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はじめに

概要
Kurahashi により，第 2不完全性定理の観点から
条件 E : T ⊢ φ↔ ψ =⇒ T ⊢ PrT (⌜φ⌝) ↔ PrT (⌜ψ⌝)
が分析されている．
条件 E を証明可能性論理の観点から分析を行った．
近傍意味論に基づくモデルを算術に埋め込むことで，非正規様相論理 EN
に対して算術的完全性定理を示し，条件 E に対応する証明可能性論理を構
築した．

本講演は次の論文に基づく．

H. Kogure, Provability interpretation of non-normal modal logics having
neighborhood semantics, arXiv: 2511.16488.
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第 2不完全性定理
以降，理論 T を PA の r.e. 拡大とする．

定義（証明可能性述語）
論理式 PrT (x) が T の証明可能性述語 def .⇐⇒ ∀φ(T ⊢ φ ⇐⇒ PA ⊢ PrT (⌜φ⌝))．

第 2不完全性定理は第 1不完全性定理を形式化することで示される．
第 1不完全性定理の証明を算術の上で実行するための条件が
導出可能性条件．

定義（導出可能性条件）
D2: T ⊢ PrT (⌜φ→ ψ⌝) → (PrT (⌜φ⌝) → PrT (⌜ψ⌝))．
D3: T ⊢ PrT (⌜φ⌝) → PrT (⌜PrT (⌜φ⌝)⌝)．

定理 (Gödel, 1931 ; Löb, 1955)

PrT (x) が D2とD3 を満たすならば次が成立．
T ⊬ ¬PrT (⌜0 = 1⌝)（第 2不完全性定理）．
T ⊢ PrT (⌜PrT (⌜φ⌝) → φ⌝) → PrT (⌜φ⌝) (Löb の定理) ．
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条件 E と第 2不完全性定理 1

第 2不完全性定理の成立に本質的な原理は何か．
条件 D2 や D3 を弱めたとき，第 2不完全性定理はどの形で残るのか？

定義 (Kurahashi)

E : T ⊢ φ↔ ψ =⇒ T ⊢ PrT (⌜φ⌝) ↔ PrT (⌜ψ⌝)．
C : T ⊢ PrT (⌜φ⌝) ∧ PrT (⌜ψ⌝) → PrT (⌜φ ∧ ψ⌝)．

D2 ⇒ E & C．
¬PrT (⌜0 = 1⌝) と異なる無矛盾性の定式化も考えられている．

定義
ConS

T := {¬(PrT (⌜φ⌝) ∧ PrT (⌜¬φ⌝)) | φ は論理式 }．
Ros : T ⊢ ¬φ =⇒ T ⊢ ¬PrT (⌜φ⌝)．

T ⊢ ConS
T =⇒ Ros が成立 =⇒ T ⊢ ¬PrT (⌜0 = 1⌝)．

T ⊬ ¬PrT (⌜0 = 1⌝) =⇒ Ros が不成立 =⇒ T ⊬ ConS
T．



第 2 不完全性定理 証明可能性論理と非正規様相論理 今回の研究

条件 E と第 2不完全性定理 2

E や C は，T ⊬ ¬PrT (⌜0 = 1⌝) より弱いタイプの第 2不完全性定理の条件と
なる．

定理 (Kurahashi)

PrT (x) が E と D3 を満たす =⇒ T ⊬ ConS
T．

PrT (x) が C と D3 を満たす =⇒ Ros が不成立．

命題
PrT (x) が E と C を満たすならば次が成立：

T ⊬ ¬PrT (⌜0 = 1⌝) ⇐⇒ Ros が不成立 ⇐⇒ T ⊬ ConS
T .

E や C によって捉えられる原理が T ⊬ ¬PrT (⌜0 = 1⌝) に本質的．

系
PrT (x) が E と C と D3 を満たす =⇒ T ⊬ ¬PrT (⌜0 = 1⌝)．
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証明可能性述語と様相論理

導出可能性条件を様相論理の枠組みで整理するのが証明可能性論理である．
証明可能性論理では，□A を PrT (x) と対応させ，「A は証明可能」と解釈
する．

導出可能性条件（再掲）
D2: T ⊢ PrT (⌜φ→ ψ⌝) → (PrT (⌜φ⌝) → PrT (⌜ψ⌝))．
D3: T ⊢ PrT (⌜φ⌝) → PrT (⌜PrT (⌜φ⌝)⌝)．

