

Neighborhood and algebraic models for predicate modal logics with ω -rules

Yoshihito Tanaka

Institute of Science Tokyo / Kyushu Sangyo University

MLG 2025

Outline

- ▶ Equivalence between neighborhood frames with constant domains and complex modal algebras as semantics for predicate modal logic;
- ▶ Model existence theorem for predicate modal logics with ω -rules including normal and non-normal cases;
- ▶ Completeness of a predicate extension of GL with respect to neighborhood frames with constant domains;
- ▶ Kripke incompleteness and neighborhood completeness of a common knowledge predicate logic.

Table of contents

ω -rules

Neighborhood frames and modal algebras

Equivalence of neighborhood frames and their complex modal algebras

Model existence theorem

Constant domain models for a predicate extension of GL

Kripke incompleteness of a common knowledge logic

ω -rules

ω -rules

- ※ An ω -rule is an inference rule with countably many premises of the form

$$\frac{p \supset \beta_i \ (i \in \omega)}{p \supset \alpha}, \quad (1.1)$$

- ※ The intended meaning of (1.1) with the axiom schemata

$$\alpha \supset \beta_i \ (i \in \omega)$$

is

$$\alpha \equiv \bigwedge_{i \in \omega} \beta_i.$$

- ※ Predicate extensions of certain propositional modal logics are not computably enumerable, even when the underlying propositional modal logics are decidable.
- ※ By adopting the ω -rules, we sometimes obtain simpler proofs of completeness theorems.

ω -rules

Example

(T. 18). With $\Box p \supset \Box\Box p$, the ω -rule

$$\frac{p \supset \Diamond^n \top \ (n \in \omega)}{p \supset \perp}$$

axiomatizes the provability logic GL.

Example

(Kaneko-Nagashima-Suzuki-T. 02). With $Cp \supset E^n p \ (n \in \omega)$, the ω -rules

$$\frac{\gamma \supset \Box_1(\phi_1 \supset \Box_2(\phi_2 \supset \dots \supset \Box_k(\phi_k \supset E^n \phi) \dots)) \ (n \in \omega)}{\gamma \supset \Box_1(\phi_1 \supset \Box_2(\phi_2 \supset \dots \supset \Box_k(\phi_k \supset C\phi) \dots))},$$

axiomatizes the common knowledge logic, where $k \in \omega$ and each $\Box_i \ (i = 1, \dots, k)$ is E or C.

Neighborhood frames and modal algebras

Neighborhood semantics

- ⌘ Using neighborhood semantics, we can provide
 1. models for non-normal modal logics;
 2. constant domain models for predicate modal logics without assuming the Barcan formula.

Distributivity of the modal operator over conjunction

- ⌘ It is well known that neighborhood frames serve as a semantic framework for non-normal modal logics, namely, modal logics that do not validate $\Box\top \equiv \top$ or $\Box(p \wedge q) \equiv \Box p \wedge \Box q$.
- ⌘ If we define $\bigwedge \emptyset$ as \top , this can be summarized that neighborhood frames can provide semantics for modal logics without assuming distributivity of the modal operator over finite conjunction.
- ⌘ In fact, neighborhood frames can be used to interpret infinitary modal logics in which the distributivity of the modal operator over conjunction of cardinality κ does not hold, for any infinite cardinal κ (Minari 16, T. 21).
- ⌘ On the other hand, for any infinite set X of formulas, Kripke frame validates

$$\Box \bigwedge X \equiv \bigwedge_{x \in X} \Box x.$$

Neighborhood frames

Definition

A *neighborhood frame* is a pair $\langle C, \mathcal{N} \rangle$, where C is a non-empty set and \mathcal{N} maps each $c \in C$ to a subset $\mathcal{N}(c)$ of $\mathcal{P}(\mathcal{P}(C))$. A neighborhood frame $\langle C, \mathcal{N} \rangle$ is said to be *monotonic* (MT), *topped* (TP), or *closed under finite intersections* (CF) if it satisfies the following conditions:

MT for any $c \in C$, $\mathcal{N}(c)$ is an upward closed subset of $\mathcal{P}(C)$ ordered by inclusion;

TP for any $c \in C$, $\mathcal{N}(c)$ contains C ;

CF for any $c \in C$, if $X, Y \in \mathcal{N}(c)$ then $X \cap Y \in \mathcal{N}(c)$.

