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Motivation and Main Questions
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Painlevé Equation and Isomonodromy Property

@ The first Painlevé equation (with 7):

d’q dq OH dp OH
C W — =6q" +1 i
B az T e M T T ap

where the Hamiltonian H is given by

2
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@ Painlevé property: all movable singular points must be poles.

@ Description as isomonodromic deformation (integrablity):
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» x = g is an “apparent” singular point.
» Stokes multipliers around x = oo are r-independent if ¢ satisfies P;.



Laurent Seriers Solution and Painlevé Test
@ For any «a € C, there exists a Laurent series solution of P;:

B
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q(t) =

» (3 : arbitrary parameter.

» This converges on a punctured disc around 7 = a.
~» 2-parameter family of Laurent series solutions.

We say that P; passes the “Painlevé test”.

@ Near the movable pole «, the r-function defined by
d
hza logt=H
behaves as follows:
=i+ La-w+). 1o
> Well-known similarity between Painlevé transcendents and elliptic functions:
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Singularity Reduction (From Painlevé to Heun)
@ The previous Laurent expansion of ¢ leads
hz h3 h2
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@ Although ¢, p and H diverge as t — «, the Schrédinger potential Q has a finite limit!
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[lts—Novokshenov 86], [Masoero 10], ...

> The resulting equation is called reduced tri-confluent Heun equation.
» The parameter g is called accessory parameter (AP).

@ We call the limiting procedure (restriction of isomonodromic linear ODE to the
movable pole) as singularity reduction, following [Dubrovin—Kapaev 12].

The singularity reduction also exists for the isomonodromic linear ODEs associated
with other Painlevé equations Pyy,..., Pyi.



Main Questions
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Question 1

Does the singularity reduction also exists in higher order analogue of Painlevé equations?
(C.f., [Kawakami—Nakamura—Sakai 12], [Kawakami 17])

@ [Dubrovin—Kapaev 12] studied one example, and found an ODE which describes
isomonodromic deformation but does not have Painlevé property.

Question 2 (Not today)

Can we describe a relation between (@, 8) and Stokes multipliers?
In particular, can we reproduce the AP? (Riemann—Hilbert problem)

@ Exact WKB method ([Voros 83]) allows us to describe the Stokes multipliers
by the Voros periods (VP) on the classical limit y> = 4x> + 2ax + 2.

So, the above question is related to: Can we reproduce the AP from VP?

@ Relation to classical irregular conformal blocks?

Zamolodchikov-type conjecture is studied in [Lisovyy—Naidiuk 21]
in the presence of irregular singular points.
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Result 1

Singularity Reduction of
some Degenerate Garnier Systems
(4th Order Painlevé Equations)
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Confluence Diagram of Garnier Systems
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[Kawakami 17] (c.f., [Kimura 89], [Kawakami—-Nakamura—Sakai 12])
@ We study two examples: Gary, and Gars;,.3/2.

@ They describe the isomonodromic deformation of 2 x 2 linear systems,
and there are two isomonodromic times ¢, 7,.

@ We will study the singularity reduction of the ODE with respect to 7,
which is obtained as the restriction of the Garnier systems on {#, = constant}.



Isomonodromy System for Gary,

[} o1} .

ha = L(x, 11, 1)0, h(‘)fl‘j = M;(x, 11, 1)P (=12
L = Ly, = LoX+LixX+Lyx+Ls,

M, = Mcay,1 = —Lox+ M,

2
Ms = Mgary,2 = Lox™ + Ly x + My,

_(0 1 _ (0 pm (@ P+p+2n
LO_(O 0)’ Ll‘(l o)’ LZ‘(—pl -4 ’

L= (q1 —Piq> P H2pipr =g+ hpi—
P2t =41+ p1q2 ’

0 —2171) @ pI+2p+n
M = ) Mo = 1 .
10 (_1 0 0=|_) a2

c.f., [Kimura 89], [Kawakami 17]



Isomonodromy System for Gars,.s,,

oD .
ha = L(x, 11, 1)@, h(?Tj = M;(x,t1,1)D (=12

L
L = 3

L,
LGar5/2+3/2 = L().X+L|+7+F,

M\ = Mcas)y,51 = Miox+ My,

Ly
M, = MGM5/2+3/2,2 =M

3= ,
0 -1 - 0 0 —qu/t
M10=(0 ())’ Mu=(_ql1 ), M20=( 612/2)'

