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Outline

▶ Equivalence between neighborhood frames with constant
domains and complex modal algebras as semantics for
predicate modal logic;

▶ Model existence theorem for predicate modal logics with
ω-rules including normal and non-normal cases;

▶ Completeness of a predicate extension of GL with respect to
neighborhood frames with constant domains;

▶ Kripke incompleteness and neighborhood completeness of a
common knowledge predicate logic.
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ω-rules
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ω-rules
d An ω-rule is an inference rule with countably many premises of
the form

p ⊃ βi (i ∈ ω)

p ⊃ α
, (1.1)

d The intended meaning of (1.1) with the axiom schemata

α ⊃ βi (i ∈ ω)

is
α ≡

∧
i∈ω

βi.

d Predicate extensions of certain propositional modal logics are
not computably enumerable, even when the underlying
propositional modal logics are decidable.

d By adopting the ω-rules, we sometimes obtain simpler proofs of
completeness theorems.
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ω-rules

Example

(T. 18 ). With 2p ⊃ 22p, the ω-rule

p ⊃ 3n⊤ (n ∈ ω)

p ⊃ ⊥

axiomatizes the provability logic GL.

Example

(Kaneko-Nagashima-Suzuki-T. 02). With Cp ⊃ Enp (n ∈ ω), the
ω-rules

γ ⊃ 21(ϕ1 ⊃ 22(ϕ2 ⊃ · · · ⊃ 2k(ϕk ⊃ Enϕ) · · · )) (n ∈ ω)

γ ⊃ 21(ϕ1 ⊃ 22(ϕ2 ⊃ · · · ⊃ 2k(ϕk ⊃ Cϕ) · · · ))
,

axiomatizes the common knowledge logic, where k ∈ ω and each
2i (i = 1, . . . k) is E or C.
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Neighborhood frames and modal algebras
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Neighborhood semantics

d Using neighborhood semantics, we can provide

1. models for non-normal modal logics;

2. constant domain models for predicate modal logics without
assuming the Barcan formula.

8 / 35



Distributivity of the modal operator over conjunction
d It is well known that neighborhood frames serve as a semantic
framework for non-normal modal logics, namely, modal logics that
do not validate 2⊤ ≡ ⊤ or 2(p ∧ q) ≡ 2p ∧2q.

d If we define
∧
∅ as ⊤, this can be summarized that neighborhood

frames can provide semantics for modal logics without assuming
distributivity of the modal operator over finite conjunction.

d In fact, neighborhood frames can be used to interpret infinitary
modal logics in which the distributivity of the modal operator over
conjunction of cardinality κ does not hold, for any infinite cardinal
κ (Minari 16, T. 21).

d On the other hand, for any infinite set X of formulas, Kripke
frame validates

2
∧
X ≡

∧
x∈X

2x.
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Neighborhood frames

Definition
A neighborhood frame is a pair ⟨C,N⟩, where C is a non-empty
set and N maps each c ∈ C to a subset N (c) of P(P(C)). A
neighborhood frame ⟨C,N⟩ is said to be monotonic (MT), topped
(TP), or closed under finite intersections (CF) if it satisfies the
following conditions:

MT for any c ∈ C, N (c) is an upward closed subset of
P(C) ordered by inclusion;

TP for any c ∈ C, N (c) contains C;

CF for any c ∈ C, if X, Y ∈ N (c) then X ∩ Y ∈ N (c).

A neighborhood frame ⟨C,N⟩ is called a Kripke frame if it satisfies
MT and

∩
N (c) ∈ N (c) for any c ∈ C.
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Modal algebras

Definition
(Došen). An algebra ⟨A;∨,∧,−,2, 0, 1⟩ is a modal algebra, if its
reduct ⟨A;∨,∧,−, 0, 1⟩ is a Boolean algebra and 2 is a unary
operator on A. A modal algebra is said to be complete if its
underlying Boolean algebra is complete. A complete modal algebra
is completely multiplicative, if

2
∧
x∈X

x =
∧
x∈X

2x

holds, for any X ⊆ A. A modal algebra A is said to be monotonic
(MT), topped (TP), or closed under finite intersections (CF), if it
satisfies the following conditions:

MT for any x and y in A, 2(x ∧ y) ≤ 2x ∧2y;

TP 21 = 1;

CF for any x and y in A, 2x ∧2y ≤ 2(x ∧ y).

