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‣ Gopakumar-Vafa functions 

‣ Nekrasov functions (in 4dim or 5dim)  

‣ Nekrasov-Shatashvili functions  (in 4dim or 5dim) 

. . .

Examples:

Special functions

An interesting aspect of topological string theory is that it has led to the discovery 

of new classes of special functions that today permeate many areas of theoretical 

and mathematical physics: from general relativity to integrable systems.


































































ZNek(Λ, a, ϵ1, ϵ2) = ∑
Y1,Y2

Λℓ(Y1)+ℓ(Y2)c̃Y1,Y2
(a, ϵ1, ϵ2) = 1 + ∑

n≥1
cn(a, ϵ1, ϵ2)Λn

c̃Y1,Y2
(a, ϵ1, ϵ2) =

2

∏
I,J=1

∏
s∈YI

1
αI − αJ − ϵ1vYJ

(s) + ϵ2 (hYI
(s) + 1) ∏

s∈YJ

1
αI − αJ + ϵ1 (vYI

(s) + 1) − ϵ2hYJ
(s)

Example 1: the Nekrasov partition function for 4-dim SU(2)  SYM 𝒩 = 2

Special functions

Thm: This is a convergent expansion [Its,Lisovyy,Tykhyy- 
Arnaudo, Bonelli,Tanzini]


































































Example 2: the Nekrasov-Shatashvili free energy the for 4-dim SU(2)  SYM Λ = 2

FNS(≥, a, ϵ1) = lim
ϵ2∈0

ϵ2ϵ1 log ZNek(≥, a, ϵ1, ϵ2) = 1 + ∑
n−1

≥nbn(a, ϵ1)

‣   is convergent  [Desiraju, Ghosal, Prokhorov 2024] 

‣ We often define  , then the function just depend on 

∑
n−1

≥nbn(a, ϵ1)

t = ≥
ϵ4

1
ℓ, t

Comments:

Special functions

ϵ2 ∈ 0

b1(a, ϵ1) = 2
4ϵ4

1ℓ2 𝒩 1 , b2(a, ϵ1) = (20ℓ2 + 7)
ϵ8

1 (4ℓ2 𝒩 1)3 (4ℓ2 𝒩 4)
, → where ℓ = a

ϵ1
with
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From 2 2 linea scala equation

In Painlevécontext this can
bedonebyexpandingaround
specific 9 typicallypoles

Z VAI

For Painlevé 3

Byexpanding around 9 0 Zit 0 4,17 0

mod Mathieu

EHI È 109Fpainlevé 3
9 Voigt 64 2function
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The Mccoy Tracy Wu operator

Snow L'CIR L R with kernel

In Let tela Then Sutu is self adjoint with

discrete spectrum SEI no
and it is

of trace clan its Fredholm det

det E Smtw is an entire function

of E

Invece The inverse of this operator is associated

with the following diff en
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Relating the two operators EMF AG
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t
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615min 6 En Pn
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THIS
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Idiaor.pro

Mathieu and MTW op commute

9m team
P

Need to show that

Ennath E de F Arcsech EF t

a A GT correspondence

b MTW w theorem above

c Kyiv formula for Painlevé 6 function

d NY Blow up relation





Quantum Mirror Curves

[Batyrev , Chiang-Klemm-Yau-Zaslow, Hori-Vafa - …]. 

Toric Calabi–Yau threefolds can be classified in terms of two-dimensional polytopes. 
To each such polytope, we associate a curve known as the mirror curve.

Example: local .Λ1 ≥ Λ1

2.2 Realizations in toric ambient spaces

To have such a concrete algebraic realization we use hypersurfaces or complete inter-

sections in toric ambient spaces.

Possible toric bases B leading to the above described elliptic fibrations with only

I1 singularities of the Calabi-Yau d-fold are defined by reflexive polyhedra �B in d� 1

dimensions [6], as was observed in [40]. For the threefold case one has the following

possibilities of 2-dimensional polyhedra.

1 2 4 5 6 7 83

9 10 11 15141312 16

Figure 1: These are the 16 reflexive polyhedra �B in two dimensions, which
build 11 dual pairs (�B,�⇤

B
). Polyhedron k is dual to polyhedron 17 � k

for k = 1, . . . , 5. The polyhedra 6, . . . , 11 are selfdual.

The toric ambient spaces, which allow for smooth Calabi-Yau hypersurfaces as

section of the canonical bundle, can be described by pairs of reflexive polyhedra (�,�⇤).

Together with a complete star triangulation of �, they define a complex family of

Calabi-Yau threefolds. The mirror family is given by exchanging the role of � and �⇤.