0 0

c.f., [Kawakami 17]
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Restriction of Garnier Systems

@ Isomonodromy condition with respect to #, can be written as a Hamiltonian systems
for (g1, g2, p1, P2):

oL (9M1 dq, ﬁHl dp,' (’)Hl .
Wl ———|+[L.M]=0 & h—=——, h——=—- =12
(atl ox ) L i 7dr1 op; ! dt, aq; @ )
» The first example Gary,, is a 4th order analogue of P;:
Garg/ 4
Hy = H™" = p/* +3p°pa + p1ag2” = 2q1q2 + p2* — t1p1 + 1apo
This example was studied by [Dubrovin—Kapaev 12].
» The second example Gars)», 3, is a 4th order analogue of Py(Ds):
Gars /432 15
H,=H, e < P% _(‘ﬁ +t)p1 = 2p2q1q2 — g2 — qu
2

@ In fact, there exists another Hamiltonian H, such that

dq,' 6H2 dp,- 6H2 .
h_ = —, h— = —— = ], 2
dt, opi dn 0q; ¢ )

is compatible with the above Hamiltonian system!.

"We follow the approach of [Nakamura 17] and swap the labels of the isomonodromic times of the

Garnier systems of type 9/2 in [Kawakami 16].
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4-Parameter Laurent Solution of Gary),
Proposition ([Shimomura 00] (c.f., [Nakamura 17]))

There exists a convergent Laurent series solution of Gary, the form:

a " e (10a — 18128 — 358°)(t) — @)
LD e e 700
_ 3(508y = 30)(11 —a)* St —@)? e
2082 + h3 +0((t) — @)),
() = - B 3@n+5800 —@)  6y(h —a)
P = ey 207 2

. (4a — 24,8 - 358°)(1; — )} . (=308y + h)(t; — a)*

1473 At +0((t — 0)6),

__ P B 3n+5P) - dyn-a)
pi(t) = O —ap #5= e = =
(4a — 2408 - 358°)(t; —a)*  (=30By + )t — @)’ 5 .
+ o + TS 15400%° + O((11 — @)"),
_ 3w 3B ) 6y(t1 —a)  9(4nB+56°) (1 — a)
pa(t) = 2 —ap +(2+ ot 7 + 0

(h =)  3(1008 +400aB + 12016 — 19256* = 16806)(11 = )"

S 123207 + 0@ - ),

Here (a,,y,6) are free parameters which are independent of #.
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4-Parameter Laurent Solution of Gars».3,,

Proposition
There exists a convergent Laurent series solution of Gars»,3/, the form:

ho_@-2p-a) yh-aP  on-o

)= =2 3 w2 7w
_ _ _ 4
_ Bay 10B7+<9r:4 B =D ).

_ B Byt —a) | (@B —4ap’ + 46 - 9Bo)(1 — a)?
200 = G —ap 7( of =2 -5 1872
2 _

L 2% 20ﬂ7+wﬁ:5h22/3 WO =0 | o b,
2y (02 — 4ap + 4B% + 456)(t; — )
Pl(h)—ﬁ‘*’( +*)(f1 a) + 5 !
— _ _ 3
_ oy 12ﬁ7+;v:3 BNG= | oin — .
) = (-a) @y+n@ - a)? . 2Aa - 2B)(t — @)?
AU S == 4672 3
4
4 Goy =208y ﬁ;’;w 2O =" oty - ),

Here (a,B8 # 0,7, 6) are free parameters which are independent of ¢;.
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Schrodinger Form
For each j = 1,2, the isomonodromic linear system

oD oD
he— = L(x, 11, )®, e = M;(x, 1y, 1)®

ax ’ (9tj
can be reduced to the following scalar equation:
02

hz / 2 = 0

(17 - o) =o.

oy 0

A 2
o, ( (X tl,t)dx 3 6 (A tlstZ))

We call the system the Schrédinger form of the isomonodromy system.
»  is a gauge transform of the first entry of ©.
> Qs written by L;;’s in a complicated way, and A; = (M;)12/L,.
» They have poles at zeros of L,,, which are called apparent singular points.
Our examples have two or three apparent singular points.

