≺ψ}ψ∈Fml, V ) を N-モデルと呼ぶ．
W は非空集合である．
ψ ∈ Fml に対し，各 ≺ψ は W 上の二項関係である．
V :W ×Var → {0, 1} は命題変数への真理値割当て．

V を W × Fml → {0, 1} に自然に拡張する．特に □ は以下．

V (w,□ψ) = 1 : ⇐⇒ ∀w′ ∈W (w ≺ψ w′ =⇒ VM (w′, ψ) = 1).

加えて以下の記法を導入する．
M,w ⊨ φ : ⇐⇒ V (w,φ) = 1

M ⊨ φ : ⇐⇒ 任意の w ∈W で M,w ⊨ φ
M ⊨ Γ : ⇐⇒ 任意の φ ∈ Γ で M ⊨ φ
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様相論理 N と N-モデル

定理 [Fitting et al., 1992, Theorem. 3.6]

Γ を様相論理式の集合とし， N⊕ Γ をN に Γ を公理として追加
した論理とする．この時，以下は同値である．

N⊕ Γ ⊢ φ
φ は 任意の N-モデル M においてM ⊨ Γ ならば M ⊨ φ

論理 N とその拡張は N-モデルにより特徴づけることができる．
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背景 2. 論理の計算複雑性

充足可能性判定問題
Given : 論理式 φ
Question : 論理 L で φ は充足可能 (L ̸⊢ ¬φ) か？

Cook–Levin の定理
古典命題論理 Cl の充足可能性判定問題 (SAT) は NP 完全．

様相論理の充足可能性判定問題に関しては例えば以下が知られている．
定理 [Ladner, 1977]

K は PSPACE 完全．
論理 L が K ⊆ L ⊆ S4 を満たす場合，L は PSPACE 困難．
S5 を含む論理は全て NP 完全．
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背景 2. 論理の計算複雑性
論理式の変数に制限をかけた場合の論理の計算複雑性も
考えられている．
論理 L と自然数 n に対し，L(n) を論理式を n 変数以下のものに
制限した論理とする．特に L(0) を L の closed fragment と呼ぶ．

論理の closed fragment の充足可能性判定問題に関しては
例えば以下が知られている．
定理 [Chagrov and Rybakov, 2003]

K(0) は PSPACE 完全．
K ⊆ L ⊆ K4 を満たす場合， L(0) は PSPACE 困難．
GL(0) は P．

定理 [Chagrov and Zakharyaschev, 1997]

GL は PSPACE 完全．
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今回の研究

問題
論理 N やその拡大では計算複雑性の状況は？
K と比べてどう変化するか．
変数の個数を制限するとどうなるか．

閉論理式公理による N の拡大一般の状況を調べた．
定理
γ を任意の閉論理式とし，N⊕ γ が無矛盾であるとする．
この時 N⊕ γ 及び (N⊕ γ)(0) の充足可能性判定問題はNP 完全．
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今回の研究

問題
論理 N やその拡大では計算複雑性の状況は？
K と比べてどう変化するか．
変数の個数を制限するとどうなるか．

閉論理式公理による N の拡大一般の状況を調べた．
定理
γ を任意の閉論理式とし，N⊕ γ が無矛盾であるとする．
この時 N⊕ γ 及び (N⊕ γ)(0) の充足可能性判定問題はNP 完全．
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今回の研究

本研究で新たに以下の赤字部分の計算複雑性が判明した．

Logic 制限なし closed fragment

Cl NP-cp P
N NP-cp NP-cp
N⊕ γ (γ は closed) NP-cp NP-cp
K PSPACE-cp PSPACE-cp

以降，論理の計算複雑性は論理の充足可能性判定問題の
計算複雑性を指す．
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様相論理 N の計算複雑性

Logic 制限なし closed fragment

Cl NP-cp P

N NP-cp NP-cp

N⊕ γ (γ は closed) NP-cp NP-cp
K PSPACE-cp PSPACE-cp
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証明方針