A neighborhood frame $\langle C, \mathcal{N} \rangle$ is called a *Kripke frame* if it satisfies MT and $\bigcap \mathcal{N}(c) \in \mathcal{N}(c)$ for any $c \in C$.

Modal algebras

Definition

(Došen). An algebra $\langle A; \vee, \wedge, -, \square, 0, 1 \rangle$ is a *modal algebra*, if its reduct $\langle A; \vee, \wedge, -, 0, 1 \rangle$ is a Boolean algebra and \square is a unary operator on A . A modal algebra is said to be *complete* if its underlying Boolean algebra is complete. A complete modal algebra is *completely multiplicative*, if

$$\square \bigwedge_{x \in X} x = \bigwedge_{x \in X} \square x$$

holds, for any $X \subseteq A$. A modal algebra A is said to be *monotonic* (MT), *topped* (TP), or *closed under finite intersections* (CF), if it satisfies the following conditions:

MT for any x and y in A , $\square(x \wedge y) \leq \square x \wedge \square y$;

TP $\square 1 = 1$;

CF for any x and y in A , $\square x \wedge \square y \leq \square(x \wedge y)$.

The complex modal algebra of a neighborhood frame

Definition

(Došen). Let $Z = \langle C, \mathcal{N} \rangle$ be a neighborhood frame. Define the *complex modal algebra* of Z , which is denoted by $\text{Alg}(Z)$, by

$$\text{Alg}(Z) = \langle \mathcal{P}(C); \cup, \cap, C \setminus -, \square_Z, \emptyset, C \rangle,$$

where

$$\square_Z X = \{c \in C \mid X \in \mathcal{N}(c)\}$$

for any $X \subseteq C$.

Equivalence of neighborhood frames and their complex modal algebras

Neighborhood models

Definition

A *neighborhood model* for predicate modal logics is a 4-tuple $\langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$, where

- ▶ $\langle C, \mathcal{N} \rangle$ is a neighborhood frame;
- ▶ \mathcal{D} is a non-empty set called the *domain*;
- ▶ and \mathcal{I} is a mapping called the *interpretation* such that for each $n \in \omega$, each $P \in \text{Pred}(n)$, and each $c \in C$, \mathcal{I} maps (c, P) to an n -ary relation $P^{\mathcal{I}}(c) \subseteq \mathcal{D}^n$ over \mathcal{D} .

An *assignment* \mathcal{A} to \mathcal{D} is a mapping from V to \mathcal{D} . For any assignment \mathcal{A} , any variable x , and any $d \in \mathcal{D}$, define an assignment $[d/x]\mathcal{A}$ as follows:

$$[d/x]\mathcal{A}(z) = \begin{cases} \mathcal{A}(z) & \text{if } z \neq x \\ d & \text{if } z = x \end{cases}.$$

Neighborhood models

For each neighborhood model $M = \langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$ and each assignment \mathcal{A} , the valuation $v_{\mathcal{I}, \mathcal{A}}$ of a formula $\phi \in \Phi$ on M is defined inductively as follows:

1. $v_{\mathcal{I}, \mathcal{A}}(\top) = C, v_{\mathcal{I}, \mathcal{A}}(\perp) = \emptyset$;
2. $v_{\mathcal{I}, \mathcal{A}}(P(x_1, \dots, x_n)) = \{c \mid (\mathcal{A}(x_1), \dots, \mathcal{A}(x_n)) \in P^{\mathcal{I}}(c)\}$, for any $n \in \omega$, $P \in \text{Pred}(n)$, and $x_1, \dots, x_n \in V$;
3. $v_{\mathcal{I}, \mathcal{A}}(\phi \wedge \psi) = v_{\mathcal{I}, \mathcal{A}}(\phi) \cap v_{\mathcal{I}, \mathcal{A}}(\psi)$;
4. $v_{\mathcal{I}, \mathcal{A}}(\neg\phi) = C \setminus v_{\mathcal{I}, \mathcal{A}}(\phi)$;
5. $v_{\mathcal{I}, \mathcal{A}}(\forall x\phi) = \bigcap_{d \in \mathcal{D}} v_{\mathcal{I}, [d/x]\mathcal{A}}(\phi)$;
6. $v_{\mathcal{I}, \mathcal{A}}(\Box\phi) = \{c \mid v_{\mathcal{I}, \mathcal{A}}(\phi) \in \mathcal{N}(c)\}$.

The frames defined by formulas and the logic defined by frames

- ✿ Let $M = \langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$ be a neighborhood model. For any $\phi \in \Phi$ and $c \in C$, we write $c \models_M \phi$, if $c \in v_{\mathcal{I}, \mathcal{A}}(\phi)$ for any assignment \mathcal{A} . If $c \models_M \phi$ for every $c \in C$, we write $M \models \phi$.
- ✿ Let $Z = \langle C, \mathcal{N} \rangle$ be a neighborhood frame. We write $Z \models \phi$, if for any domain \mathcal{D} and any interpretation \mathcal{I} , the neighborhood model $M = \langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$ satisfies $M \models \phi$. Let Γ be a set of formulas. If $Z \models \phi$ for any $\phi \in \Gamma$, we write $Z \models \Gamma$.
- ✿ Let \mathcal{C} be a class of neighborhood frames. We write $\mathcal{C} \models \phi$ if $Z \models \phi$ for every $Z \in \mathcal{C}$, and write $\mathcal{C} \models \Gamma$ if $\mathcal{C} \models \phi$ for every $\phi \in \Gamma$.

Algebraic models

Definition

An *algebraic model* for predicate modal logics is a triple $\langle A, \mathcal{D}, \mathcal{J} \rangle$, where A is a complete modal algebra, \mathcal{D} is a nonempty set, and \mathcal{J} maps each n -ary predicate symbol to a mapping $P^{\mathcal{J}}: \mathcal{D}^n \rightarrow A$.

Let \mathcal{A} be an assignment to \mathcal{D} . The function $u_{\mathcal{J}, \mathcal{A}}$ from the set Φ of formulas to A is defined inductively as follows:

1. $u_{\mathcal{J}, \mathcal{A}}(\top) = 1, u_{\mathcal{J}, \mathcal{A}}(\perp) = 0$;
2. $u_{\mathcal{J}, \mathcal{A}}(P(x_1, \dots, x_n)) = P^{\mathcal{J}}(\mathcal{A}(x_1), \dots, \mathcal{A}(x_n))$ for any $n \in \omega$, $P \in \text{Pred}(n)$, and $x_1, \dots, x_n \in V$;
3. $u_{\mathcal{J}, \mathcal{A}}(\phi \wedge \psi) = u_{\mathcal{J}, \mathcal{A}}(\phi) \wedge u_{\mathcal{J}, \mathcal{A}}(\psi)$;
4. $u_{\mathcal{J}, \mathcal{A}}(\neg\phi) = \neg u_{\mathcal{J}, \mathcal{A}}(\phi)$;
5. $u_{\mathcal{J}, \mathcal{A}}(\forall x\phi) = \bigwedge_{d \in \mathcal{D}} u_{\mathcal{J}, [d/x]\mathcal{A}}(\phi)$;
6. $u_{\mathcal{J}, \mathcal{A}}(\Box\phi) = \Box u_{\mathcal{J}, \mathcal{A}}(\phi)$.