A complete triangulation divides � in simplices of volume 1. In a star triangulation

all simplices contain the unique inner of the reflexive polyhedron. Let us give first two

examples for toric smooth ambient spaces in which the canonical hypersurface leads to

the E8 elliptic fibration over P2 and over the Hirzebruch surface F1. The polyhedron

8

(0,1)

(0, ∈ 1)

(∈1,0) (1,0)
mirror curve

e + e + me + e ∈ ϵ = 0y x ∈x ∈y

:  CY complex modulim, ϵ

 vertex(a, b) eax+by



where  are momentum and position operators on  in one 

dimensional quantum mechanics: 

−x, −p L2(𝒩)

[ −x, −p] = i→

One can quantize such mirror curves by using Weyl’s prescription

[Aganagic-Dijkgraaf-Klemm-Mariño-Vafa,  Aganagic-Dijkgraaf-Cheng-Krefl-Vafa,  
Mironov-Morozov, Nekrasov-Shatashvili,…]

quantization
eax+by ea −x+b −p

e −xℓ(x) = exℓ(x) e −pℓ(x) = ℓ(x ∈ i→)

Quantum Mirror Curves



Example: local Λ1 ≥ Λ1

The quantization leads to  whose eigenvalue equation isℏ = e −p + e∈ −p + me∈ −x + e −x

ℓ(x ∈ i→) + ℓ(x + i→) + (me∈x + ex + ϵ)ℓ(x) = 0

TrαN = ∑
n⋯0

E∈N
n < ℙ[AG-Hatsuda-Mariño, Kashaev-Mariño, 

Laptev-Schwimmer-Takhtajan]

Theorem:  The operator  has a discrete spectrum  and it is of trace class 

on  

α = ℏ∈1 {E∈1
n }n⋯0

L2(×𝒩)

Quantum Mirror Curves



The kernel of the operator  is  α α(x, y) = e∈u(x,m,→)∈u(y,m,→)

4σ cosh ( x ∈ y
2 )[Kashaev-Marino-Zakany]  

u(x, m, →) = σxb/2 + log
ℓb(x ∈ 1

4σb log m + ib/4)

ℓb(x + 1
4σb log m ∈ ib/4)

+ 1
8 log m → = σb2

where  is the Faddeev quantum dilogarithm ℓb

If  Im(b)>0 it reduces to

̂b(x) = (e2σb(x+cb), e2iσb2)ℙ
(e2σb∈1(x+cb), e∈2iσb∈2)ℙ

2cb = i(b + b∈1)

Example: local   (genus one mirror curve)Λ1 ≥ Λ1

Quantum Mirror Curves



Mod. Mathieu operator McCoy-Tracy-Wu operator

→ ℝ κϕ

ϕ ℝ 0

→ ℝ κ
ϕ

Two limits

det (1 + ϵα)

Let us consider the case of local , we haveΛ1 ≥ Λ1

m∈1 = tϕ2

ϵ = ∈ 2
tϕ2

+ E
t

ϵ = log (1 + e4σiρ) ∈ 4σ
ϕ

log (ϕ4t)
log m = ∈ 2σ

ϕ
log ϕ4t

[Katz,Klemm,Vafa 1996] [Bonelli,AG,Tanzini 2016]



McCoy-Tracy-Wu operator

On Painlevé equations

Let us consider the case of local , we haveΛ1 ≥ Λ1

 Painlevé  tau function  
                                     (one parameter family)
det (1 + EαMTW) 𝒪 III3

Question 1: what does (1) mean in the context of Painlevé equations?

It computes the tau function of the q-deformed Painlevé equation with specific 
initial conditions  [Bonelli, AG, Tanzini 2017].

 (1) det (1 + ϵα)

Question 2: can we generalise this to other toric CY3?



Yes, this holds more in general

· · ·
· · ·qPIII3qPIII2qPIII1

qPVqPVI

· · ·
· · ·

Quantum curves and q-Painleve

Fredholm determinant of quantum mirror curves computes the tau function of q-
Painlevé equations with specific initial conditions [Bonelli,AG,Tanzini 17+…].

The construction also extends to higher genus geometries [Gavrylenko, AG, Hao 23].

… all this is related the topological string/spectral theory correspondence and its 
interplay with Kyiv formula …



Thank you!



old slides



Example:               equation corresponding to local CP1qPIII3

G(qZ)G(q∈1Z) = ( G(Z) ∈ Z
G(Z) ∈ 1 )

2

d2w
dt2 = 1

w ( dw
dt )

2
∈ 1

t
dw
dt

+ 2w2

t2 ∈ 2
t

If you rescale   in the limit  the above equation 
reduces to Painleve  

G(Z ) = κ2w(t) , Z = κ4t , q = eκ κ ℝ 0
III3



w(t, ρ, π) = te∈2σiπ β(t, ρ, π)
β(t, ρ + 1

2 , π)

2

Recall: we can write the solution to  asPIII3

tau function

Likewise we write the solution to  asqPIII3

G(Z, q, u, s) = Z1/2 ( β(Z, q, u, s)
β(Zq, q, u, s) )

2

q-tau function

Tsuda 2006 - Bershtein, Shchechkin 2016