言語 L が言語 M に対数領域帰着可能であることを L ≤log M と書く．

命題
言語 L,M について， L ≤log M かつ M ∈ NP ならば L ∈ NP

論理 L に対して L-SAT := {φ | L ̸⊢ ¬φ} とする．
方針

φ ∈ N-SAT ⇐⇒ φ∗ ∈ Cl-SAT を満たすような
対数領域計算可能な論理式の変換 ∗ を作る．
このような ∗ が作成できると N-SAT ≤log Cl-SAT．
Cl-SAT ∈ NP (Cook–Levin の定理)から
N-SAT ∈ NP が示される．
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様相論理 N と N-モデル (再)

定理 [Fitting et al., 1992, Theorem 3.6] (再掲・書き換え)

Γ を様相論理の集合とする．この時，以下は同値である．
φ ∈ (N⊕ Γ)-SAT

φ は M ⊨ Γ を満たすある N-モデル M のある点 w で
M,w ⊨ φ

様相論理式 φ の N-モデル上での解析手順を
そのまま命題論理の論理式で再現．その変換を ∗ とする．
特に N-モデル上で ̸⊨ □ψ となっている場合に注意が必要．
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◦ 変換
論理式列 s に対し s+ ψ を s の末尾に ψ を連接した論理式列とする．
命題変数 p, q, r, · · · と論理式列 s に対し，新変数 ps, qs, rs, · · · を用意．
◦ 変換
論理式 φ と論理式列 s の組 (φ, s) に対し
命題論理式 (φ, s)◦ を以下で定める．

(p, s)◦ :≡ ps (¬φ, s)◦ :≡ ¬(φ, s)◦

(φ⊙ ψ, s)◦ :≡ (φ, s)◦ ⊙ (ψ, s)◦ (⊙ ∈ {∧,∨,→})
(□φ, s)◦ :≡ bs+φ (b は未使用の命題変数)

(φ, s)◦ は φ の □ を新変数に丸めた命題論理式．
s ̸≡ s′ ならば，(φ, s)◦ と (φ, s′)◦ で
全く別々の命題変数が使用される．

(□(p→ □r) ∧ p→ □q, s)◦ :≡ bs+(p→□r) ∧ ps ∧ bs+q
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∗ 変換
Sφ を他の □ の入れ子に入らない □ψ の形の φ の部分論理式全体の集合．

φ :≡ □(p→ □r) ∧ p→ □q なら Sφ := {□(p→ □r),□q}
Sφ による □ の入れ子の探索例

□(p→ □r) ∧ p→ □q
p→ □r q

r

∗ 変換
論理式 φ と論理式列 s の組 (φ, s) に対し
命題論理式 (φ, s)∗ を以下で定める．

(φ, s)∗ :≡ (φ, s)◦ ∧
∧

□ψ∈Sφ(b
s+ψ ∨ (¬ψ, s+ ψ)∗)
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∗ 変換

∗ 変換
論理式 φ と論理式列 s の組 (φ, s) に対し
命題論理式 (φ, s)∗ を以下で定める．

(φ, s)∗ :≡ (φ, s)◦ ∧
∧

□ψ∈Sφ(b
s+ψ ∨ (¬ψ, s+ ψ)∗)

φ を充足する N-モデル (φ, s)∗ が v で充足可能

w ⊨ φ
w ⊨ p

w ⊨ q1 → q2

w ̸⊨ r1 ∨ r2
w ̸⊨ □ψ

(□ψ ∈ Sφ)

v(ps) = 1

v(qs1) = 0 or v(qs2) = 1

v(rs1) = 0 & v(rs2) = 0

v(bs+ψ) = 0
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∗ 変換

∗ 変換
論理式 φ と論理式列 s の組 (φ, s) に対し
命題論理式 (φ, s)∗ を以下で定める．

(φ, s)∗ :≡ (φ, s)◦ ∧
∧

□ψ∈Sφ(b
s+ψ ∨ (¬ψ, s+ ψ)∗)

