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Motivation and Main Questions
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Painlevé Equation and Isomonodromy Property

The first Painlevé equation (with ℏ):

PI : ℏ2 d2q
dt2 = 6q2 + t ⇔ ℏ

dq
dt
=
∂H
∂p

, ℏ
dp
dt
= −∂H

∂p

where the Hamiltonian H is given by

H =
p2

2
− 2q3 − tq.

Painlevé property: all movable singular points must be poles.

Description as isomonodromic deformation (integrablity):

LI :
(
ℏ2 d2

dx2 − Q(x, t, ℏ)
)
ψ = 0

Q = 4x3 + 2tx + 2H − ℏ p
x − q

+ ℏ2 3
4(x − q)2

▶ x = q is an “apparent” singular point.
▶ Stokes multipliers around x = ∞ are t-independent if q satisfies PI.
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Laurent Seriers Solution and Painlevé Test
For any α ∈ C, there exists a Laurent series solution of PI:

q(t) =
ℏ2

(t − α)2 −
α

10ℏ2 (t − α)2 − (t − α)3

6ℏ2 − β

14ℏ2 (t − α)4 + · · ·

▶ β : arbitrary parameter.
▶ This converges on a punctured disc around t = α.

{ 2-parameter family of Laurent series solutions.
{We say that PI passes the “Painlevé test”.

Near the movable pole α, the τ-function defined by

ℏ2 d
dt

log τ = H

behaves as follows:

τ(t) = (t − α)
(
1 +

β

ℏ2 (t − α) + · · ·
)
, t → α

▶ Well-known similarity between Painlevé transcendents and elliptic functions:

q ←→ ℘

τ ←→ σ
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Singularity Reduction (From Painlevé to Heun)
The previous Laurent expansion of q leads

q =
ℏ2

(t − α)2 + · · · , p = − ℏ3

(t − α)3 + · · · , H =
ℏ2

t − α + β + · · ·

Although q, p and H diverge as t → α, the Schrödinger potential Q has a finite limit!(
ℏ2 d2

dx2 − Q
)
ψ = 0 , Q = 4x3 + 2tx + 2H − ℏ p

x − q
+ ℏ2 3

4(x − q)2

t→α−−−→
(
ℏ2 d2

dx2 − (4x3 + 2αx + 2β)
)
ψ = 0

[Its–Novokshenov 86], [Masoero 10], ...

▶ The resulting equation is called reduced tri-confluent Heun equation.
▶ The parameter β is called accessory parameter (AP).

We call the limiting procedure (restriction of isomonodromic linear ODE to the
movable pole) as singularity reduction, following [Dubrovin–Kapaev 12].

The singularity reduction also exists for the isomonodromic linear ODEs associated
with other Painlevé equations PII,..., PVI.
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Main Questions(
ℏ2 d2

dx2 − Q
)
ψ = 0

t→α−−−→
(
ℏ2 d2

dx2 − (4x3 + 2αx + 2β)
)
ψ = 0

Question 1
Does the singularity reduction also exists in higher order analogue of Painlevé equations?
(C.f., [Kawakami–Nakamura–Sakai 12], [Kawakami 17])

[Dubrovin–Kapaev 12] studied one example, and found an ODE which describes
isomonodromic deformation but does not have Painlevé property.

Question 2 (Not today)
Can we describe a relation between (α, β) and Stokes multipliers?
In particular, can we reproduce the AP? (Riemann–Hilbert problem)

Exact WKB method ([Voros 83]) allows us to describe the Stokes multipliers
by the Voros periods (VP) on the classical limit y2 = 4x3 + 2αx + 2β.
So, the above question is related to: Can we reproduce the AP from VP?

