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前付

登場人物:

+不動点 +素朴集合論
縮約のない論理 FLew FLewfix FLewset

無限値ウカシェヴィッチ論理  L  Lfix  Lset

大道具:

ブラウワーの不動点定理
ラッセル的不動点定理
カット除去定理

テーマ: 無矛盾性！
注意: 本講演では爆発律を認める. したがって矛盾は許容しない.
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ラッセルのパラドックスは矛盾か？

ラッセルのパラドックス: 無制限の包括原理を持つ素朴集合論で

r := {x | x ̸∈ x}, R := r ∈ r

と定めると自家撞着 R ↔ ¬Rが得られ, そこから矛盾が導出できる.

解決策:

公理的集合論
型理論
論理を弱くして自家撞着から矛盾を導けないようにする

動機: 自家撞着は不動点の一種. それを捨てるなんてもったいない！
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Churchの迷走
(Church 1932): 公理的集合論や型理論に代わる第三の基礎として, 37個の公理から
なる公理系を提案. ポイントは「直観主義論理とは別の形で排中律を制限する」こと
らしい.

(Church 1933): 矛盾が発覚. 修正するも依然として無矛盾かアヤシイ
(Church 1935): まったく別の証明系を提案. 無矛盾性が “証明”されているが. . .

名言
本気の失敗には価値がある —— 南波六太. （小山宙哉『宇宙兄弟』）

(Church 1936): 論理をあきらめる ⇒ 型なしラムダ計算（計算可能性と関数型プロ
グラミングの基礎）
(Church 1940): 素朴集合論をあきらめる ⇒ 単純型理論（証明アシスタントの基礎）
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(Church 1933)の公理系
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自家撞着と矛盾
古典論理に限らず, 直観主義論理上の素朴集合論も矛盾する.

推件計算で R ↔ ¬R から矛盾を証明してみる:

R ⇒ R
¬R ,R ⇒
R ,R ⇒
R ⇒ (c)

....
R ⇒
⇒ ¬R
⇒ R

⇒ (cut)

ひとつの方向性
直観主義論理から縮約規則 (c)を取り除いたらどうか？

Γ, Γ,∆ ⇒ Π

Γ,∆ ⇒ Π
(c)

Cantini, Girard, Grǐsin, Komori, Peterson, Shirahata, White, T.. . .
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論理 +不動点 +素朴集合論
FLew FLewfix FLewset

 L  Lfix  Lset
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縮約なしの直観主義論理FLew (Ono and Komori 1985)

論理式:

φ,ψ ::= p | 1 | 0 | φ ∧ ψ | φ ∨ ψ | φ · ψ | φ→ ψ (p :命題変数)

推論規則の一部:

φ⇒ φ (init)
Γ ⇒ φ φ,∆ ⇒ Π

Γ,∆ ⇒ Π
(cut) ∆ ⇒ Π

Γ,∆ ⇒ Π
(i) Γ ⇒

Γ,∆ ⇒ Π
(o)

φ,ψ,∆ ⇒ Π

φ · ψ,∆ ⇒ Π
(·ℓ) Γ ⇒ φ ∆ ⇒ ψ

Γ,∆ ⇒ φ · ψ (·r)

Γ ⇒ φ ψ,∆ ⇒ Π

Γ, φ→ ψ,∆ ⇒ Π
(→ ℓ)

Γ, φ⇒ ψ

Γ ⇒ φ→ ψ
(→ r)

（Γ,∆は論理式の多重集合, Πはひとつの論理式または空集合）

これに縮約規則 (c)を加えると φ ∧ ψ ↔ φ · ψとなり, 直観主義論理 Intになる.
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不動点つき論理FLewfix

R ↔ ¬Rに限らず, なるべく多くの不動点を持つ理論を考える.

Definition 1 (FLewfix)

各 n ∈ Nと n個の n変数論理式 ϕi = ϕi(p1, . . . , pn) (1 ≤ i ≤ n)ごとに新しい
命題定数 c1, . . . , cnを用意し, n個の不動点公理

c1 ↔ ϕ1(c1, . . . , cn)

c2 ↔ ϕ2(c1, . . . , cn)
...