Equivalence between neighborhood frames and their complex algebras

Lemma

Let $Z = \langle C, \mathcal{N} \rangle$ be a neighborhood frame and $A = \langle \text{Alg}(Z), \mathcal{D}, \mathcal{J} \rangle$ be an algebraic model. Let $M^A = \langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$ be a neighborhood model, where \mathcal{I} is defined by

$$c \in P^{\mathcal{J}}(d_1, \dots, d_n) \Leftrightarrow (d_1, \dots, d_n) \in P^{\mathcal{I}}(c) \quad (3.1)$$

for any n -ary predicate symbol P . Then, $v_{\mathcal{I}, A}(\phi) = u_{\mathcal{J}, A}(\phi)$ for any formula ϕ and any assignment A .

Lemma

Let $Z = \langle C, \mathcal{N} \rangle$ be a neighborhood frame and $M = \langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$ be a neighborhood model. Let $A^M = \langle \text{Alg}(Z), \mathcal{D}, \mathcal{J} \rangle$ be an algebraic model, where \mathcal{J} is defined by (3.1). Then,

$u_{\mathcal{J}, A}(\phi) = v_{\mathcal{I}, A}(\phi)$ for any formula ϕ and any assignment A .

Equivalence between neighborhood frames and their complex algebras

Theorem

Let $Z = \langle C, \mathcal{N} \rangle$ be a neighborhood frame. For any formula ϕ ,

$$Z \models \phi \Leftrightarrow \text{Alg}(Z) \models \phi.$$

Model existence theorem

Predicate modal logics

Definition

A set L of formulas is a *predicate modal logic*, if it contains all classical predicate tautologies, is closed under the modus ponens, uniform substitution of formulas, and satisfies the following conditions:

1. for any $\phi \in \Phi$ and $x \in V$, if $\phi \in L$ then $\forall x\phi \in L$;
2. for any ϕ and ψ in Φ , if $\phi \equiv \psi \in L$, then $\Box\phi \equiv \Box\psi \in L$.

A predicate modal logic L is said to be *monotonic*, *topped*, or *closed under finite intersections*, which are written by MT, TP, or CF in symbols, if $\Box(p \wedge q) \supset \Box p \wedge \Box q \in L$, $\Box \top \in L$, or $\Box p \wedge \Box q \supset \Box(p \wedge q) \in L$, respectively. A predicate modal logic L is *normal* if it satisfies MT, TP, and CF.

Predicate modal logics

- ⌘ A predicate modal logic L is *consistent* if $\perp \notin L$.
- ⌘ Let \mathcal{C} be a class of neighborhood frames. A predicate modal logic L is *sound* with respect to \mathcal{C} if $\phi \in L$ implies $\mathcal{C} \models \phi$ for every formula ϕ , and *complete* with respect to \mathcal{C} if the converse holds.
- ⌘ A predicate modal logic L is said to be *neighborhood complete* if there exists a class \mathcal{C} of neighborhood frames such that L is sound and complete with respect to \mathcal{C} .

Predicate modal logics with ω -rules

A predicate logic L is said to *admit* a pair of the form

$$\alpha \supset \beta_i \ (i \in \omega), \quad \frac{p \supset \beta_i \ (i \in \omega)}{p \supset \alpha}, \quad (4.1)$$

if it satisfies the following conditions:

1. $\alpha \supset \beta_i \in L$ for any $i \in \omega$;
2. for each formula ϕ , $\phi \supset \alpha \in L$ whenever $\phi \supset \beta_i \in L$ for every $i \in \omega$.

We restrict our attention to pairs of the form (4.1) that satisfy the following condition:

$$|\{\{s(\beta_i) \mid i \in \omega\} \mid s \in \text{Sub}\}| \leq \aleph_0,$$

where Sub is the set of substitutions of closed formulas into predicate symbols.

