

Hierarchy of logical axioms over intuitionistic logic and arithmetic

Makoto Fujiwara*

Department of Applied Mathematics, Faculty of Science Division I, Tokyo
University of Science

MLG 2025, Kobe University

19 December 2025

*The author is supported by JSPS KAKENHI Grant Numbers JP21KK0045 and JP23K03205.

Arithmetical Hierarchy of Logical Principles

- There are several logical principles that are valid in classical logic but not provable in intuitionistic logic.
- Such axioms include
 - LEM (Law of Excluded Middle): $\varphi \vee \neg\varphi$;
 - DML (De Morgan's Law): $\neg(\varphi \wedge \psi) \rightarrow \neg\varphi \vee \neg\psi$;
 - DNE (Double Negation Elimination): $\neg\neg\varphi \rightarrow \varphi$;
 - WLEM (Weak LEM): $\neg\varphi \vee \neg\neg\varphi$;
 - WDML (Weak DML): $\neg(\neg\varphi \wedge \neg\psi) \rightarrow \neg\neg\varphi \vee \neg\neg\psi$.

A formula φ is called Σ_n^0 if φ is of the form $\exists x_1 \forall x_2 \cdots Q x_n \varphi_{\text{qf}}$, where x_i are number variables. The fragments of the logical principles restricted to Σ_n^0 -formulas have the following hierarchy:

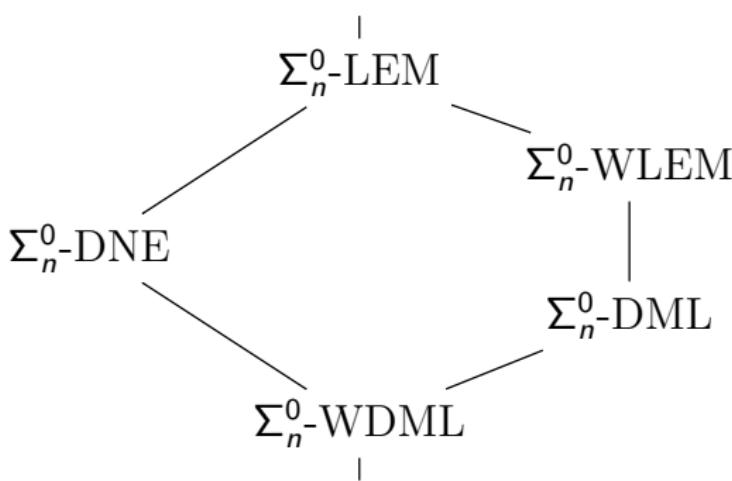
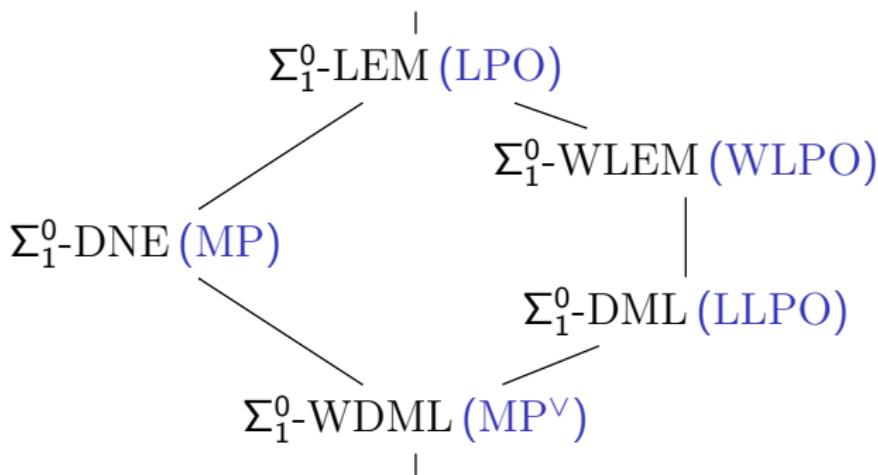


Figure: Arithmetical hierarchy of classical principles over HA + Σ_{n-1}^0 -DNE (Akama et al. 2004, Fujiwara and Kurahashi 2022)

In constructive mathematics, the Σ_1^0 -variants of the logical principles are known as **LPO** (limited principle of omniscience), **LLPO** (lesser limited principle of omniscience), **WLPO** (weak limited principle of omniscience), **MP** (Markov's principle), and **MP^v** (disjunctive Markov's principle) respectively.



They have been a driving force for developing **constructive reverse mathematics**, where we seek to determine axioms that are necessary and sufficient to prove each math. theorem.