...

cn ↔ ϕn(c1, . . . , cn)

を FLewに付け加えていく. 結果として得られる形式系を FLewfix とする.

つまり「どんな論理式の組も同時不動点を持つ」ような FLewの拡張. 8



不動点つき論理FLewfix

不動点公理を推件計算の規則として書けば:

Γ ⇒ φi (c)

Γ ⇒ ci

φi (c),∆ ⇒ Π

ci ,∆ ⇒ Π (1 ≤ i ≤ n, c = c1, . . . , cn)

ci 上のカットは自然に書き換えられる.

Γ ⇒ φi (c)

Γ ⇒ ci

φi (c),∆ ⇒ Π

ci ,∆ ⇒ Π

Γ,∆ ⇒ Π
=⇒ Γ ⇒ φi (c) φi (c),∆ ⇒ Π

Γ,∆ ⇒ Π

ただしカット論理式は複雑になる！それでも自然なカット除去手続きが存在し, 主
カットを除去するごとに証明は真に小さくなる.

Theorem 2

FLewfix についてカット除去定理が成り立つ. したがって FLewfix は無矛盾. とくに
FLewに R ↔ ¬R を加えても無矛盾.
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比較：Intfixにおける矛盾の証明

R ⇒ R
¬R ,R ⇒
R ,R ⇒
R ⇒ (c)

....
R ⇒
⇒ ¬R
⇒ R

⇒ (cut)

(c)があるせいで, カット除去手続きは停止しない.

スローガン:

無矛盾性 ≈ 計算の停止.
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FLewfixの拡張

Intfix は矛盾する. そこで (c)より弱い規則で FLewfix を拡張してみる.
m︷ ︸︸ ︷

Γ, . . . , Γ,∆ ⇒ Π
Γ, . . . , Γ︸ ︷︷ ︸

n

,∆ ⇒ Π
(knotmn )

Γ1, Γ1,∆ ⇒ Π Γ2, Γ2,∆ ⇒ Π
Γ1, Γ2,∆ ⇒ Π

(pc)

これらを FLewfix に加えると矛盾するか？
Theorem 3

1 任意のm > n ≥ 1について FLewfix + (knotmn )は矛盾する.

2 FLewfix + (pc)は無矛盾.

1について: c ↔ ¬(c · · · c︸ ︷︷ ︸
n

)を考えよ.

2について: 後述 11



極大な不動点論理を求めて
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極大な不動点論理を求めて

(knotm+1
m )は矛盾をもたらすので

中間論理
関連性論理
FLの拡張であるような有限値論理

などはすべて不動点公理と矛盾する.

よって向かうべき方向（のひとつ）は無限値のファジイ論理たち.
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論理 +不動点 +素朴集合論
FLew FLewfix FLewset

 L  Lfix  Lset
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数理ファジイ論理の世界へようこそ

公理:

pl : (ϕ→ ψ) ∨ (ψ → ϕ) （前線形性またはダメットの公理）
div : ϕ ∧ ψ → ϕ · (ϕ→ ψ) （可除性）
inv : ¬¬ϕ→ ϕ （対合性または二重否定除去律）

FLewの拡張:

MTL := FLew + pl （モノイダル tノルム論理）
 L := MTL + div + inv （無限値ウカシェヴィッチ論理）
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ファジイ論理に潜む縮約性

MTLは “よい”超推件計算を持ち, カット除去定理が成り立つ.

しかしMTLでは並行縮約ができてしまう:

Γ1, Γ1,∆ ⇒ Π Γ2, Γ2,∆ ⇒ Π
Γ1, Γ2,∆ ⇒ Π

(pc)

実際:

ϕ⇒ ϕ ψ, ψ ⇒ Π
ϕ→ ψ, ϕ, ψ ⇒ Π

ψ ⇒ ψ ϕ, ϕ⇒ Π
ψ → ϕ, ϕ, ψ ⇒ Π

(ϕ→ ψ) ∨ (ψ → ϕ), ϕ, ψ ⇒ Π

よってMTLfix でカット除去の停止性を示すのは困難.

