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Arithmetical Hierarchy of Logical Principles

There are several logical principles that are valid in
classical logic but not provable in intuitionistic logic.

Such axioms include
LEM (Law of Excluded Middle): φ ∨ ¬φ;
DML (De Morgan’s Law): ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ;
DNE (Double Negation Elimination): ¬¬φ→ φ;
WLEM (Weak LEM): ¬φ ∨ ¬¬φ;
WDML (Weak DML): ¬(¬φ ∧ ¬ψ) → ¬¬φ ∨ ¬¬ψ.
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A formula φ is called Σ0
n if φ is of the form ∃x1∀x2 · · ·Qxnφqf ,

where xi are number variables. The fragments of the logical
principles restricted to Σ0

n-formulas have the following
hierarchy:

Σ0
n-WDML

Σ0
n-DNE

Σ0
n-WLEM

Σ0
n-DML

Σ0
n-LEM

Figure: Arithmetical hierarchy of classical principles over

HA + Σ0
n−1-DNE (Akama et al. 2004, Fujiwara and Kurahashi 2022)
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In constructive mathematics, the Σ0
1-variants of the logical

principles are known as LPO (limited principle of omniscience),
LLPO (lesser limited principle of omniscience), WLPO (weak
limited principle of omniscience), MP (Markov’s principle),
and MP∨ (disjunctive Markov’s principle) respectively.

Σ0
1-WDML (MP∨)

Σ0
1-DNE (MP)

Σ0
1-WLEM (WLPO)

Σ0
1-DML (LLPO)

Σ0
1-LEM (LPO)

They have been a driving force for developing constructive
reverse mathematics, where we seek to determine axioms that
are necessary and sufficient to prove each math. theorem.
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In fact, such logical principles has its roots in Brouwer’s
intuitionistic mathematics, in which only constructive
reasonings are accepted entirely in the proofs.

In analogy with a “counterexample” which shows a
statement is false, Brouwer constructed so-called a
“ weak counterexample” for some mathematical
statements by proving (constructively) that the statement
implies LPO/LLPO, which should not be accepted in his
intuitionistic standpoint.
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Separations

By proof interpretations with respect to finite-type
arithmetic, one can obtain a lot of separation results
between the Σ0

1-fragments of the logical principles over
HAω + AC.

However, weak logical principles are sound for all the
proof interpretations, and hence, they cannot be
separated by those methods.

A technique on propositional Kripke models, which was
invented by Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023,
works quite well for separating the logical principles.

The purpose of this talk is to introduce the idea behind
this technique and to present the induced hierarchy of
Σ-variants of the logical principles over predicate logic.
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Hierarchy as Intermediate Propositional Logics
Propositional connectives: ⊥,∧,∨,→ (¬φ := φ→ ⊥)
In addition to the before-mentioned logical principles, let
us consider ∆0

1-variant of LEM

RLEM : (φ↔ ¬ψ) → φ ∨ ¬φ
and the following variations of linearity axiom:

LIN1 : (φ→ ψ) ∨ (ψ → φ);

LIN2 : (φ→ ¬ψ) ∨ (¬ψ → φ).

LIN3 : (¬φ→ ¬ψ) ∨ (¬ψ → ¬φ);
LIN4 : (¬φ→ ¬¬ψ) ∨ (¬¬ψ → ¬φ);
LIN5 : (¬¬φ→ ¬¬ψ) ∨ (¬¬ψ → ¬¬φ);
LIN6 : (φ→ ¬¬ψ) ∨ (¬¬ψ → φ);

LIN7 : (φ→ ψ) ∨ (¬¬ψ → φ);

LIN8 : (¬¬φ→ ψ) ∨ (¬¬ψ → φ). 7 / 24
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Derivations and Substitutions

A set L of propositional formulae s.t. IPC ⊆ L ⊆ CPC is called
intermediate propositional logic if the following hold:

1 if φ→ ψ and φ are in L, then ψ is in L;
2 if φ is in L, then any substitution instance of φ is in L.

Fact. (Hierarchy of Intermediate Propositional Logics)

LEM = DNE = LIN8

∪
LIN7

∪
LIN1

∪
WLEM = RLEM = DML = WDML

= LIN2 = LIN3 = LIN4 = LIN5 = LIN6.
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Figure: Refined hierarchy of the logical principles over HA + Σ0
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What Happens ?
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HA + Σ0
n-DML + Σ0

n−1-DNE ⊢ Σ0
n-LIN1.