- In fact, such logical principles has its roots in Brouwer's intuitionistic mathematics, in which only constructive reasonings are accepted entirely in the proofs.
- In analogy with a "counterexample" which shows a statement is false, Brouwer constructed so-called a "weak counterexample" for some mathematical statements by proving (constructively) that the statement implies LPO/LLPO, which should not be accepted in his intuitionistic standpoint.

Separations

- By proof interpretations with respect to finite-type arithmetic, one can obtain a lot of separation results between the Σ^0_1 -fragments of the logical principles over $\text{HA}^\omega + \text{AC}$.
- However, weak logical principles are sound for all the proof interpretations, and hence, they cannot be separated by those methods.
- A technique on propositional Kripke models, which was invented by Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023, works quite well for separating the logical principles.
- The purpose of this talk is to introduce the idea behind this technique and to present the induced hierarchy of Σ -variants of the logical principles over predicate logic.

Hierarchy as Intermediate Propositional Logics

- Propositional connectives: $\perp, \wedge, \vee, \rightarrow$ ($\neg\varphi := \varphi \rightarrow \perp$)
- In addition to the before-mentioned logical principles, let us consider Δ_1^0 -variant of LEM

$$\text{RLEM} : (\varphi \leftrightarrow \neg\psi) \rightarrow \varphi \vee \neg\varphi$$

and the following variations of linearity axiom:

$$\text{LIN}_1 : (\varphi \rightarrow \psi) \vee (\psi \rightarrow \varphi);$$

$$\text{LIN}_2 : (\varphi \rightarrow \neg\psi) \vee (\neg\psi \rightarrow \varphi).$$

$$\text{LIN}_3 : (\neg\varphi \rightarrow \neg\psi) \vee (\neg\psi \rightarrow \neg\varphi);$$

$$\text{LIN}_4 : (\neg\varphi \rightarrow \neg\neg\psi) \vee (\neg\neg\psi \rightarrow \neg\varphi);$$

$$\text{LIN}_5 : (\neg\neg\varphi \rightarrow \neg\neg\psi) \vee (\neg\neg\psi \rightarrow \neg\neg\varphi);$$

$$\text{LIN}_6 : (\varphi \rightarrow \neg\neg\psi) \vee (\neg\neg\psi \rightarrow \varphi);$$

$$\text{LIN}_7 : (\varphi \rightarrow \psi) \vee (\neg\neg\psi \rightarrow \varphi);$$

$$\text{LIN}_8 : (\neg\neg\varphi \rightarrow \psi) \vee (\neg\neg\psi \rightarrow \varphi).$$

Derivations and Substitutions

A set \mathbf{L} of propositional formulae s.t. $\text{IPC} \subseteq \mathbf{L} \subseteq \text{CPC}$ is called **intermediate propositional logic** if the following hold:

- 1 if $\varphi \rightarrow \psi$ and φ are in \mathbf{L} , then ψ is in \mathbf{L} ;
- 2 if φ is in \mathbf{L} , then any substitution instance of φ is in \mathbf{L} .

Fact. (Hierarchy of Intermediate Propositional Logics)

$$\text{LEM} = \text{DNE} = \text{LIN}_8$$

 \cup

$$\text{LIN}_7$$

 \cup

$$\text{LIN}_1$$

 \cup

$$\begin{aligned} \text{WLEM} &= \text{RLEM} = \text{DML} = \text{WDML} \\ &= \text{LIN}_2 = \text{LIN}_3 = \text{LIN}_4 = \text{LIN}_5 = \text{LIN}_6. \end{aligned}$$