 Lはそもそも “よい”証明系を持ちえない (Ciabattoni, Galatos, T. 2012)

⇒ 意味論的な無矛盾性証明へ
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 Lの標準的意味論

Fmn: 命題変数 {p1, . . . , pn}上の論理式全体
ϕ ∈ Fmnに関数 [[ϕ]] : [0, 1]n → [0, 1]を割り当てる.

[[pi ]](x) := xi
[[i ]](x) := i (i ∈ {0, 1})
[[ϕ ∧ ψ]](x) := min([[ϕ]](x), [[ψ]](x))

[[ϕ ∨ ψ]](x) := max([[ϕ]](x), [[ψ]](x))

[[ϕ→ ψ]](x) := 1− [[ϕ]](x) + [[ψ]](x) ただし値が 1を超えたら 1

[[ϕ · ψ]](x) := [[ϕ]](x) + [[ψ]](x)− 1 ただし値が 0より減ったら 0

とくに [[¬ϕ]] = [[ϕ→ 0]] = 1− [[ϕ]].

{0, 1}上の 2値意味論の連続的拡張.
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 Lの標準的意味論

Theorem 4 (完全性)

⊢ L ϕ ⇐⇒ [[ϕ]](x) = 1 (x ∈ [0, 1]n).

n個の n変数論理式の組 ϕ = (ϕ1, . . . , ϕn) ∈ (Fmn)
nに対して

[[ϕ]] := ([[ϕ1]], . . . , [[ϕn]])

と定める.

Lemma 5 (連続性)

[[ϕ]] : [0, 1]n → [0, 1]nは連続写像.
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 Lfixの無矛盾性
Theorem 6 (ブラウワーの不動点定理)

任意の連続写像 f : [0, 1]n → [0, 1]nは不動点を持つ.

Corollary 7

 Lfix は無矛盾.

実際, 不動点公理
c1 ↔ ϕ1(c1, . . . , cn)
...

...

cn ↔ ϕn(c1, . . . , cn)

に対して, 命題定数 c1, . . . , cnを [[ϕ]] : [0, 1]n → [0, 1]nの不動点で解釈すれば,

これらの公理のモデルが得られる.
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 Lfixは極大か？
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 Lfixは極大か？

Yes!

Theorem 8 (T.)

任意の公理的拡張A ⊋  LについてAfix は矛盾する.

実際  Lの公理的拡張は可算個しかなく, 完全に特定されている (Komori 1981).

それぞれ有限個のウカシェヴィッチ鎖と古森鎖により特徴づけられており, ど
ちらも有限ランクなので, 十分大きな nをとれば c ↔ ¬cn と矛盾する.

問い
 Lfix 以外に極大な不動点論理は存在するか？
 Lfix またはMTLfix の無矛盾性を証明論的に証明できないか？
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論理 +不動点 +素朴集合論
FLew FLewfix FLewset

 L  Lfix  Lset
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素朴集合論FLewset

項と論理式:

t, u ::= x | {x | ϕ}
ϕ, ψ ::= t ∈ u | ϕ→ ψ | ∀x .ϕ （x は集合を表す変数）

その他の論理結合子（∧,∨, ·, ∃, 1, 0）は定義可能.

推論規則: FLewの規則に加え,

ϕ(t),∆ ⇒ Π

t ∈ {x |ϕ(x)},∆ ⇒ Π
(∈ `)

Γ ⇒ ϕ(t)

Γ ⇒ t ∈ {x |ϕ(x)} (∈ r)

ϕ(t),∆ ⇒ Π

∀x .ϕ(x),∆ ⇒ Π
(∀`)

Γ ⇒ ϕ(a)

Γ ⇒ ∀x .ϕ(x) (∀r) （aは固有変数条件を満たす）
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素朴集合論FLewset

自然なカット除去手続きが存在:

Γ ⇒ φ(t)

Γ ⇒ t ∈ {x |φ(x)}
(∈ r)

φ(t),∆ ⇒ Π

t ∈ {x |φ(x)},∆ ⇒ Π
(∈ ℓ)

Γ,∆ ⇒ Π
(cut) =⇒ Γ ⇒ φ(t) φ(t),∆ ⇒ Π

Γ,∆ ⇒ Π
(cut)

この規則を適用すると, カット論理式は大きくなるが, 証明図は小さくなる.