Model existence theorem

Theorem

Let L be a consistent predicate modal logic that admits countably many pairs of a set of axiom schemata and an ω -rule. Then, there exists a neighborhood model $M = \langle C, \mathcal{N}, \mathcal{D}, \mathcal{I} \rangle$ and an assignment \mathcal{A} such that

$$v_{\mathcal{I}, \mathcal{A}}(s(\alpha)) = \bigcap_{i \in \omega} v_{\mathcal{I}, \mathcal{A}}(s(\beta_i))$$

for any uniform substitution s , and

$$\phi \in L \Leftrightarrow M \models \phi.$$

for any closed formula $\phi \in \Phi$. Moreover, if L satisfies properties among MT, TP, and CF then the model satisfies the properties corresponding to those of L .

Corollary

If $Z = \langle C, \mathcal{N} \rangle$ satisfies $Z \models L$, L is complete with respect to a class of neighborhood frames with constant domains.

Constant domain models for a predicate extension of GL

The proof system PS_{QGL}

Definition

The proof system PS_{QGL} for the predicate GL consists of:

1. all tautologies of classical predicate logic;
2. $\square(p \supset q) \supset (\square p \supset \square q)$ and $\square p \supset \square \square p$;
3. modus ponens, uniform substitution rule, necessitation rule, and generalization rule;
4.
$$\frac{p \supset \Diamond^n \top \ (n \in \omega)}{p \supset \perp}.$$

Define the logic QGL as the set of all formulas that are derivable in PS_{QGL} .

- * QGL is sound and complete with respect to the class of conversely well-founded Kripke frames.
- * Kripke complete predicate extension of GL is not computably enumerable (Rybakov 02).

GL-frames

Definition

A neighborhood frame $Z = \langle C, \mathcal{N} \rangle$ is called a *GL-frame* if $\text{Alg}(Z)$ satisfies MT, TP, CF, as well as the following additional conditions:

1. $\square_Z X \subseteq \square_Z \square_Z X$ for every $X \in \mathcal{P}(C)$;
2. $\bigcap_{n \in \omega} \diamond_Z^n C = \emptyset$.

We write \mathcal{C}_{GL} for the class of all GL-frames.

Theorem

QGL is sound and complete with respect to \mathcal{C}_{GL} .

Kripke incompleteness of a common knowledge logic

Common knowledge logics

Definition

A bi-modal logic L with two modal operators E and C is a *common knowledge logic* if it satisfies the following properties:

1. for any formula ϕ and any $n \in \omega$, $C\phi \supset E^n\phi \in L$;
2. for any formulas ϕ and ψ , if $\psi \supset E^n\phi \in L$ for any $n \in \omega$, then $\psi \supset C\phi \in L$.

The proof system PS_{QCKL}

The proof system PS_{QCKL} for the common knowledge logic consists of:

1. all tautologies of classical predicate logic;
2. $\square(p \supset q) \supset (\square p \supset \square q)$, where $\square = \text{E}$ or $\square = \text{C}$;
3. for any $n \in \omega$, $\text{C}p \supset \text{E}^n p$;
4. $\forall x \square \phi \supset \square \forall x \phi$, where $\square = \text{E}$ or $\square = \text{C}$;
5. modus ponens, uniform substitution rule, necessitation rule for the modal operators E and C , and generalization rule;
6. for each $k \in \omega$ and $\{\square_i \mid 1 \leq i \leq k\} \subseteq \{\text{E}, \text{C}\}$,

$$\frac{\gamma \supset \square_1(\phi_1 \supset \square_2(\phi_2 \supset \cdots \supset \square_k(\phi_k \supset \text{E}^n \phi) \cdots)) \quad (n \in \omega)}{\gamma \supset \square_1(\phi_1 \supset \square_2(\phi_2 \supset \cdots \supset \square_k(\phi_k \supset \text{C} \phi) \cdots))}.$$

Define the logic QCKL as the set of all formulas that are derivable in PS_{QCKL} .