Relation to classical irregular conformal blocks?
Zamolodchikov-type conjecture is studied in [Lisovyy–Naidiuk 21]
in the presence of irregular singular points.
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Result 1

Singularity Reduction of

some Degenerate Garnier Systems

(4th Order Painlevé Equations)
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Confluence Diagram of Garnier Systems

[Kawakami 17] (c.f., [Kimura 89], [Kawakami–Nakamura–Sakai 12])

We study two examples: Gar9/2 and Gar5/2+3/2.

They describe the isomonodromic deformation of 2 × 2 linear systems,
and there are two isomonodromic times t1, t2.

We will study the singularity reduction of the ODE with respect to t1

which is obtained as the restriction of the Garnier systems on {t2 = constant}.
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Isomonodromy System for Gar9/2

ℏ
∂Φ

∂x
= L(x, t1, t2)Φ, ℏ

∂Φ

∂t j
= M j(x, t1, t2)Φ ( j = 1, 2)

L = LGar9/2 = L0 x3 + L1 x2 + L2 x + L3,

M1 = MGar9/2 ,1 = − L0 x + M10,

M2 = MGar9/2 ,2 = L0 x2 + L1 x + M20,

L0 =

(
0 1
0 0

)
, L1 =

(
0 p1

1 0

)
, L2 =

(
q2 p2

1 + p2 + 2t2

−p1 −q2

)
,

L3 =

(
q1 − p1q2 p3

1 + 2p1 p2 − q2
2 + t2 p1 − t1

−p2 + t2 −q1 + p1q2

)
,

M10 =

(
0 −2p1

−1 0

)
, M20 =

(
q2 p2

1 + 2p2 + t2

−p1 −q2

)
.

c.f., [Kimura 89], [Kawakami 17]
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Isomonodromy System for Gar3/2+5/2

ℏ
∂Φ

∂x
= L(x, t1, t2)Φ, ℏ

∂Φ

∂t j
= M j(x, t1, t2)Φ ( j = 1, 2)

L = LGar5/2+3/2 = L0 x + L1 +
L2

x
+

L3

x2 ,

M1 = MGar5/2+3/2 ,1 = M10 x + M11,

M2 = MGar5/2+3/2 ,2 = M20 −
L3

t2 x
,

L0 =

(
0 1
0 0

)
, L1 =

(
q1 p1 − q2

1 − t1

1 −q1

)
,

L2 =

(
p2q2 q2

−p1 −p2q2

)
, L3 =

(
0 0

t2/q2 0

)
,

M10 =

(
0 −1
0 0

)
, M11 =

(
−q1 0
−1 q1

)
, M20 =

(
0 −q2/t2

0 0

)
.

c.f., [Kawakami 17]
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Restriction of Garnier Systems
Isomonodromy condition with respect to t1 can be written as a Hamiltonian systems
for (q1, q2, p1, p2):

ℏ

(
∂L
∂t1
− ∂M1

∂x

)
+ [L,M1] = 0 ⇔ ℏ

dqi

dt1
=
∂H1

∂pi
, ℏ

dpi

dt1
= −∂H1

∂qi
(i = 1, 2)

▶ The first example Gar9/2 is a 4th order analogue of PI:

H1 = HGar9/2
1 = p1

4 + 3p1
2 p2 + p1q2

2 − 2q1q2 + p2
2 − t1 p1 + t2 p2

This example was studied by [Dubrovin–Kapaev 12].
▶ The second example Gar5/2+3/2 is a 4th order analogue of PIII(D8):

H1 = HGar5/2+3/2
1 = p2

1 − (q2
1 + t1)p1 − 2p2q1q2 − q2 −

t2

q2

In fact, there exists another Hamiltonian H2 such that

ℏ
dqi

dt2
=
∂H2

∂pi
, ℏ

dpi

dt2
= −∂H2

∂qi
(i = 1, 2)

is compatible with the above Hamiltonian system1.
1We follow the approach of [Nakamura 17] and swap the labels of the isomonodromic times of the

Garnier systems of type 9/2 in [Kawakami 16].
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4-Parameter Laurent Solution of Gar9/2