The compatibility (i.e., isomonodromy) condition is given by
a0 ,0%A; 0A; ilo)
(s 4 i
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Existence of Singularity Reduction (Gary,)
Theorem (c.f., Theorem 3.1 in [Dubrovin—Kapaev 12])

0 = OGar,» With (1, 92, p1, p2) substituted by the previous Laurent series solution of Gary s,
has finite limit as #; — a:

[1112(11/ QGar9/2 (x) = RGar9/2 )

where Raar, (X) = Rearg),.0(X) + 7 Riary)y.1 (X) + % Rary , 2(X) i given by

5 2 , 39072 + 8000af — 3456013” — 519758* — 151205)
RGarg),0 = ¥ + 3% —ax” + .

12320
9(9072533 + 1840af3% — 68401,8° — 311858 — 221760y — 1512055)
B 24640 ’
18y 3
RGal’g/z,l = W= 3[3, RGan)/z.Z = m

@ The above result implies the existence of the singularity reduction

2

d
SRGarq’/z : hz ﬁ - R(}arq,/z (X) M/ =0

@ One can check that x = 34/2 is an apparent singular point of SRcur),-
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Existence of Singularity Reduction (Gars,.3/2)

Theorem
0 = OGars)s.3,> With (g1, 2, p1, p2) substituted by the previous Laurent series solution of
Gar5/2+3/2, has finite limit as t; — a:

lim QGar5/2+3/2 (x) = RG&I'S/'2+3/2 (x)
Hh—-a

5 .
where RGar5/2+3/2 x) = RGar5/2+3/2,0(x) + hRGar5/2+3/2,1(x) +h RGar5/2+3/2,2(x) is given by

a2 + 3208 — 508% + 456

RGars)p.30.0 = X — @ + 18x
181> + B(a?B + 14aB? — 328> — 18y? + 45835) b
188x2 X3’
_ Bx-py 522+ 10xB — 352
RG&FS/2+3/:~1 = 2/\,2(/(7/3)’ RG"“’S/ZH,’ZQ = l6x2(x7/3)2 o

v

@ In [Dubrovin—Kapaev 12], it was conjectured that any isomonodromy system admits a
singularity reduction.

@ [Dubrovin—Kapaev 12] worked with Linear 2 x 2 matrix linear system for Gary,, and
found an appropriate gauge to have finite limit as 1, — «.

@ Would the Schrédinger form always provide a gauge choice for the singularity
reduction of all Garnier systems? oo



Results 2

Secondary Isomonodromy Property
and quasi-Painlevé property
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Secondary Isomonodromy Property
We have seen that

@ Both Gary/, and Gars)y,3,, admit a 4-parameter family of Laurent series solutions, and
they provide the singularity reduction

& 11— d?
W - =0 2% SR : [B*—= -Rly=0
( ox? )W 0 ( dx? )l//
@ R = R(x, 1) is rational in x, and polynomial in 7: R = Ry(x) + iR (x) + 1> Ry(x).
> In the case Gary,,, Ry, R, has a pole at x = 33/2.
> In the case Gars;y43/2, Ri, R, has a pole at x = 8.

The pole is an apparent singularity of SR.
@ On the other hand, both Gary, and Gars),,3,, were originally PDEs in #,, ,.

The original (i.e., before taking SR) Schrédinger form is also isomonodromic in #,.
Proposition
The function A, = (M>)12/L1», which appeared in deformation equation w.r.t. #,, also has a
finite limit:

2
2x — 3B

Bx
n(x = p)

for Garg/z
B(x) := [lim Ar(x) =
|

for Gar5/2+3/2
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Secondary Isomonodromic Property (cont)
Theorem (for Gars;,13/2)

If (@, B,7,0) are functions of , satisfying the system of ODEs

pda _ _pn
dlz 15 ’

R9B _ _Bly+h)
dtz 2!2 ’

S oAy _ 180 -’ + dap’ — 4p* — 45’

dn 1822[3 ’

. s _ 2(320py - 1008%y + 9aBh — 18B%h)
dn 451, ’

then R = Raurs .5, @Nd B = Baar,.5,, Satisfies the compatibility condition
QIR 0B yRIB o pOR _
X X

of
(')71& -(g 0 1 OB
ot “Tox 2 06x

Namely, (x) describes the isomonodromic deformation of SRgus ,,,, W-I-t. 2.

@ The above system (x) can be found from Hamiltonian system w.r.t. 1,.

@ [Dubrovin—Kapaev 12] gave a similar result for Gary,. (o2



Isomonodromy without Painlevé Property
Observation
@ The system (%) of ODEs implies that @ = a(r,) satisfies

209 4a”a®  3@")? 3@
th o tha' (@)?