したがって:

Theorem 9 (Grǐsin 1974)

FLewset についてカット除去定理が成り立つ. よって無矛盾.

具体的には, サイズ nの証明図のカット除去は n2ステップで遂行できる.
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FLewfixとFLewset

Theorem 10 (ラッセル的不動点)

命題論理 FLewにおいて n個の n変数論理式 ϕi(p1, . . . , pn)（1 ≤ i ≤ n）が与
えられたとき, 素朴集合論の項 t1, . . . , tnが存在し,

FLewset ⊢ ti ti ↔ ϕi(t1t1, . . . , tntn) （1 ≤ i ≤ n, ti ti は ti ∈ ti の略）.

したがって FLewfix は FLewset の一部と見なせる.

ラッセルのパラドックス R ↔ ¬Rは上の特別な場合.
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FLewsetとはどんな集合論か？

ライプニッツ等号: t = uを ∀x .(t ∈ x → u ∈ x)により定めると, 反射性・対
称性・推移性などが証明できる. しかし：
命題 11 (Grǐsin 1980)

FLewset と外延性の公理は矛盾する.

(ext) ∀x .(x ∈ t ↔ x ∈ u) → t = u.

集合の基本的な構成は一応できる: ∅, {t}, t ∪ u, t ∩ u, ⟨t, u⟩など. たとえば
t ∪ u := {x | x ∈ t ∨ x ∈ u}.

しかし t ∪ u = u ∪ tなどの等式は一切証明できない. バッドニュース！
命題 12

FLewset ⊢ t = u ⇐⇒ tと uは構文論的に同一. 26



FLewsetとはどんな集合論か？

グッドニュース！
Theorem 13 (再帰定理)

任意の論理式 ϕ(x , y)についてある項 T が存在し,

FLewset ⊢ ∀x .(x ∈ T ↔ ϕ(x ,T )).

たとえば
x ∈ N ↔ x = 0 ∨ ∃y ∈ N.x = S(y)

を満たす項Nが存在する（ここで S(y) := ⟨∅, y⟩）.

S(· · · S(∅) · · · )の形の項を数項という. カット除去定理より
命題 14

FLewset ⊢ t ∈ N ⇐⇒ tは数項. 27



FLewsetと一階算術

さらに
⟨x , y , z⟩ ∈ add ↔ ([y = 0]·[x = z ])∨∃y ′, z ′.[y = S(y ′)]·[z = S(z ′)]·[⟨x , y ′, z ′⟩ ∈ add]

を満たす項 addを考えれば, 足し算が定義できる. 掛け算, 順序関係≤につい
ても同様. よって一階算術の論理式 ϕを FLewset の論理式 ϕ∗に帰納的に翻訳
できる.

Theorem 15 (FLewset のΣ1完全性)

任意のΣ1文 ϕについて: N |= ϕ ⇐⇒ FLewset ⊢ ϕ∗.

健全性はカット除去定理による. 実際 ⊢ ∃x ∈ N .ϕ∗(x)ならば, 存在特性より
⊢ t ∈ Nかつ ⊢ ϕ∗(t)を満たす項 tがあるが, カット除去定理により tは数項で
なければならない.
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FLewsetの拡張

結論: FLewset は無矛盾だが弱すぎる. 縮約規則がないのは致命的.

軽アフィン集合論 LAST: そこで線形論理の発想に基づき, 2つの様相 !, §を用
いて制限された縮約規則を導入する.

!ϕ→ (!ϕ) · (!ϕ) !ϕ→ §ϕ !1
ϕ⇒ ψ

!ϕ⇒!ψ
(M) ∆ ⇒ Π

§∆ ⇒ §Π (K )

（制限された）縮約があるので, Nを適切に定義すれば（制限された）数学的
帰納法が使える.