Proposition ([Shimomura 00] (c.f., [Nakamura 17]))
There exists a convergent Laurent series solution of Gar9/2 the form:

q1(t1) = − ℏ5

(t1 − α)5 +
βℏ3

(t1 − α)3 + γ +
(10α − 18t2β − 35β3)(t1 − α)

70ℏ

− 3(50βγ − 3ℏ)(t1 − α)2

20ℏ2 +
δ(t1 − α)3

ℏ3 + O((t1 − α)5),

q2(t1) = − ℏ3

(t2 − α)3 −
3(4t2 + 5β2)(t1 − α)

20ℏ
− 6γ(t2 − α)2

ℏ2

+
(4α − 24t2β − 35β3)(t1 − α)3

14ℏ3 +
(−30βγ + ℏ)(t1 − α)4

4ℏ4 + O((t1 − α)6),

p1(t1) =
ℏ2

(t1 − α)2 +
β

2
− 3(4t2 + 5β2)(t1 − α)2

20ℏ2 − 4γ(t1 − α)3

ℏ3

+
(4α − 24t2β − 35β3)(t1 − α)4

28ℏ4 +
(−30βγ + ℏ)(t1 − α)5

10ℏ5 15400ℏ6 + O((t1 − α)7),

p2(t1) = − 3βℏ2

2(t1 − α)2 +

(
t2 +

3β2

2

)
+

6γ(t1 − α)
ℏ

+
9(4t2β + 5β3)(t1 − α)2

40ℏ2

+
(t1 − α)3

5ℏ2 −
3(1008t2

2 + 400αβ + 120t2β2 − 1925β4 − 1680δ)(t1 − α)4

12320ℏ4 + O((t1 − α)6),

Here (α, β, γ, δ) are free parameters which are independent of t1.
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4-Parameter Laurent Solution of Gar5/2+3/2

Proposition
There exists a convergent Laurent series solution of Gar5/2+3/2 the form:

q1(t1) =
ℏ

t1 − α
− (α − 2β)(t1 − α)

3ℏ
+
γ(t1 − α)2

ℏ2 +
δ(t1 − α)3

ℏ3

− (3αγ − 10βγ + αℏ − 2βℏ)(t1 − α)4

9ℏ4 + O((t1 − α)5),

q2(t1) =
βℏ2

(t1 − α)2 +
1
3

(αβ − 2β2) − 2βγ(t1 − α)
3ℏ

+
(α2β − 4αβ2 + 4β3 − 9βδ)(t1 − α)2

18ℏ2

+
2(−2αβγ + αβℏ − 2β2ℏ)(t1 − α)3

45ℏ3 + O((t1 − α)4),

p1(t1) = β +
(

1
2
+

2γ
ℏ

)
(t1 − α) +

(α2 − 4αβ + 4β2 + 45δ)(t1 − α)2

18ℏ2

− (4αγ − 12βγ + αℏ − 2βℏ)(t1 − α)3

3ℏ3 + O((t1 − α)4),

p2(t1) = − (t1 − α)
ℏ

− (4γ + ℏ)(t1 − α)2

4βℏ2 +
2(α − 2β)(t1 − α)3

3ℏ3

+
(4αγ − 20βγ + αℏ − 2βℏ)(t1 − α)4

12βℏ4 + O((t1 − α)5),

Here (α, β , 0, γ, δ) are free parameters which are independent of t1.
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Schrödinger Form
For each j = 1, 2, the isomonodromic linear system

ℏ
∂Φ

∂x
= L(x, t1, t2)Φ, ℏ

∂Φ

∂t j
= M j(x, t1, t2)Φ

can be reduced to the following scalar equation:

(
ℏ2 ∂

2

∂x2 − Q(x, t1, t2)
)
ψ = 0,

∂ψ

∂t j
=

(
A j(x, t1, t2)

∂

∂x
− 1

2
∂A j

∂x
(x, t1, t2)

)
ψ

We call the system the Schrödinger form of the isomonodromy system.