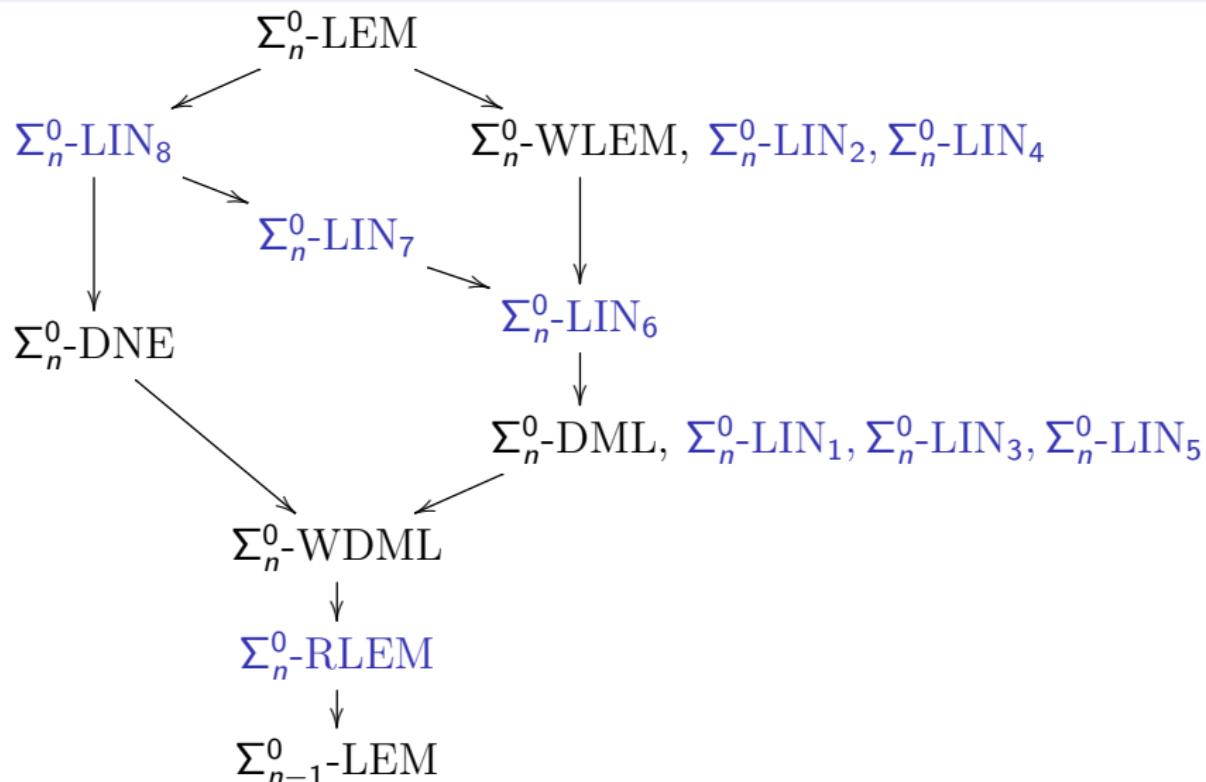
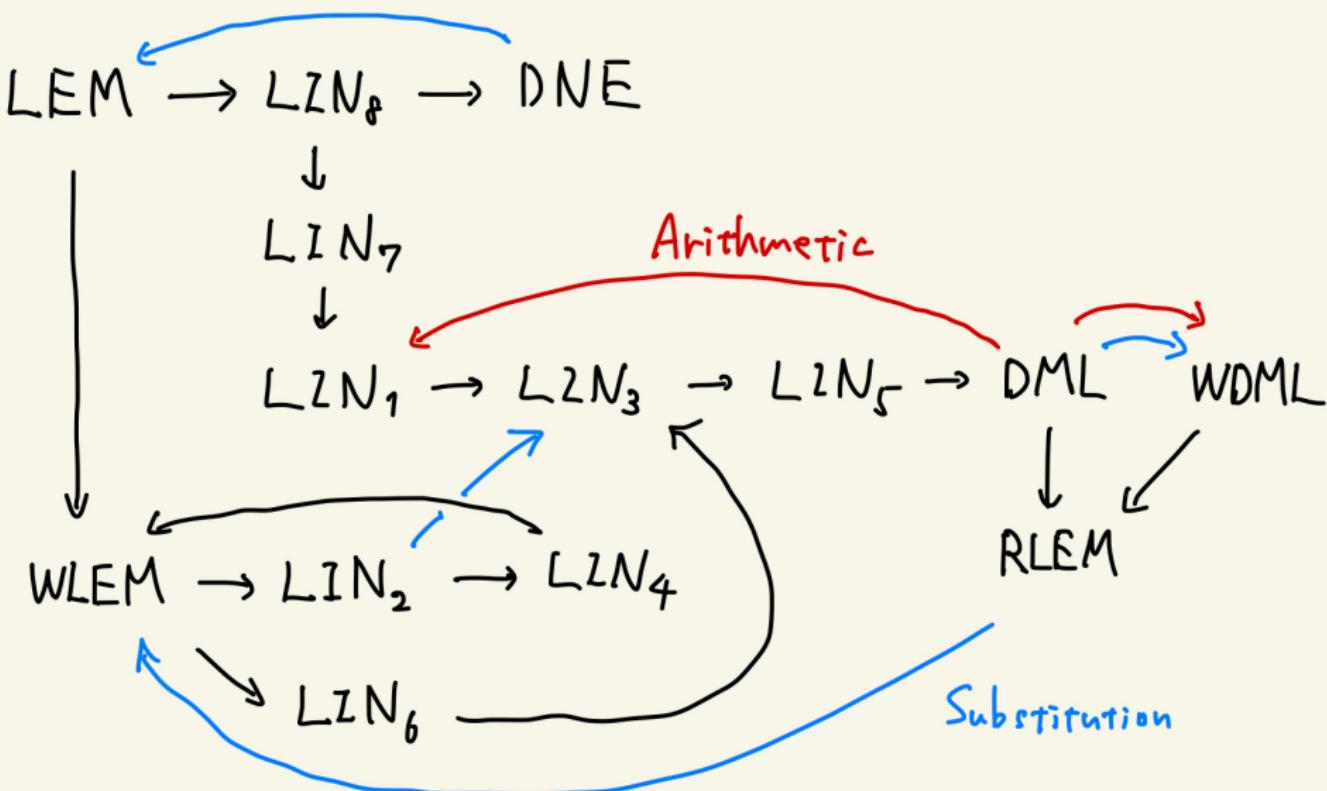
Σ_n^0 -hierarchy over HA + Σ_{n-1}^0 -DNE