(T ⊢ φ =⇒ T ⊢ PrT (⌜φ⌝)) は A

□A に対応．
D2 は □(A→ B) → (□A→ □B)，D3 は □A→ □□A，
Löb の定理は □(□A→ A) → □A に対応．
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算術的解釈

様相論理式から算術の文への対応付けを算術的解釈により与える．

算術的解釈
次を満たす様相論理式から算術の文への写像 f を証明可能性述語 PrT (x)に基
づく算術的解釈という.

f(⊥) :≡ 0 = 1，
f(A→ B) :≡ f(A) → f(B)，
f(□A) :≡ PrT (⌜f(A)⌝)．

定義
PL(PrT ) := {A : PrT (x)に基づく任意の算術的解釈 f に対して T ⊢ f(A)} を
PrT (x)の証明可能性論理という．

PL(PrT ) は PrT (x) に共通する原理を様相論理として抜き出したもの．
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証明可能性論理 GL

D2，D3 を満たす標準的な証明可能性述語 ProvT (x) に対応する様相論理は何
だろうか？

様相論理 K

公理：命題トートロジー，□(A→ B) → (□A→ □B)．
規則：(MP)

A→ B A

B
， (Nec)

A

□A．

GL := K+ (□A→ □□A) + (□(□A→ A) → □A)

Solovay は GL の Kripke 意味論を算術に埋め込むことで，GL の □ と
ProvT (x) が対応することを示している．

算術的完全性定理 (Solovay, 1976)

T を Σ1-健全な理論としたとき，GL = PL(ProvT )．
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弱い導出可能性条件に対応する様相論理

E などの D2 より弱く，T ⊬ ¬PrT (⌜0 = 1⌝) の成立に本質的な原理の証明
可能性論理はどのようなものになるのか．
D2 より弱く，E より強い条件 M は証明可能性論理の観点から既に分析
されている．

定義
M : T ⊢ φ→ ψ =⇒ T ⊢ PrT (⌜φ⌝) → PrT (⌜ψ⌝)

定義（再掲）
ConS

T := {¬(PrT (⌜φ⌝) ∧ PrT (⌜¬φ⌝)) | φ は論理式 }．

PrT (x) が E と D3 を満たす =⇒ T ⊬ ConS
T より次が成立．

系
PrT (x) が M と D3 を満たす =⇒ T ⊬ ConS

T．
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非正規様相論理 MN

MN は条件 M に対応する規則を持つ論理．

様相論理MN

公理：命題トートロジー，
規則：(MP)

A→ B A

B
，(RM)

A→ B

□A→ □B , (Nec)
A

□A．

様相論理 MN は非正規様相論理で，Kripke 意味論を持たないが，単調性を満た
す近傍意味論を持つ．

定義（近傍モデル）
次を見たす組 (W,N, v) を近傍モデルという．

W ̸= ∅, N :W → P(P(W )), ∀x(W ∈ N(x)).

v は様相論理式から P(W ) への写像で次を満たす：
∀x(x /∈ v(⊥))，
∀x(x ∈ v(A→ B) ⇐⇒ x ∈ (W \ v(A)) ∪ v(B))，
∀x(x ∈ v(□A) ⇐⇒ v(A) ∈ N(x))．

v(A) =W のとき，A は (W,N, v) で valid であるという．
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MN の近傍意味論

定義
近傍モデル (W,N, v) が次を満たすとき，(W,N, v) は単調であるという：

∀x ∈W, ∀U, ∀V ∈ P(W )(U ∈ N(x) & U ⊆ V =⇒ V ∈ N(x)).

事実
MN ⊢ A ⇐⇒ A は任意の有限かつ単調な近傍モデルで valid．
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MN の関係意味論

Solovay による GL の算術的完全性定理は Kripke 意味論を算術に埋め込む
ことで示されていた．
MN に対する算術的完全性定理を確立するため，近傍意味論の代わりに，
Kripke 意味論に類似した関係意味論を導入した．

定義 (K. and Kurahashi)

次の条件を満たす (W,R,⊩) を MN モデルという.

W ̸= ∅ & R ⊆W × (P(W ) \ {∅}).
(∀x ∈W )(∀U, V ∈ P(W ))(x R V & V ⊆ U ⇒ x R U).

x ⊩ □A ⇐⇒ (∀V ∈ P(W ))
(
x R V ⇒ (∃y ∈ V )(y ⊩ A)

)
.