▶ ψ is a gauge transform of the first entry of Φ.
▶ Q is written by Li j’s in a complicated way, and A j = (M j)12/L12.
▶ They have poles at zeros of L12, which are called apparent singular points.

Our examples have two or three apparent singular points.

The compatibility (i.e., isomonodromy) condition is given by

2
∂Q
∂t j
+ ℏ2 ∂

3A j

∂x3 − 4Q
∂A j

∂x
− 2A j

∂Q
∂x
= 0
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Existence of Singularity Reduction (Gar9/2)

Theorem (c.f., Theorem 3.1 in [Dubrovin–Kapaev 12])
Q = QGar9/2 , with (q1, q2, p1, p2) substituted by the previous Laurent series solution of Gar9/2,
has finite limit as t1 → α:

lim
t1→α

QGar9/2 (x) = RGar9/2 (x)

where RGar9/2 (x) = RGar9/2 ,0(x) + ℏRGar9/2 ,1(x) + ℏ2 RGar9/2 ,2(x) is given by

RGar9/2 ,0 = x5 + 3t2 x3 − αx2 +
3(9072t22 + 8000αβ − 34560t2β2 − 51975β4 − 15120δ)

12320
x

−
9(9072t22β + 1840αβ2 − 6840t2β3 − 31185β5 − 221760γ2 − 15120βδ)

24640
,

RGar9/2 ,1 =
18γ

2x − 3β
, RGar9/2 ,2 =

3
(2x − 3β)2 .

The above result implies the existence of the singularity reduction

SRGar9/2 :
(
ℏ2 d2

dx2 − RGar9/2 (x)
)
ψ = 0

One can check that x = 3β/2 is an apparent singular point of SRGar9/2 .
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Existence of Singularity Reduction (Gar5/2+3/2)
Theorem
Q = QGar5/2+3/2 , with (q1, q2, p1, p2) substituted by the previous Laurent series solution of
Gar5/2+3/2, has finite limit as t1 → α:

lim
t1→α

QGar5/2+3/2 (x) = RGar5/2+3/2 (x)

where RGar5/2+3/2 (x) = RGar5/2+3/2 ,0(x) + ℏRGar5/2+3/2 ,1(x) + ℏ2 RGar5/2+3/2 ,2(x) is given by

RGar5/2+3/2 ,0 = x − α + α
2 + 32αβ − 50β2 + 45δ

18x

− 18t2 + β(α2β + 14αβ2 − 32β3 − 18γ2 + 45βδ)
18βx2 +

t2
x3 ,

RGar5/2+3/2 ,1 =
(3x − β)γ
2x2(x − β)

, RGar5/2+3/2 ,2 =
5x2 + 10xβ − 3β2

16x2(x − β)2 .

In [Dubrovin–Kapaev 12], it was conjectured that any isomonodromy system admits a
singularity reduction.

[Dubrovin–Kapaev 12] worked with Linear 2 × 2 matrix linear system for Gar9/2, and
found an appropriate gauge to have finite limit as t1 → α.

Would the Schrödinger form always provide a gauge choice for the singularity
reduction of all Garnier systems?
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Results 2

Secondary Isomonodromy Property
and quasi-Painlevé property

17 / 23



Secondary Isomonodromy Property
We have seen that

Both Gar9/2 and Gar5/2+3/2 admit a 4-parameter family of Laurent series solutions, and
they provide the singularity reduction(

ℏ2 ∂
2

∂x2 − Q
)
ψ = 0

t1→α−−−−→ SR :
(
ℏ2 d2

dx2 − R
)
ψ = 0

R = R(x, ℏ) is rational in x, and polynomial in ℏ: R = R0(x) + ℏR1(x) + ℏ2 R2(x).
▶ In the case Gar9/2, R1, R2 has a pole at x = 3β/2.
▶ In the case Gar5/2+3/2, R1, R2 has a pole at x = β.