Figure: Refined hierarchy of the logical principles over HA + Σ_{n-1}^0 -DNE 9/24

What Happens ?



$$\text{HA} + \Sigma_n^0\text{-DML} + \Sigma_{n-1}^0\text{-DNE} \vdash \Sigma_n^0\text{-LIN}_1.$$

Proof. Fix Σ_n^0 -formulae φ_1 and φ_2 . W.l.o.g, assume $n > 0$. We show $(\varphi_1 \rightarrow \varphi_2) \vee (\varphi_2 \rightarrow \varphi_1)$ within $\text{HA} + \Sigma_n^0\text{-DML} + \Sigma_{n-1}^0\text{-DNE}$. Let φ_1 and φ_2 be $\exists x\varphi'_1(x)$ and $\exists x\varphi'_2(x)$ where $\varphi'_1(x)$ and $\varphi'_2(x)$ are Π_{n-1}^0 -formulae respectively. Consider the following formulae:

$$\begin{aligned}\psi_1(x) &\equiv \varphi'_1(x) \wedge \forall y \leq x \neg \varphi'_2(y); \\ \psi_2(x) &\equiv \varphi'_2(x) \wedge \forall y \leq x \neg \varphi'_1(y).\end{aligned}$$

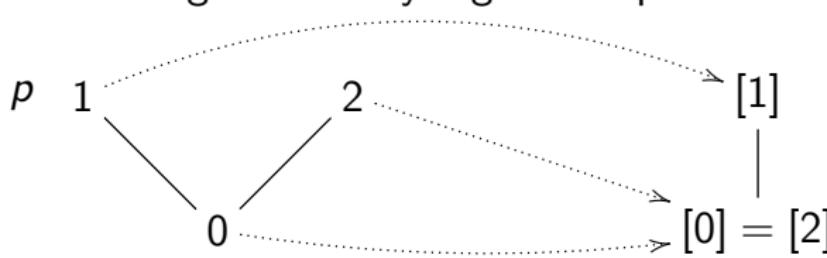
Then we have $\text{HA} \vdash \neg(\exists x\psi_1(x) \wedge \exists x\psi_2(x))$ trivially. Since $\neg \varphi'_2(y)$ and $\neg \varphi'_1(y)$ are equivalent to some Σ_{n-1}^0 -formulae respectively in the presence of $\Sigma_{n-1}^0\text{-DNE}$, we have that $\forall y \leq x \neg \varphi'_2(y)$ and $\forall y \leq x \neg \varphi'_1(y)$ are equivalent to some Σ_{n-1}^0 -formulae respectively. Therefore we have that $\exists x\psi_1(x)$ and $\exists x\psi_2(x)$ are equivalent to some Σ_n^0 -formulae respectively in our theory. Applying $\Sigma_n^0\text{-DML}$, we have $\neg \exists x\psi_1(x) \vee \neg \exists x\psi_2(x)$. In the former case, if $\varphi'_1(x)$, then we have $\neg \forall y \leq x \neg \varphi'_2(y)$, equivalently, $\neg \neg \exists y \leq x \varphi'_2(y)$. Then we have $\exists y \leq x \varphi'_2(y)$ by using $\Sigma_{n-1}^0\text{-DML}$ and $\Sigma_{n-2}\text{-DNE}$. Thus we have shown $\exists x\varphi'_1(x) \rightarrow \exists x\varphi'_2(x)$. In the latter case, we have $\exists x\varphi'_2(x) \rightarrow \exists x\varphi'_1(x)$ similarly. □

Meta-theorem 1. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \nVdash \varphi$, then for all n ,

$$\text{HA} + \Sigma_{n-1}^0\text{-LEM} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \Vdash \Sigma_n^0\varphi.$$

A crucial idea underlying this meta-theorem is to restrict possible evaluations on the Kripke frame by using the **extended frame** generated by a given Kripke model.


