Canonical Representations of Surface Groups

Daniel Litt
University of Georgia/
University of Toronto
Tune 10, 2022

Canonical Representations of surface groups

jt. v/Aaron Landesman

1) Goal: classify alg. sol'ns to isomonodromy diff'l egns

Alg. sol'ns to

R. Fuche

R. (IP'\{\{\frac{4}{24} \ pts\}\}) → SL_2(C)

R. Fuche

R.

Ezn: orientable surface of genus q w/
n punctures

Mod_{g,n} = π_0 (Homeo+ $(\leq_{g,n})$) = π_1 ($M_{g,n}$) = mapping class gp of $\leq_{g,n}$.

 $Mod_{g,n} \rightarrow Out(\pi_i(\mathcal{E}_{g,n}))$ Modgin a Hom(TillEgin), GLr(C))/ Goal: Classify finite orbits -"couris repris of TEgin) Painleur VI ~ 9:0 ~=2

"Canonical" b/c reps construct w/out nekry choices have finite crist.

 $\underline{E_{x}}$ (n=0) $\pi_{1}(\xi_{3}) = \langle a_{1},b_{1},...,a_{s},b_{g}| T([a_{i},b_{i}]=1)$ Canonical \Leftrightarrow finite orbit under Out $(\pi_{1}(\xi_{i}))$

2) Examples

(1) Reps TilEgin) -> Glr(C) w/ finite image

(2) Rigid local systems (genus O (3) $\pi_i(\xi_{g,n}) \leq Mod(\xi_{g,n}, *)^{*} \pi_i(M_{g,n-i})$ C = finite indexGiven p: Г → GLr(C), Placegin) is cononical. (i) TQFT techniques (ii) AG techniques $\chi \xrightarrow{\pi} M_{g,nil}$ sm. proper Rin. C gives rep as desired Kodaira-Parshin trick: $\pi^{-1}([C,x_1,...,x_m])=disjoint$ (iii) Group theory techniques

3) History:

(i) Painle vé VI: algebraic solns
found by Hitchin, Dubrain-Mazzocco,
Doran, Boalch, ...
Classification completed by LisovyyTychyy

(ii) Q (Whong, Kish)

For $q \gg r$, do all commical repins $\pi_1(\Sigma_{g,n}) \rightarrow GLr(C)$ howe finite inequ?

(Biswas, Gupta, Mj, Whang + Cousin-Hen) Yes for r=2.

Then all canonical reprise $T_{i}(\mathcal{E}_{g,n}) \rightarrow GL_{r}(\mathcal{C})$ have finite image.

Q. How shorp is the bound? (Cannot be improved beyond 2gell)

What about in the semisimple case?

4) Sketch of proof

Inputs: (Non-abelian+mixed) Hodge theory
+ E Langlands

(i) $p: \pi_i(\mathcal{E}_{g,u}) \longrightarrow GL_r(\mathcal{C})$ $\{\{\}\}\} \in C$ Canonical, irreducible X

local system by on universal curve $\pi: \mathbb{C} \to X$ over étale cover X of $M_{g,n}$. Unitary: (ii) punitary => Vp cohonologically (*)
case din pe squi Pfidea Enough to show H'(C, ad V,)=H'(X, R'\(\pi\) ad V,p)=O. underlies a C-PVHS + Analysis of period map. 13 (iii) Cohomologia) rigility + quasi-unipolent monodrumy et so Esmanlt-Groechenics
Kloudel-Patrikis unitary p defined on OR for some (iv) Enough to show that for each $c: \mathcal{O}_{\mathsf{K}} \hookrightarrow \mathbb{C}$

Irreducible (V) p irreducible, din p < 5g+1 NAHT: Wp deformation equivalent to C-PVHS V'm & has drik mondruny by [Landesman-L-] ⇒ W' rigid General (vi) pss cononical => pss has Fxti(p, p) = 0

Follows from analysis of period maps as betwee 3

5) Questions

(1) New examples of canonical reprins?

J. M. J. Jan. Jr. year

(2) Classification in general: for g>2, are all C-Rieman such such commical repins

A quars in of geometric origin??

PERTLE []

(3) Are all irreps of Madgin, g>2, rigid?

Why believe (3)? Analogy blu Modgn and SLr(Z) for ~>2.

Konk Moden admik von-seni-ruph ryns bene admik vor-riget regins

Conj (Putman-Wieland) Eg,n surface $\pi_{i}(\Sigma_{gn}) \longrightarrow H$ $\Sigma_{g'} \longrightarrow \Sigma_{g} \text{ ramified our } n \text{ pts}$ $\Gamma_{s} \in Mod_{s,n} \qquad \Gamma = H_{i}(\Sigma_{g'})$ The second of the Hills

If g > 2, no non-zero elt of H1 (Egi)
has finite a bit under [.

Thm (Landernen-L-) True if g> \(\pi \).

Idea: C \(\mathrew{V} \) p: H-Glr (C)

In

Man

Thm If dampeg, then H°(Mg,n.R'n.116)=
Pfiler (1) By theoren of the
fixed prt, non-zer > constant

sub-VHS & R'T. W.J.

(2) (Assure N=O, C Rienann subtre of genuss, Ep be stable vector bendle on C associated to p)

Derivative of priod up:

H(EOW) O H(EOW) - H(WO)

HO(EOW) -> Hen(HO(ELOW), HO(CNOS))

=> map his non-zero keenal

=> E'en not gen doh. genected

Simpossilb if wh E < g hx

Clifferd floory for v.s.'s.