The pole is an apparent singularity of SR.

On the other hand, both Gar9/2 and Gar5/2+3/2 were originally PDEs in t1, t2.
The original (i.e., before taking SR) Schrödinger form is also isomonodromic in t2.

Proposition
The function A2 = (M2)12/L12, which appeared in deformation equation w.r.t. t2, also has a
finite limit:

B(x) := lim
t1→α

A2(x) =


2

2x − 3β
for Gar9/2

βx
t2(x − β)

for Gar5/2+3/2
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Secondary Isomonodromic Property (cont)
Theorem (for Gar5/2+3/2)
If (α, β, γ, δ) are functions of t2 satisfying the system of ODEs

(∗) :



ℏ
dα
dt2

= −βℏ
t2
,

ℏ
dβ
dt2

= −β(4γ + ℏ)
2t2

,

ℏ
dγ
dt2

=
18t2 − α2β2 + 4αβ3 − 4β4 − 45β2δ

18t2β
,

ℏ
dδ
dt2

=
2(32αβγ − 100β2γ + 9αβℏ − 18β2ℏ)

45t2
,

then R = RGar5/2+3/2 and B = BGar5/2+3/2 satisfies the compatibility condition

2
∂R
∂t2
+ ℏ2 ∂

3B
∂x3 − 4R

∂B
∂x
− 2B

∂R
∂x
= 0

of (
ℏ2 d2

dx2 − R
)
ψ = 0 and

∂ψ

∂t2
=

(
B
∂

∂x
− 1

2
∂B
∂x

)
ψ

Namely, (∗) describes the isomonodromic deformation of SRGar5/2+3/2 w.r.t. t2.

The above system (∗) can be found from Hamiltonian system w.r.t. t2.
[Dubrovin–Kapaev 12] gave a similar result for Gar9/2.
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Isomonodromy without Painlevé Property
Observation

The system (∗) of ODEs implies that α = α(t2) satisfies

(∗∗) : ℏ2
(
α(4) +

2α(3)

t2
− 4α′′α(3)

α′
− 3(α′′)2

t2α′
+

3(α′′)3

(α′)2

)

+
4α′′

t22α
′ + 12t2(α′)3α′′ + 4α (α′)2α′′ +

4α (α′)3

t2
+ 14(α′)4 +

2
t32

This ODE describes the isomonodromic deformation of SRGar5/2+3/2 .

We have observed that there is no Laurent series solution of (∗∗), but there exists a
4-parameter family of Puiseux series solutions of the following form:

α(t2) = c1 −
31/3ℏ2/3(t2 − b)1/3

b1/3 − c1(t2 − b)
5b

+
5ℏ2/3(t2 − b)4/3

4 · 32/3b4/3 +
c2(t2 − b)5/3

31/3b5/3ℏ2/3

+
3c1(t2 − b)2

10b2 +
c3(t2 − b)7/3

32/3b7/3ℏ4/3 +
(81c2

1 − 3275c2)(t2 − b)8/3

1500 · 31/3b8/3ℏ2/3

+
(3375b − 27c4

1 − 1575c2
1c2 − 12500c2

2 + 450c1(7c3 − 5ℏ2))(t2 − b)3

12375b3ℏ2 + O((t2 − b)10/3),

where (b , 0, c1, c2, c3) can be taken as free parameters.

Therefore, (∗∗) does not possess the Painlevé property.
These observations are parallel with those of [Dubrovin–Kapaev 12] for Gar9/2.

20 / 23



Observation by [Dubrovin–Kapaev 12]
Observation ([Dubrovin–Kapaev 12])

A similar analysis for Gar9/2 yields

ℏ2α(4) + 40(α′)3α′′ + 36t2α′ α′′ + 4αα′′ + 20
(
α′

)2
+ 6t2 = 0

This ODE describes the isomonodromic deformation of SRGar9/2 .