11 / 35



The complex modal algebra of a neighborhood frame

Definition
(Došen). Let Z = ⟨C,N⟩ be a neighborhood frame. Define the
complex modal algebra of Z, which is denoted by Alg(Z), by

Alg(Z) = ⟨P(C);∪,∩, C \ −,2Z , ∅, C⟩,

where
2ZX = {c ∈ C | X ∈ N (c)}

for any X ⊆ C.
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Equivalence of neighborhood frames and their
complex modal algebras
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Neighborhood models

Definition
A neighborhood model for predicate modal logics is a 4-tuple
⟨C,N ,D, I⟩, where
▶ ⟨C,N⟩ is a neighborhood frame;

▶ D is a non-empty set called the domain;

▶ and I is a mapping called the interpretation such that for
each n ∈ ω, each P ∈ Pred(n), and each c ∈ C, I maps
(c, P ) to an n-ary relation P I(c) ⊆ Dn over D.

An assignment A to D is a mapping from V to D. For any
assignment A, any variable x, and any d ∈ D, define an
assignment [d/x]A as follows:

[d/x]A(z) =

{
A(z) if z ̸= x

d if z = x
.
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Neighborhood models

For each neighborhood model M = ⟨C,N ,D, I⟩ and each
assignment A, the valuation vI,A of a formula ϕ ∈ Φ on M is
defined inductively as follows:

1. vI,A(⊤) = C, vI,A(⊥) = ∅;
2. vI,A(P (x1, . . . , xn)) = {c | (A(x1), . . . ,A(xn)) ∈ P I(c)}, for

any n ∈ ω, P ∈ Pred(n), and x1, . . . , xn ∈ V;

3. vI,A(ϕ ∧ ψ) = vI,A(ϕ) ∩ vI,A(ψ);
4. vI,A(¬ϕ) = C \ vI,A(ϕ);
5. vI,A(∀xϕ) =

∩
d∈D vI,[d/x]A(ϕ);

6. vI,A(2ϕ) = {c | vI,A(ϕ) ∈ N (c)}.

15 / 35



The frames defined by formulas and the logic defined by
frames

d Let M = ⟨C,N ,D, I⟩ be a neighborhood model. For any ϕ ∈ Φ
and c ∈ C, we write c |=M ϕ, if c ∈ vI,A(ϕ) for any assignment A.
If c |=M ϕ for every c ∈ C, we write M |= ϕ.

d Let Z = ⟨C,N⟩ be a neighborhood frame. We write Z |= ϕ, if
for any domain D and any interpretation I, the neighborhood
model M = ⟨C,N ,D, I⟩ satisfies M |= ϕ. Let Γ be a set of
formulas. If Z |= ϕ for any ϕ ∈ Γ, we write Z |= Γ.

d Let C be a class of neighborhood frames. We write C |= ϕ if
Z |= ϕ for every Z ∈ C, and write C |= Γ if C |= ϕ for every ϕ ∈ Γ.
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Algebraic models

Definition
An algebraic model for predicate modal logics is a triple ⟨A,D,J ⟩,
where A is a complete modal algebra, D is a nonempty set, and J
maps each n-ary predicate symbol to a mapping PJ : Dn → A.

Let A be an assignment to D. The function uJ ,A from the set Φ
of formulas to A is defined inductively as follows:

1. uJ ,A(⊤) = 1, uJ ,A(⊥) = 0;

2. uJ ,A(P (x1, . . . , xn)) = PJ (A(x1), . . . ,A(xn)) for any
n ∈ ω, P ∈ Pred(n), and x1, . . . , xn ∈ V;

3. uJ ,A(ϕ ∧ ψ) = uJ ,A(ϕ) ∧ uJ ,A(ψ);

4. uJ ,A(¬ϕ) = −uJ ,A(ϕ);

5. uJ ,A(∀xϕ) =
∧

d∈D uJ ,[d/x]A (ϕ);

6. uJ ,A(2ϕ) = 2uJ ,A(ϕ).
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Equivalence between neighborhood frames and their
complex algebras

Lemma
Let Z = ⟨C,N⟩ be a neighborhood frame and A = ⟨Alg(Z),D,J ⟩
be an algebraic model. Let MA = ⟨C,N ,D, I⟩ be a neighborhood
model, where I is defined by

c ∈ PJ (d1, . . . , dn) ⇔ (d1, . . . , dn) ∈ P I(c) (3.1)

for any n-ary predicate symbol P . Then, vI,A(ϕ) = uJ ,A(ϕ) for
any formula ϕ and any assignment A.