 \mathcal{K}_1
 $(I_{\mathcal{K}_1}, \leq_{\mathcal{K}_1})$

$[k] := \{k' \in K_1 \mid k \in U \leftrightarrow k' \in U \text{ for any evaluation set } U \text{ of } \mathcal{K}_1\}$. 12 / 24

Definition (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

An extended frame $\mathcal{E} = ((K, \leq), f, (I, \leq_I))$ is a triple of frames (K, \leq) and (I, \leq_I) , and a monotone mapping f between them, that is, $k \leq k'$ implies $f(k) \leq_I f(k')$ for each $k, k' \in K$.

- Each IPC-Kripke model $\mathcal{I} = (I, \leq_I, \Vdash)$ induces an IPC-Kripke model $\mathcal{K}_{\mathcal{E}, \mathcal{I}} = (K, \leq, \Vdash_{\mathcal{E}, \mathcal{I}})$ by defining

$$k \Vdash_{\mathcal{E}, \mathcal{I}} p : \Leftrightarrow f(k) \Vdash p$$

for each $k \in K$ and propositional variable p .

- A propositional formula φ is valid on \mathcal{E} if $\mathcal{K}_{\mathcal{E}, \mathcal{I}} \Vdash_{\mathcal{E}, \mathcal{I}} \varphi$ for each IPC-Kripke model $\mathcal{I} = (I, \leq_I, \Vdash)$, that is, for each valuation \Vdash on (I, \leq_I) ; we then write $\mathcal{E} \models \varphi$.
- For an extended frame \mathcal{E} , define $T(\mathcal{E}) := \{\varphi \mid \mathcal{E} \models \varphi\}$.

Remark

- For a frame (K, \leq) , the set

$$L(K, \leq) = \{\varphi \mid (K, \leq) \models \varphi\}$$

of propositional formulae is an intermediate propositional logic.

- In contrast, for an extended frame \mathcal{E} , $T(\mathcal{E})$ is not an intermediate propositional logic in general. In particular, $T(\mathcal{E})$ may not be closed under substitution.

- Let $\mathcal{K} = (K, \leq, \Vdash)$ be an IPC-Kripke model, and define a set $\Phi_{\mathcal{K}}$ of upward closed subsets of K by

$$\Phi_{\mathcal{K}} := \{\{k \in K \mid k \Vdash p\} \mid p \in \mathcal{V}\}.$$

- Define binary relations $\preceq_{\mathcal{K}}$ and $\sim_{\mathcal{K}}$ on K by

$k \preceq_{\mathcal{K}} k' \Leftrightarrow k \in U \text{ implies } k' \in U \text{ for all } U \in \Phi_{\mathcal{K}},$

$k \sim_{\mathcal{K}} k' \Leftrightarrow k \preceq_{\mathcal{K}} k' \text{ and } k' \preceq_{\mathcal{K}} k.$

Then $\preceq_{\mathcal{K}}$ is a preorder and $\sim_{\mathcal{K}}$ is an equivalence relation on K .

- Let $I_{\mathcal{K}} := K / \sim_{\mathcal{K}}$, $[k] \leq_{\mathcal{K}} [k'] \Leftrightarrow k \preceq_{\mathcal{K}} k'$, and $f_{\mathcal{K}}(k) := [k]$, where $[k]$ is the equivalence class of k with respect to $\sim_{\mathcal{K}}$.

Then $\mathcal{E}_{\mathcal{K}} := ((K, \leq), f_{\mathcal{K}}, (I_{\mathcal{K}}, \leq_{\mathcal{K}}))$ is an extended frame, and we call it the extended frame **generated by** the IPC-Kripke **model** \mathcal{K} .

Definition

- For a propositional formula $\varphi[p_1, \dots, p_m]$, $\Sigma_n^0\text{-}\varphi$ denotes a schema $\varphi[\chi_1/p_1, \dots, \chi_m/p_m]$, where χ_1, \dots, χ_m are Σ_n^0 -formulae of HA, and $\Sigma\text{-}\varphi$ denotes the following schema of HA :

$$\begin{aligned} & \forall x(\psi_1(x) \vee \neg\psi_1(x)) \wedge \dots \wedge \forall x(\psi_m(x) \vee \neg\psi_m(x)) \\ & \rightarrow \varphi[\exists x\psi_1(x)/p_1, \dots, \exists x\psi_m(x)/p_m]. \end{aligned}$$

- For an extended frame \mathcal{E} , $\Sigma\text{-}T(\mathcal{E})$ is the schema (of HA) consisting of $\Sigma\text{-}\varphi$ where $\varphi \in T(\mathcal{E})$.
- For $k \in K$, let $\uparrow k$ denote $\{k' \in K \mid k \leq k'\}$.
- An extended frame \mathcal{E} is **locally directed** if $f^{-1}(\uparrow i) \cap \uparrow k$ is directed for all $i \in I$ and $k \in K$, that is, for each $i \in I$ and $k \in K$, if $l, l' \in f^{-1}(\uparrow i) \cap \uparrow k$, then there exists $l'' \in f^{-1}(\uparrow i) \cap \uparrow k$ such that $l'' \leq l$ and $l'' \leq l'$.