() = H? ((1(4) +

4a”" da ()3
i

N3 AN "4 2
T 12t(a’)’a@” + 4a (@)@’ + + 14(a’)" + =
i =

’
(03 2

This ODE describes the isomonodromic deformation of SRgus .5, -

@ We have observed that there is no Laurent series solution of (xx), but there exists a
4-parameter family of Puiseux series solutions of the following form:
3IBRB(n -p)'P  ci(ta=b)  SPPHL-bYP o -b)?
bl/3 - 5b 4. 32/3pA/3 i 31/3},5/32/3
3ci(th—b)?  c3tr—b)3  (8lc —3275¢))(t2 — b)3/3
1002 | 32PRIBRS 1500312550
(3375b — 27c = 1575¢2 ¢ — 12500¢3 + 450c (Te3 — 5h2))(t2 — b)?
N 2
123756312
where (b # 0, ¢y, 3, ¢3) can be taken as free parameters.

a(tr) =c) —

+0((ta = 0)'P),

@ Therefore, (xx) does not possess the Painlevé property.
These observations are parallel with those of [Dubrovin—Kapaev 12] for Gary,.

4
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Observation by [Dubrovin—Kapaev 12]
Observation ([Dubrovin—Kapaev 12])
@ A similar analysis for Gary, yields
72a® + 40 + 3660 o +da e’ +20(a’) + 6t =0
This ODE describes the isomonodromic deformation of SRgay, -
@ There exist 4-parameter family of Puiseux series solutions of the following form:

9.32B3p(t — Y3 33¢i (1 — b)1/3
alty) = ¢ — 3PPy — b + (o = by 3¢(tr —b)

357213 Th4/3
9-323(1, — b)8/3 L et — b)? R b3 729b(1y — b)*
207213 2 31/37:8/3 98072

3113(729b° + 1372cF + 23814bcy)(1a — )3 Oty — by
- + O((12 — ),
2229501073 (

where (b, c1, c2, c3) can be taken as free parameters.

@ Remark 1: The above 4th order ODE and its Puiseux solution have already found in

[Shimomura 01] (but the secondary isomonodromy property was not mentioned).

@ Remark 2: The Puiseux solution also provides further singularity reduction:

i R () 25 + 3b2% — ey + 8748b + 14553c,  4347bc; — 7007¢3
im RGarg ), (X) = x> + 3bx° — ¢ x° X —
b O ) =& ! 3969 3969




Open Questions
We have studied only two examples: Gary;, and Gars,z.3/2.
Would a similar analysis be possible for other Garnier systems as well?

» Both examples have ramified irregular singular point. Is it essential?
» The pole orders of Laurent series solution is related to homogenious degrees
of the Garnier systems (c.f., [Chiba 20]).

Can we find a change of unknown functions («, 3, ¥, 6) of the system (x) so that the
new system possess the Painlevé property?

Comparison with the algebro-geometric approaches by Inaba, Iwasaki, Saito?
Relation to classical conformal blocks?

In the on-going work [I-Nagoya—Shukuta 2?], we have

> on? P 3vi?
9§S(x,h)dx:27riv = s:zz'/2—2w1/4+(%+§)+(%+ Svlz)f”‘w---(r—»oo)

where the period integral is the Voros period, and & is the accessory parameter of
Heun III; (Mathieu) equation. We have checked first several terms agrees with the
irregular classical conformal block proposed in [Bonelli-Shchechkin-Tanzini 25].

Thank you for your attention!
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Appendix: Proof of convergence (in the case of Gars,.3,,)
If we take new unknown functions as
4q,
(1,6,83,64) = p —, 32’4112172 + qq DG+ @+ 2D2qiqa |
1

1
then Gars,432 is transformed to

a

;:11 =1+ 18 =288 + E& - 2818,
ha—’fz = EEs — 468 + 265 - 486,

2
ha—f3 = 40é — 88 + 4&16rés — 8ELEHE — Biet]
&

a 2

ha_i54 - % ﬁ — &&= 206\&4 + 4666 - BELEE + AEE - Ll .
1 &

The Laurent series solution corresponds to the solution of this system at#; = «
with the initial value

a? + 14ap — 328 + 456
18 '

Since we assumed 8 # 0, we can apply the Cauchy existence theorem.

¢1(@), &(), &3(), €4(@)) = | 0,8, -4y — I,
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