φ を充足する N-モデル (φ, s)∗ が v で充足可能

̸⊨ □ψ
⊨ φ

̸⊨ ψ

≺ψ v(bs+ψ) = 0

v((¬ψ, s+ ψ)∗) = 1
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∗ 変換

∗ 変換
論理式 φ と論理式列 s の組 (φ, s) に対し
命題論理式 (φ, s)∗ を以下で定める．

(φ, s)∗ :≡ (φ, s)◦ ∧
∧

□ψ∈Sφ(b
s+ψ ∨ (¬ψ, s+ ψ)∗)

(¬ψ, s+ ψ)∗ には s+ ψ + · · · の形の論理式列しか含まれない．
よって，(φ, s)◦ と各 (¬ψ, s+ ψ)∗ は使用する変数が全て異なる．
従って「個別に充足可能」と 「∧ で結合して充足可能」が同値．
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N は NP 完全

定理
任意の論理式列 s に対して φ ∈ N-SAT ⇐⇒ (φ, s)∗ ∈ Cl-SAT．

特に，空列 ϵ を用いて φ∗ :≡ (φ, ϵ)∗ としてやれば
φ ∈ N-SAT ⇐⇒ φ∗ ∈ Cl-SAT．
系
N は NP 完全．
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N 閉論理公理拡大の計算複雑性

Logic 制限なし closed fragment

Cl NP-cp P
N NP-cp NP-cp

N⊕ γ (γ は closed) NP-cp NP-cp

K PSPACE-cp PSPACE-cp
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N の閉論理式公理による拡大

N の NP 完全性の証明を閉論理式 γ を公理に加えた
論理 N⊕ γ 一般に拡張する．
∗ 変換を利用するために，閉論理式 γ を都合の良い形に整える．

定義 N-normal

以下を満たす閉論理式 γ を N-normal な閉論理式と呼ぶ．
γ :≡ γ1 ∨ · · · ∨ γn
γi :≡ □αi1 ∧ · · · ∧□αil ∧ ¬□βi1 ∧ · · · ∧ ¬□βim
任意の i, k に対して N⊕ γ ̸⊢ βik

βik :≡ ⊤ のような邪魔な論理式を除している．
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N-normal

定義 N-normal (再掲)

以下を満たす閉論理式 γ を N-normal な閉論理式と呼ぶ．
γ :≡ γ1 ∨ · · · ∨ γn
γi :≡ □αi1 ∧ · · · ∧□αil ∧ ¬□βi1 ∧ · · · ∧ ¬□βim
任意の i, k に対して N⊕ γ ̸⊢ βik

命題
N⊕ γ が無矛盾な任意の閉論理式 γ に対し，
N-normal な閉論理式 γ′ が存在し，N⊕ γ ⊣⊢ N⊕ γ′

命題
任意の N-normal な閉論理式 γ に対し， N⊕ γ は無矛盾．
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∗ 変換 (改良)

N-normal な閉論理式 γ を公理として採用した論理 N⊕ γ 向けに
∗ 変換を改良する．

∗ 変換
(φ, γ, s)∗ :≡ (φ, s)◦ ∧ (γ, s)◦ ∧

∧
□ψ∈Sφ

(bs+ψ ∨ (¬ψ, γ, s+ ψ)∗)

φ を充足する N⊕ γ-モデル (φ, s)∗ が v で充足可能

w ⊨ φ
w ⊨ p

w ̸⊨ r1 ∨ r2

w ⊨ γ

v(ps) = 1

v(rs1) = 0 & v(rs2) = 0

v((γ, s)◦) = 1

γ が閉論理式であるため，w ⊨ γ を命題論理式で再現するのに
(γ, s)◦ を追加するだけでよい．
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∗ 変換 (改良)

N-normal な閉論理式 γ を公理として採用した論理 N⊕ γ 向けに
∗ 変換を改良する．

∗ 変換
(φ, γ, s)∗ :≡ (φ, s)◦ ∧ (γ, s)◦ ∧

∧
□ψ∈Sφ

(bs+ψ ∨ (¬ψ, γ, s+ ψ)∗)

φ を充足するの N-モデル (φ, s)∗ が v で充足可能

M

̸⊨ □ψ
⊨ φ

̸⊨ ψ

M ⊨ γ

≺ψ v(bs+ψ) = 0

v((¬ψ, γ, s+ ψ)∗) = 1
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N⊕ γ は NP 完全