The proof system $\text{PS}_{\text{QCKL}^-}$

- ✿ Kripke complete common knowledge logic is not computably enumerable (Wolter 00).
- ✿ When $k = 0$, the inference rule

$$\frac{\gamma \supset \Box_1(\phi_1 \supset \Box_2(\phi_2 \supset \dots \supset \Box_k(\phi_k \supset \mathsf{E}^n\phi) \dots)) \quad (n \in \omega)}{\gamma \supset \Box_1(\phi_1 \supset \Box_2(\phi_2 \supset \dots \supset \Box_k(\phi_k \supset \mathsf{C}\phi) \dots))} \quad (6.1)$$

means

$$\frac{\gamma \supset \mathsf{E}^n\phi \quad (n \in \omega)}{\gamma \supset \mathsf{C}\phi}. \quad (6.2)$$

- ✿ The proof system $\text{PS}_{\text{QCKL}^-}$ is defined by replacing inference rule (6.1) of PS_{QCKL} with (6.2), and by removing the Barcan Formula.

CKL[−]-algebras and CKL[−]-frames

Definition

A complete modal algebra A with two modal operators E and C is called a *CKL[−]-algebra*, if it satisfies MT, TP, CF, and

$$Cx = \bigwedge_{n \in \omega} E^n x$$

for any $x \in A$. We write $\mathcal{A}_{\text{CKL}^-}$ for the class of all CKL[−]-algebras.

Definition

A neighborhood frame $Z = \langle C, \mathcal{N}_E, \mathcal{N}_C \rangle$ is called a *CKL[−]-frame* if $\text{Alg}(Z) \in \mathcal{A}_{\text{CKL}^-}$. We write $\mathcal{C}_{\text{CKL}^-}$ for the class of all CKL[−]-frames.

Theorem

QCKL[−] is sound and complete with respect to both $\mathcal{A}_{\text{CKL}^-}$ and $\mathcal{C}_{\text{CKL}^-}$.

Kripke incompleteness of \mathbf{QCKL}^-

Lemma

There exists a modal algebra $A \in \mathcal{A}_{\mathbf{CKL}^-}$ and $x \in A$ such that

$$\mathsf{C}x \not\leq \mathsf{EC}x.$$

If $A \in \mathcal{A}_{\mathbf{CKL}^-}$ is completely multiplicative, then, for any $x \in A$,

$$\mathsf{C}x = \bigwedge_{n \in \omega} \mathsf{E}^n x \leq \mathsf{E} \bigwedge_{n \in \omega} \mathsf{E}^n x = \mathsf{EC}x.$$

Lemma

Let Z be a Kripke frame. If $Z \models \mathbf{QCKL}^-$ then:

1. $\mathsf{CX} = \bigcap_{n \in \omega} \mathsf{E}^n X$ for any $X \in \text{Alg}(Z)$;
2. $Z \models \mathsf{C}p \supset \mathsf{EC}p$.

Theorem

\mathbf{QCKL}^- is Kripke incomplete.

Kosta Došen.

Duality between modal algebras and neighbourhood frames.

Studia Logica, 48:219–234, 1989.

Mamoru Kaneko, Takashi Nagashima, Nobu-Yuki Suzuki, and Yoshihito Tanaka.

Map of common knowledge logics.

Studia Logica, 71:57–86, 2002.

Pierluigi Minari.

Some remarks on the proof-theory and the semantics of infinitary logic.

In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors, *Advances in Proof Theory*, pages 291–318. Springer, 2016.

Mikhail Rybakov.

Enumerability of modal predicate logics and the condition of non-existence of infinite ascending chains.

Logical Investigation, 9:155–167, 2002.

Yoshihito Tanaka.

A cut-free proof system for a predicate extension of the logic of provability.

Reports on Mathematical Logic, 53:97–109, 2018.

Yoshihito Tanaka.

Duality for κ -additive complete atomic modal algebras.

Algebra Universalis, 82:1–20, 2021.

Frank Wolter.

First order common knowledge logics.

Studia Logica, 65:249–271, 2000.

Thank you for your attention.