Meta-theorem 1. (revisited)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \not\Vdash \varphi$, then for all n ,

$$\text{HA} + \Sigma_{n-1}^0\text{-LEM} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \Vdash \Sigma_n^0\varphi,$$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \dots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \dots, p_m] \in L(K, \leq)$.

Meta-theorem 1. (revisited)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \not\Vdash \varphi$, then for all n ,

$$\text{HA} + \Sigma_{n-1}^0\text{-LEM} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \Vdash \Sigma_n^0\varphi,$$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \dots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \dots, p_m] \in L(K, \leq)$.

Corollary. (De Jongh's theorem)

If $\varphi[p_1, \dots, p_m] \notin \text{IPC}$, then $\text{HA} \not\Vdash \varphi[\chi_1/p_1, \dots, \chi_m/p_m]$ for some Σ_1^0 -formulae χ_1, \dots, χ_m of HA.

Meta-theorem 1. (revisited)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \Vdash \varphi$, then for all n ,

$$\text{HA} + \Sigma_{n-1}^0\text{-LEM} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \Vdash \Sigma_n^0\varphi,$$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \dots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \dots, p_m] \in L(K, \leq)$.

Corollary. (De Jongh's theorem)

If $\varphi[p_1, \dots, p_m] \notin \text{IPC}$, then $\text{HA} \not\vdash \varphi[\chi_1/p_1, \dots, \chi_m/p_m]$ for some Σ_1^0 -formulae χ_1, \dots, χ_m of HA.

Observation.

The Σ_n^0 -substitution instances of our logical principles can be separated uniformly by the technique.

Σ -hierarchy over IQC

- Recall that $\Sigma\text{-}\varphi$ denotes the following schema:

$$\begin{aligned} & \forall x(\psi_1(x) \vee \neg\psi_1(x)) \wedge \dots \wedge \forall x(\psi_m(x) \vee \neg\psi_m(x)) \\ & \rightarrow \varphi[\exists x\psi_1(x)/p_1, \dots, \exists x\psi_m(x)/p_m]. \end{aligned}$$

- In the presence of

$$\text{AC}^{0,0} : \forall x \exists y \psi(x, y) \rightarrow \exists f \forall x \psi(x, f(x)),$$

$\Sigma\text{-}\varphi$ is equivalent to $\Sigma_n^0\text{-}\varphi$ with function parameters for all natural number n .

- The principle $\text{AC}^{0,0}$ is constructively acceptable (e.g., in the Martin-Löf type theory).
- On the other hand, $\Sigma\text{-}\varphi$ is strictly stronger than $\Sigma_n^0\text{-}\varphi$ in the context of HA (without function parameters).
For example, $\text{HA} + \Sigma_n^0\text{-DNE}$ does not prove

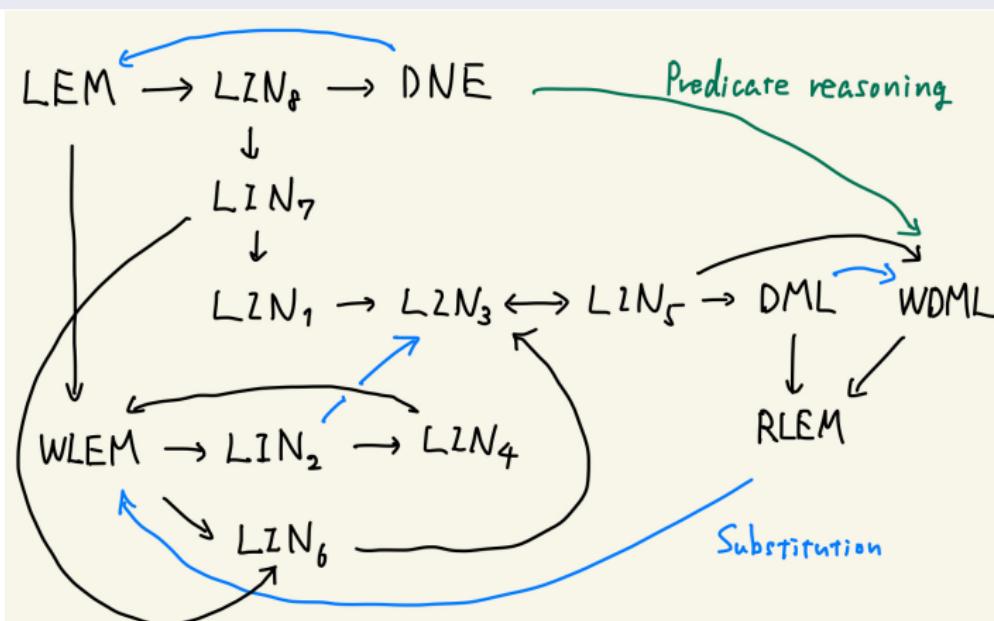
$$\forall x(\psi(x) \vee \neg\psi(x)) \rightarrow (\neg\neg \exists x \psi(x) \rightarrow \exists x \psi(x)).$$