Theorem 16 (Girard 1998, T. 2004)

関数 f : {0, 1}∗ → {0, 1}∗は多項式時間関数⇐⇒ f の全域性が LASTで証明で
きる.
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論理 +不動点 +素朴集合論
FLew FLewfix FLewset

 L  Lfix  Lset
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素朴集合論  Lset

 Lset: FLewset の論理を  Lへ拡張したもの（Cantor- Lukasiewicz集合論）.

これまでに示したこと
 Lfix は無矛盾（ブラウワーの不動点定理）
FLewset は無矛盾（カット除去定理）
FLewset ⊆  Lset ,  Lfix ↪→  Lset（ラッセル的不動点定理）

では  Lset は無矛盾か？
“定理” (White 1979)

 Lset は無矛盾である.

“証明”は特殊な自然演繹における正規化定理による.

この結果は数理ファジイ論理界隈で長らく信じられてきたが...
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素朴集合論  Lset

主張 (T. 2014)

(White 1979)の証明は間違っており, しかも修正は絶望的.

間違いはたった一箇所（詳細はノート (T. 2014)を参照）.

“. . . clearly every proof can be converted to a pure proof.” (page 518)

論文で “obviously”とか “clearly”とか書いてあるときほど要注意！
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ではどうするか？

1. カット除去定理を証明する
困難. なぜなら  Lには “よい”証明系が存在しえないから.

そこで “よい”証明系を持つ部分体系MTLset のカット除去を試みているが, どうして
も停止性が証明できない.

2. ブラウワーの不動点定理を使う
“有限性”が本質的. とくに ∀x .φを有限の ∧で解釈しないと連続性が崩れてしまう.

3. アンチに転向して  Lset の矛盾を示す
心情的に無理.

ここでは  Lset の部分体系について 2のアプローチで無矛盾性を証明する.
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 L−
set

 L−
set :  Lset に以下の制限を入れたもの
公理 ∀x .ϕ(x) → ϕ(t)において tは変数または閉項でなければならない.

あるいは推件計算の場合
ϕ(t),∆ ⇒ Π

∀x .ϕ(x),∆ ⇒ Π
(∀`)

において tは変数または閉項でなければならない.

この制限を入れると ∀∃文を証明するのに困る:  L−
set ̸⊢ ∀x .∃y .y = S(x).

それでもラッセル的不動点定理や再帰定理, Σ1完全性（の完全性方向）
を証明するには十分.
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 L−
setの無矛盾性

Lemma 17

 L−
set における証明 π = (ψ1, . . . , ψk)が与えられたとき,

Dπ := {t | tは πに出現する閉項 }
Fmπ := {ϕ | ϕは πに出現する（部分）論理式にDπの項を代入したもの }

は有限集合.

ポイント:

対象領域Dπが有限集合なので, ∀を有限の ∧で解釈できる（連続性）
Fmπが有限集合なのでユークリッド空間で議論できる（有限次元性）
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 L−
setの無矛盾性

各 ϕ ∈ Fmπにうまく真理値 [[ϕ]] ∈ [0, 1]を割り当てたい.

複合論理式の真理値は部分式の真理値から定まる.

[[ϕ→ ψ]] = min(1− [[ϕ]] + [[ψ]], 1)

[[∀x .ϕ(x)]] =
∧

t∈Dπ
[[ϕ(t)]]

一方, 原子論理式の真理値は複合論理式の真理値から定まる.

[[t ∈ {x | ϕ(x)}]] = [[ϕ(t)]]

|Fmπ| = nのとき, n次元ユークリッド空間でブラウワーの不動点定理を使え
ば, うまい真理値割り当てを見つけられる.

Theorem 18 (T.)

 L−
set は無矛盾である.
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まとめ

以下はすべて無矛盾：
論理 +不動点 +素朴集合論
FLew FLewfix FLewset

 L  Lfix  L−
set

 L−
set ではラッセル的不動点定理が証明できる
その無矛盾性はブラウワーの不動点定理により保証される

問い
1  L−

set はΣ1健全か？
2  Lset は無矛盾か？
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