Proof. Fix Σ0
n-formulae φ1 and φ2. W.l.o.g, assume n > 0. We show

(φ1 → φ2)∨ (φ2 → φ1) within HA+Σ0
n-DML+Σ0

n−1-DNE. Let φ1 and
φ2 be ∃xφ′

1(x) and ∃xφ′
2(x) where φ

′
1(x) and φ

′
2(x) are Π0

n−1-formulae
respectively. Consider the following formulae:

ψ1(x) ≡ φ′
1(x) ∧ ∀y ≤ x¬φ′

2(y);
ψ2(x) ≡ φ′

2(x) ∧ ∀y ≤ x¬φ′
1(y).

Then we have HA ⊢ ¬(∃xψ1(x) ∧ ∃xψ2(x)) trivially. Since ¬φ′
2(y) and

¬φ′
1(y) are equivalent to some Σ0

n−1-formulae respectively in the presence

of Σ0
n−1-DNE, we have that∀y ≤ x¬φ′

2(y) and ∀y ≤ x¬φ′
1(y) are

equivalent to some Σ0
n−1-formulae respectively. Therefore we have that

∃xψ1(x) and ∃xψ2(x) are equivalent to some Σ0
n-formulae respectively in

our theory. Applying Σ0
n-DML, we have ¬∃xψ1(x) ∨ ¬∃xψ2(x). In the

former case, if φ′
1(x), then we have ¬∀y ≤ x¬φ′

2(y), equivalently,

¬¬∃y ≤ xφ′
2(y). Then we have ∃y ≤ xφ′

2(y) by using Σ0
n−1-DML and

Σn−2-DNE. Thus we have shown ∃xφ′
1(x) → ∃xφ′

2(x). In the latter

case, we have ∃xφ′
2(x) → ∃xφ′

1(x) similarly.
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Meta-theorem 1. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let K = (K ,≤,⊩) be a finite IPC-Kripke model s.t. the
induced frame (IK,≤K) is a rooted tree and the induced
extended frame EK is locally directed. If K ̸⊩ φ, then for all n,

HA + Σ0
n−1-LEM+ L(K ,≤)∗ + Σ-T (EK) ̸⊢ Σ0

n-φ.

A crucial idea underlying this meta-theorem is to restrict
possible evaluations on the Kripke frame by using the
extended frame generated by a given Kripke model.

K1

0

1 2

(IK1 ,≤K1)

[0] = [2]

[1]

11

))

**

p

[k] := {k ′ ∈ K1 | k ∈ U ↔ k ′ ∈ U for any evaluation set U of K1}. 12 / 24
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Definition (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

An extended frame E = ((K ,≤), f , (I ,≤I )) is a triple of frames
(K ,≤) and (I ,≤I ), and a monotone mapping f between them,
that is, k ≤ k ′ implies f (k) ≤I f (k

′) for each k , k ′ ∈ K .

Each IPC-Kripke model I = (I ,≤I ,⊩) induces an
IPC-Kripke model KE,I = (K ,≤,⊩E,I) by defining

k ⊩E,I p :⇔ f (k) ⊩ p

for each k ∈ K and propositional variable p.

A propositional formula φ is valid on E if KE,I ⊩E,I φ for
each IPC-Kripke model I = (I ,≤I ,⊩), that is, for each
valuation ⊩ on (I ,≤I ); we then write E |= φ.

For an extended frame E , define T (E) := {φ | E |= φ}.
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Remark

For a frame (K ,≤), the set

L(K ,≤) = {φ | (K ,≤) |= φ}

of propositional formulae is an intermediate propositional
logic.

In contrast, for an extended frame E , T (E) is not an
intermediate propositional logic in general. In particular,
T (E) may not be closed under substitution.
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Let K = (K ,≤,⊩) be an IPC-Kripke model, and define a
set ΦK of upward closed subsets of K by

ΦK := {{k ∈ K | k ⊩ p} | p ∈ V}.

Define binary relations ⪯K and ∼K on K by

k ⪯K k ′ :⇔ k ∈ U implies k ′ ∈ U for all U ∈ ΦK,

k ∼K k ′ :⇔ k ⪯K k ′ and k ′ ⪯K k .

Then ⪯K is a preorder and ∼K is an equivalence relation
on K .

Let IK := K/ ∼K, [k] ≤K [k ′] :⇔ k ⪯K k ′, and
fK(k) := [k], where [k] is the equivalence class of k with
respect to ∼K.
Then EK := ((K ,≤), fK, (IK,≤K)) is an extended frame,
and we call it the extended frame generated by the
IPC-Kripke model K.
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Definition

For a propositional formula φ[p1, . . . , pm], Σ
0
n-φ denotes a

schema φ[χ1/p1, . . . , χm/pm], where χ1, . . . , χm are
Σ0

n-formulae of HA, and Σ-φ denotes the following
schema of HA :

∀x(ψ1(x) ∨ ¬ψ1(x)) ∧ . . . ∧ ∀x(ψm(x) ∨ ¬ψm(x))

→φ[∃xψ1(x)/p1, . . . , ∃xψm(x)/pm].