Remark.

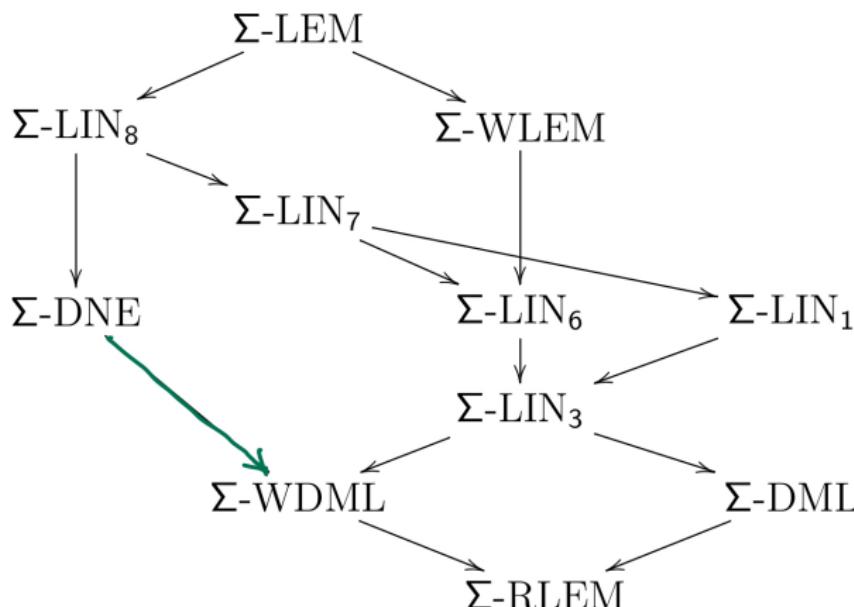
For each logical principles φ_1 and φ_2 , we have

$$\varphi_1 \rightarrow_{IPC} \varphi_2 \implies \Sigma\text{-}\varphi_1 \rightarrow_{IQC} \Sigma\text{-}\varphi_2 \implies \Sigma\text{-}\varphi_1 \rightarrow_{HA} \Sigma\text{-}\varphi_2,$$

while the converse of the latter implication is not always the case.



Σ -hierarchy over IQC



Remark.

No implication hold whenever it does not follow by transitivity from the displayed implications.

All the separations of our Σ -variants can be established by using the following meta-theorem:

Meta-theorem 2. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \Vdash \varphi$, then

$$\text{IQC} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma\text{-}\varphi,$$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \dots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \dots, p_m] \in L(K, \leq)$.

All the separations of our Σ -variants can be established by using the following meta-theorem:

Meta-theorem 2. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \Vdash \varphi$, then