定理
任意の N-normal な閉論理式 γ と任意の論理式列 s に対して
φ ∈ (N⊕ γ)-SAT ⇐⇒ (φ, γ, s)∗ ∈ Cl-SAT．

系
任意の閉論理式 γ に対し，N⊕ γ が無矛盾ならばN⊕ γ は NP 完全．

N に公理 P : ¬□⊥ を追加した論理を NP とする．

系
NP は NP 完全．
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N の閉論理式公理拡大の closed fragment

Logic 制限なし closed fragment

Cl NP-cp P

N NP-cp NP-cp

N⊕ γ (γ は closed) NP-cp NP-cp

K PSPACE-cp PSPACE-cp
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N の閉論理式公理拡大の closed fragment

方針
φ(p⃗) ∈ Cl-SAT ⇐⇒ φ(δ⃗γ) ∈ N⊕ γ-SAT となる
対数領域計算可能な様相閉論理式 δ⃗γ を構成する．
Cl が NP 完全からN(0) は NP 困難．

定理 [Fitting et al., 1992, Theorem.4.11]

φ を任意の論理式とする．
二つの N-モデル Mi = (Wi, {≺i,ψ}ψ∈Fml, Vi) (i = 1, 2) に対して，
以下が成り立っているとする．

W1 =W2 V1 = V2

任意の ψ ∈ Sub(φ) に対して， ≺1,ψ=≺2,ψ

この時， M1 ⊨ φ ⇐⇒ M2 ⊨ φ．

N-モデルでは， Sub(φ) の要素以外の関係を触っても
モデルでの φ の真偽に影響しない．
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N の閉論理式公理拡大の closed fragment が NP 完全

⊥i :≡ ⊥ ∨ · · · ∨ ⊥︸ ︷︷ ︸
i

とする．M ⊨ γ としてその 1 点を w とする．

w から ≺¬γ∨⊥i 関係を伸ばす =⇒ M,w ̸⊨ □(¬γ ∨ ⊥i)

w から ≺¬γ∨⊥i
関係を伸ばさない =⇒ M,w ⊨ □(¬γ ∨ ⊥i)

≺¬γ∨⊥i
関係の有無で命題変数の真偽を

⊨ γ な N-モデルのクラスの中で表現できる．
⊨ γ な N-モデル φ が v で充足可能

̸⊨ □(¬γ ∨ ⊥i)

⊨ □(¬γ ∨ ⊥j)
×

≺¬γ∨⊥i

≺¬γ∨⊥j v(pj) = 1

v(pi) = 0
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N の閉論理式公理拡大の closed fragment が NP 完全

定理
γ を閉論理式とし， N⊕ γ が無矛盾であるとする．
この時任意の命題論理式 φ(p1, · · · , pn) に対し，
φ ∈ Cl-SAT ⇐⇒ φ(□(¬γ ∨ ⊥1), · · · ,□(¬γ ∨ ⊥n)) ∈ (N⊕ γ)-SAT

系
γ を閉論理式とする．N⊕ γ が無矛盾であるとき，
(N⊕ γ)(0) は NP 完全である．

系
N(0) は NP 完全である．

Cl(0) は P であるため，(P ̸= NP ならば)
N と Cl の差を見せるような特徴になっていると言える．
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まとめ

本研究で新たに以下の赤字部分の計算複雑性が判明した．

Logic 制限なし closed fragment

Cl NP-cp P
N NP-cp NP-cp
N⊕ γ (γ は closed) NP-cp NP-cp
K PSPACE-cp PSPACE-cp
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Future Work

N の閉論理式公理以外による拡大の計算複雑性
N に以下の公理・規則を追加した論理の計算複雑性はどうか．

規則 (Ros) :
¬ψ
¬□ψ．

公理 D : ¬(□p ∧□¬p)．
公理 4 : □p→ □□p．
公理 Accm,n: □nA→ □mA

reflexive を課した N-モデルのクラス．
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