There exist 4-parameter family of Puiseux series solutions of the following form:

α(t2) = c1 − 31/3ℏ2/3(t2 − b)1/3 +
9 · 32/3b(t2 − b)5/3

35ℏ2/3 − 31/3c1(t2 − b)7/3

7ℏ4/3

+
9 · 32/3(t2 − b)8/3

20ℏ2/3 +
c2(t2 − b)3

ℏ2 +
c3(t2 − b)11/3

31/3ℏ8/3 − 729b(t2 − b)4

980ℏ2

−
31/3(729b3 + 1372c2

1 + 23814bc2)(t2 − b)13/3

22295ℏ10/3 + O((t2 − b)16/3),

where (b, c1, c2, c3) can be taken as free parameters.

Remark 1: The above 4th order ODE and its Puiseux solution have already found in
[Shimomura 01] (but the secondary isomonodromy property was not mentioned).

Remark 2: The Puiseux solution also provides further singularity reduction:

lim
t2→b

RGar9/2 (x) = x5 + 3bx3 − c1 x2 +
8748b2 + 14553c2

3969
x − 4347bc1 − 7007c3

3969
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Open Questions
We have studied only two examples: Gar9/2 and Gar5/2+3/2.
Would a similar analysis be possible for other Garnier systems as well?

▶ Both examples have ramified irregular singular point. Is it essential?
▶ The pole orders of Laurent series solution is related to homogenious degrees

of the Garnier systems (c.f., [Chiba 20]).

Can we find a change of unknown functions (α, β, γ, δ) of the system (∗) so that the
new system possess the Painlevé property?

Comparison with the algebro-geometric approaches by Inaba, Iwasaki, Saito?

Relation to classical conformal blocks?

In the on-going work [I–Nagoya–Shukuta 2?], we have∮
γ

S (x, ℏ) dx = 2πiν ⇒ E = 2t1/2 − 2νt1/4 +
(
ν2

8
+

9ℏ2

32

)
+

(
ν3

128
+

3νℏ2

512

)
t−1/4 + · · · (t → ∞)

where the period integral is the Voros period, and E is the accessory parameter of
Heun III3 (Mathieu) equation. We have checked first several terms agrees with the
irregular classical conformal block proposed in [Bonelli-Shchechkin-Tanzini 25].

Thank you for your attention!
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Appendix: Proof of convergence (in the case of Gar5/2+3/2)

If we take new unknown functions as

(ξ1, ξ2, ξ3, ξ4) =
(

1
q1
,

q2

q2
1

, 4q2 p2 +
4q2

q1
, p1q2

1 + q2 + 2p2q1q2

)
,

then Gar5/2+3/2 is transformed to

ℏ
∂ξ1

∂t1
= 1 + t1ξ

2
1 − 2ξ2

1ξ2 + ξ
3
1ξ3 − 2ξ4

1ξ4,

ℏ
∂ξ2

∂t1
= 2t1ξ1ξ2 − 4ξ1ξ

2
2 + 2ξ2

1ξ2ξ3 − 4ξ3
1ξ2ξ4,

ℏ
∂ξ3

∂t1
= 4t1ξ2 − 8ξ2

2 + 4ξ1ξ2ξ3 − 8ξ2
1ξ2ξ4 −

4t2ξ
2
1

ξ2
,

ℏ
∂ξ4

∂t1
=

t1ξ3

2
+
ξ1ξ

2
3

2
− ξ2ξ3 − 2t1ξ1ξ4 + 4ξ1ξ2ξ4 − 3ξ2

1ξ3ξ4 + 4ξ3
1ξ

2
4 −

2t2ξ1

ξ2
.

The Laurent series solution corresponds to the solution of this system at t1 = α
with the initial value

(ξ1(α), ξ2(α), ξ3(α), ξ4(α)) =
(
0, β,−4γ − ℏ, α

2 + 14αβ − 32β2 + 45δ
18

)
.

Since we assumed β , 0, we can apply the Cauchy existence theorem.
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