Lemma
Let Z = ⟨C,N⟩ be a neighborhood frame and M = ⟨C,N ,D, I⟩
be a neighborhood model. Let AM = ⟨Alg(Z),D,J ⟩ be an
algebraic model, where J is defined by (3.1). Then,
uJ ,A(ϕ) = vI,A(ϕ) for any formula ϕ and any assignment A.
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Equivalence between neighborhood frames and their
complex algebras

Theorem
Let Z = ⟨C,N⟩ be a neighborhood frame. For any formula ϕ,

Z |= ϕ ⇔ Alg(Z) |= ϕ.
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Model existence theorem
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Predicate modal logics

Definition
A set L of formulas is a predicate modal logic, if it contains all
classical predicate tautologies, is closed under the modus ponens,
uniform substitution of formulas, and satisfies the following
conditions:

1. for any ϕ ∈ Φ and x ∈ V, if ϕ ∈ L then ∀xϕ ∈ L;

2. for any ϕ and ψ in Φ, if ϕ ≡ ψ ∈ L, then 2ϕ ≡ 2ψ ∈ L.

A predicate modal logic L is said to be monotonic, topped, or
closed under finite intersections, which are written by MT, TP, or
CF in symbols, if 2(p ∧ q) ⊃ 2p ∧2q ∈ L, 2⊤ ∈ L, or
2p ∧2q ⊃ 2(p ∧ q) ∈ L, respectively. A predicate modal logic L is
normal if it satisfies MT, TP, and CF.
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Predicate modal logics

d A predicate modal logic L is consistent if ⊥ ̸∈ L.

d Let C be a class of neighborhood frames. A predicate modal
logic L is sound with respect to C if ϕ ∈ L implies C |= ϕ for every
formula ϕ, and complete with respect to C if the converse holds.

d A predicate modal logic L is said to be neighborhood complete if
there exists a class C of neighborhood frames such that L is sound
and complete with respect to C.
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Predicate modal logics with ω-rules

A predicate logic L is said to admit a pair of the form

α ⊃ βi (i ∈ ω),
p ⊃ βi (i ∈ ω)

p ⊃ α
, (4.1)

if it satisfies the following conditions:

1. α ⊃ βi ∈ L for any i ∈ ω;

2. for each formula ϕ, ϕ ⊃ α ∈ L whenever ϕ ⊃ βi ∈ L for every
i ∈ ω.

We restrict our attention to pairs of the form (4.1) that satisfy the
following condition:

|{{s(βi) | i ∈ ω} | s ∈ Sub}| ≤ ℵ0,

where Sub is the set of substitutions of closed formulas into
predicate symbols.
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Model existence theorem

Theorem
Let L be a consistent predicate modal logic that admits countably
many pairs of a set of axiom schemata and an ω-rule. Then, there
exists a neighborhood model M = ⟨C,N ,D, I⟩ and an assignment
A such that

vI,A(s (α)) =
∩
i∈ω

vI,A (s(βi))

for any uniform substitution s, and

ϕ ∈ L ⇔ M |= ϕ.

for any closed formula ϕ ∈ Φ. Moreover, if L satisfies properties
among MT, TP, and CF then the model satisfies the properties
corresponding to those of L.

Corollary

If Z = ⟨C,N⟩ satisfies Z |= L, L is complete with respect to a
class of neighborhood frames with constant domains.

24 / 35



Constant domain models for a predicate
extension of GL
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The proof system PSQGL

Definition
The proof system PSQGL for the predicate GL consists of:

1. all tautologies of classical predicate logic;

2. 2(p ⊃ q) ⊃ (2p ⊃ 2q) and 2p ⊃ 22p;

3. modus ponens, uniform substitution rule, necessitation rule,
and generalization rule;

4.
p ⊃ 3n⊤ (n ∈ ω)

p ⊃ ⊥
.