MN は 単調性 A→ B

□A→ □B をもつため，近傍意味論をより扱いやすい関係意味
論に置き換えることができる．

MN の有限モデル性
MN ⊢ A⇐⇒ A は任意の有限 MN モデルで valid.
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MN の算術的完全性定理

MN の関係意味論に基づく反例有限モデルを算術に埋め込むことで，算術
的完全性定理が得られる．
MN4 = MN+□A→ □□A とする．

定理 (K. and Kurahashi)

L ∈ {MN,MN4} としたとき，ある PrT (x) が存在して，L = PL(PrT )．

系
MN =

∩
{PL(PrT ) | PrT (x) は M を満たす }．

MN4 =
∩
{PL(PrT ) | PrT (x) は M と D3 を満たす }．

条件 E や C に対応する証明可能性論理は何だろうか．
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様相論理 EN

条件 E : T ⊢ φ↔ ψ =⇒ T ⊢ PrT (⌜φ⌝) ↔ PrT (⌜ψ⌝) に対応する原理
(RE)

A↔ B

□A↔ □B を持つ論理 EN は，より一般の近傍フレームに対応する論理と
して古典的に分析されてきた．

様相論理 EN

公理：命題トートロジー，
規則：(MP)

A→ B A

B
，(RE)

A↔ B

□A↔ □B , (Nec)
A

□A．

条件 C に対応する原理をさらに加えた場合を考えることも自然である．

様相論理 ECN

ECN = EN+□A ∧□B → □(A ∧B)．

K

MN ECN

EN
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EN の意味論

事実
EN ⊢ A ⇐⇒ 任意の有限な近傍モデルで A は valid．

定義
近傍モデル (W,N, v) が次を満たすとき，(W,N, v) は regular であるという：

∀x ∈W, ∀U, ∀V ∈ P(W )(U ∈ N(x) & V ∈ N(x) =⇒ U ∩ V ∈ N(x)).

事実
ECN ⊢ A ⇐⇒ 任意の有限かつ regular な近傍モデルで A は valid．
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EN，ECN に対する算術的完全性定理

MN は A→ B

□A→ □B をもつため，Kripke 意味論に似た関係意味論によって
扱うことができた．
一方，EN や ECN では単調性を仮定しないため，同様の関係意味論を与え
ることができるとは限らない．
より一般の近傍意味論を持つ論理に対して，算術的完全性定理を示せるか？

問題
L ∈ {EN,ECN} に対し，L = PL(PrT ) となる PrT (x) は存在するか？
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得られた結果 1

問題
L ∈ {EN,ECN} に対し，L = PL(PrT ) となる PrT (x) は存在するか？

関係意味論を経由せずに，近傍意味論に基づく反例有限モデルを算術に埋め込
む手法を新たに開発し，EN，ECN の算術的完全性定理を示した．

主定理 (K.)

L ∈ {EN,ECN}に対し， PL(PrT ) = Lとなる PrT (x)が存在．
EN =

∩
{PL(PrT ) | PrT (x) は E を満たす }．

ECN =
∩
{PL(PrT ) | PrT (x) は E と C を満たす }．



第 2 不完全性定理 証明可能性論理と非正規様相論理 今回の研究

得られた結果 2

二種類の無矛盾性の定式化 ¬PrT (⌜0 = 1⌝)，ConS
T に対応する様相原理 ¬□⊥，

¬(□A ∧□¬A) を EN や ECN に加えて拡張する．

定義
ENP = EN+ ¬□⊥，
END = EN+ ¬(□A ∧□¬A)，
ECNP = ECN+ ¬□⊥．

これらの論理に対しても対応する近傍モデルを埋め込むことで，算術的完全性
定理を示した．

主定理 (K.)

L ∈ {ENP,END,ECNP}に対し， PL(PrT ) = Lとなる PrT (x)が存在．
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今後の課題

定理（再掲）
PrT (x) が E と D3 を満たす =⇒ T ⊬ ConS

T．
PrT (x) が E と C と D3 を満たす =⇒ T ⊬ ¬PrT (⌜0 = 1⌝)．

第 2不完全性定理の成立において，E と D3 の組み合わせは本質的で
あった．
それらの条件に対応する証明可能性論理は何か．

定義
EN4 = EN+□A→ □□A，
ENP4 = EN4+ ¬□⊥，
ECN4 = ECN+□A→ □□A．

問題
L ∈ {EN4,ENP4,ECN4}に対し， PL(PrT ) = L となる PrT (x)は存在するか？
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