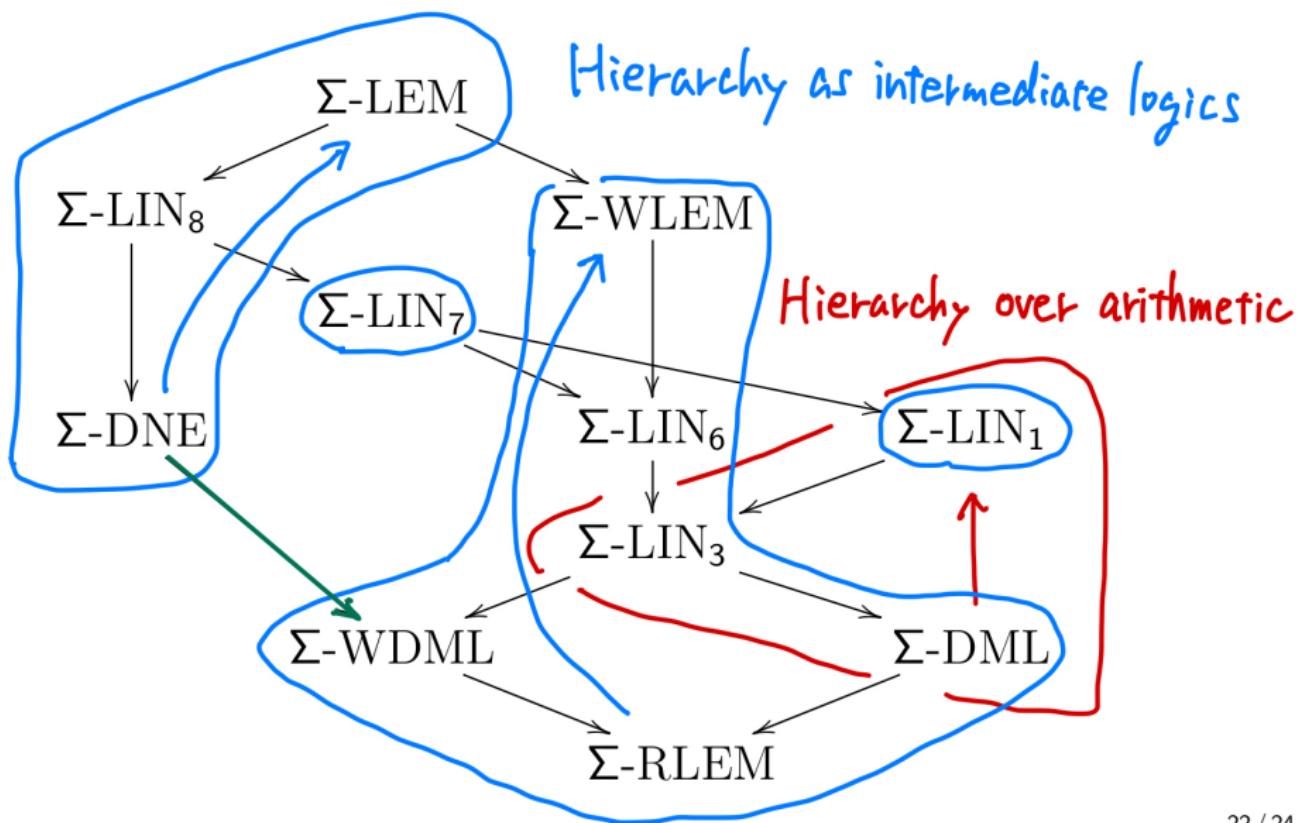
$$\text{IQC} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma\text{-}\varphi,$$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \dots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \dots, p_m] \in L(K, \leq)$.

Meta-theorem 1. (revisited)

Let $\mathcal{K} = (K, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \Vdash \varphi$, then for all n ,

$$\text{HA} + \Sigma_{n-1}^0\text{-LEM} + L(K, \leq)^* + \Sigma\text{-T}(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma_n^0\text{-}\varphi.$$

From the Viewpoint of the Σ -hierarchy

Possible Future Works

- 1 Exploring the relation between propositional intermediate theories and first-order intermediate logics obtained by the Σ -variants of the logical principles (Ongoing with Tenyo Takahashi).
- 2 Exploring the hierarchy of the logical principles in the framework of type theories (modern framework of constructive mathematics).
- 3 Inventing a solver for the separation of the logical principles by using propositional Kripke models (of the form of a finite tree).

References

- 1 Y. Akama, S. Berardi, S. Hayashi and U. Kohlenbach, An arithmetical hierarchy of the law of excluded middle and related principles, LICS'04, pp. 192–201, IEEE Press, 2004.
- 2 M. Fujiwara and T. Kurahashi, Refining the arithmetical hierarchy of classical principles, Mathematical Logic Quarterly, 68(3), 318–345, 2022.
- 3 M. Fujiwara, Δ_1^0 variants of the law of excluded middle and related principles, Arch. Math. Logic, vol. 61, issue 7-8, pp. 1113–1127, 2022.
- 4 M. Fujiwara, H. Ishihara, T. Nemoto, N-Y. Suzuki and K. Yokoyama, Extended frames and separations of logical principles, Bull. Symb. Log. 29(3), 311–353, 2023.
- 5 M. Fujiwara, On the hierarchy of linearity axioms, Arch. Math. Logic, to appear.
- 6 M. Fujiwara, Note on the Σ_1^0 -fragments of the Kreisel-Putnam axiom and two asymmetric linearity axioms in intuitionistic arithmetic and analysis, preprint, 2025.