Define the logic QGL as the set of all formulas that are derivable in
PSQGL.

d QGL is sound and complete with respect to the class of
conversely well-founded Kripke frames.

d Kripke complete predicate extension of GL is not computably
enumerable (Rybakov 02).
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GL-frames

Definition
A neighborhood frame Z = ⟨C,N⟩ is called a GL-frame if Alg(Z)
satisfies MT, TP, CF, as well as the following additional
conditions:

1. 2ZX ⊆ 2Z2ZX for every X ∈ P(C);

2.
∩

n∈ω 3Z
nC = ∅.

We write CGL for the class of all GL-frames.

Theorem
QGL is sound and complete with respect to CGL.
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Kripke incompleteness of a common knowledge
logic
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Common knowledge logics

Definition
A bi-modal logic L with two modal operators E and C is a common
knowledge logic if it satisfies the following properties:

1. for any formula ϕ and any n ∈ ω, Cϕ ⊃ Enϕ ∈ L;

2. for any formulas ϕ and ψ, if ψ ⊃ Enϕ ∈ L for any n ∈ ω, then
ψ ⊃ Cϕ ∈ L.
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The proof system PSQCKL

The proof system PSQCKL for the common knowledge logic
consists of:

1. all tautologies of classical predicate logic;

2. 2(p ⊃ q) ⊃ (2p ⊃ 2q), where 2 = E or 2 = C;

3. for any n ∈ ω, Cp ⊃ Enp;

4. ∀x2ϕ ⊃ 2∀xϕ, where 2 = E or 2 = C;

5. modus ponens, uniform substitution rule, necessitation rule for
the modal operators E and C, and generalization rule;

6. for each k ∈ ω and {2i | 1 ≤ i ≤ k} ⊆ {E,C},

γ ⊃ 21(ϕ1 ⊃ 22(ϕ2 ⊃ · · · ⊃ 2k(ϕk ⊃ Enϕ) · · · )) (n ∈ ω)

γ ⊃ 21(ϕ1 ⊃ 22(ϕ2 ⊃ · · · ⊃ 2k(ϕk ⊃ Cϕ) · · · ))
.

Define the logic QCKL as the set of all formulas that are derivable
in PSQCKL.
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The proof system PSQCKL−

d Kripke complete common knowledge logic is not computably
enumerable (Wolter 00).
d When k = 0, the inference rule

γ ⊃ 21(ϕ1 ⊃ 22(ϕ2 ⊃ · · · ⊃ 2k(ϕk ⊃ Enϕ) · · · )) (n ∈ ω)

γ ⊃ 21(ϕ1 ⊃ 22(ϕ2 ⊃ · · · ⊃ 2k(ϕk ⊃ Cϕ) · · · ))
(6.1)

means
γ ⊃ Enϕ (n ∈ ω)

γ ⊃ Cϕ
. (6.2)

d The proof system PSQCKL− is defined by replacing inference rule
(6.1) of PSQCKL with (6.2), and by removing the Barcan Formula.
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CKL−-algebras and CKL−-frames

Definition
A complete modal algebra A with two modal operators E and C is
called a CKL−-algebra, if it satisfies MT, TP, CF, and

Cx =
∧
n∈ω

Enx

for any x ∈ A. We write ACKL− for the class of all CKL−-algebras.

Definition
A neighborhood frame Z = ⟨C,NE,NC⟩ is called a CKL−-frame if
Alg(Z) ∈ ACKL− . We write CCKL− for the class of all
CKL−-frames.

Theorem
QCKL− is sound and complete with respect to both ACKL− and
CCKL− .
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Kripke incompleteness of QCKL−

Lemma
There exists a modal algebra A ∈ ACKL− and x ∈ A such that

Cx ̸≤ ECx.

If A ∈ ACKL− is completely multiplicative, then, for any x ∈ A,

Cx =
∧
n∈ω

Enx ≤ E
∧
n∈ω

Enx = ECx.

Lemma
Let Z be a Kripke frame. If Z |= QCKL− then:

1. CX =
∩

n∈ω EnX for any X ∈ Alg(Z);

2. Z |= Cp ⊃ ECp.

Theorem
QCKL− is Kripke incomplete.
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Thank you for your attention.
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