For an extended frame E , Σ-T (E) is the schema (of HA)
consisting of Σ-φ where φ ∈ T (E).
For k ∈ K , let ↑ k denote {k ′ ∈ K | k ≤ k ′}.
An extended frame E is locally directed if f −1(↑ i) ∩ ↑ k is
directed for all i ∈ I and k ∈ K , that is, for each i ∈ I
and k ∈ K , if l , l ′ ∈ f −1(↑ i) ∩ ↑ k , then there exists
l ′′ ∈ f −1(↑ i) ∩ ↑ k such that l ′′ ≤ l and l ′′ ≤ l ′.
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Meta-theorem 1. (revisited)

Let K = (K ,≤,⊩) be a finite IPC-Kripke model s.t. the
induced frame (IK,≤K) is a rooted tree and the induced
extended frame EK is locally directed. If K ̸⊩ φ, then for all n,

HA + Σ0
n−1-LEM+ L(K ,≤)∗ + Σ-T (EK) ̸⊢ Σ0

n-φ,

where L(K ,≤)∗ is the set of schemata of φ[ψ1/p1, . . . , ψm/pm]
for propositional formulae φ[p1, . . . , pm] ∈ L(K ,≤).

Corollary. (De Jongh’s theorem)

If φ[p1 . . . , pm] /∈ IPC, then HA ⊬ φ[χ1/p1, . . . , χm/pm] for
some Σ0

1-formulae χ1, . . . , χm of HA.

Observation.

The Σ0
n-substitution instances of our logical principles can be

separated uniformly by the technique.
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Σ-hierarchy over IQC

Recall that Σ-φ denotes the following schema:

∀x(ψ1(x) ∨ ¬ψ1(x)) ∧ . . . ∧ ∀x(ψm(x) ∨ ¬ψm(x))

→φ[∃xψ1(x)/p1, . . . , ∃xψm(x)/pm].

In the presence of

AC0,0 : ∀x∃yψ(x , y) → ∃f ∀xψ(x , f (x)),
Σ-φ is equivalent to Σ0

n-φ with function parameters for all
natural number n.
The principle AC0,0 is constructively acceptable (e.g., in
the Martin-Löf type theory).
On the other hand, Σ-φ is strictly stronger than Σ0

n-φ in
the context of HA (without function parameters).
For example, HA + Σ0

n-DNE does not prove

∀x(ψ(x) ∨ ¬ψ(x)) → (¬¬∃xψ(x) → ∃xψ(x)).
18 / 24
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Remark.

For each logical principles φ1 and φ2, we have

φ1 →IPC φ2 =⇒ Σ-φ1 →IQC Σ-φ2 =⇒ Σ-φ1 →HA Σ-φ2,

while the converse of the latter implication is not always the case.
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Σ-hierarchy over IQC

Remark.

No implication hold whenever it does not follow by transitivity
from the displayed implications.
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All the separations of our Σ-variants can be established by
using the following meta-theorem:

Meta-theorem 2. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let K = (K ,≤,⊩) be a finite IPC-Kripke model s.t. the
induced extended frame EK is locally directed. If K ̸⊩ φ, then

IQC + L(K ,≤)∗ + Σ-T (EK) ̸⊢ Σ-φ,

where L(K ,≤)∗ is the set of schemata of φ[ψ1/p1, . . . , ψm/pm]
for propositional formulae φ[p1, . . . , pm] ∈ L(K ,≤).

Meta-theorem 1. (revisited)

Let K = (K ,≤,⊩) be a finite IPC-Kripke model s.t. the
induced frame (IK,≤K) is a rooted tree and the induced
extended frame EK is locally directed. If K ̸⊩ φ, then for all n,

HA + Σ0
n−1-LEM+ L(K ,≤)∗ + Σ-T (EK) ̸⊢ Σ0

n-φ.
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From the Viewpoint of the Σ-hierarchy
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Possible Future Works

1 Exploring the relation between propositional intermediate
theories and first-order intermediate logics obtained by
the Σ-variants of the logical principles (Ongoing with
Tenyo Takahashi).

2 Exploring the hierarchy of the logical principles in the
framework of type theories (modern framework of
constructive mathematics).

3 Inventing a solver for the separation of the logical
principles by using propositional Kripke models (of the
form of a finite tree).
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