Functional Identities and Geometry of Painlevé III₃ Quantum Operators

Alba Grassi

Plan

- 0 Introducing some string theory/susy special functions
- ig(1 ig) The modified Mathieu operator and Painlevé $ext{III}_3$
- ig(2ig) The McCoy-Tracy-Wu operator and Painlevé $ext{III}_3$
- 3 Relating the two operators
- (4) The geometrical origin of these operators and their relation

Based on 2503.21762 with M. François

1603.01174 with G.Bonelli and A.Tanzini

2304.11027 with M.Bershtein and P. Gavrylenko

Special functions

An interesting aspect of topological string theory is that it has led to the discovery of new classes of special functions that today permeate many areas of theoretical and mathematical physics: from general relativity to integrable systems.

Examples:

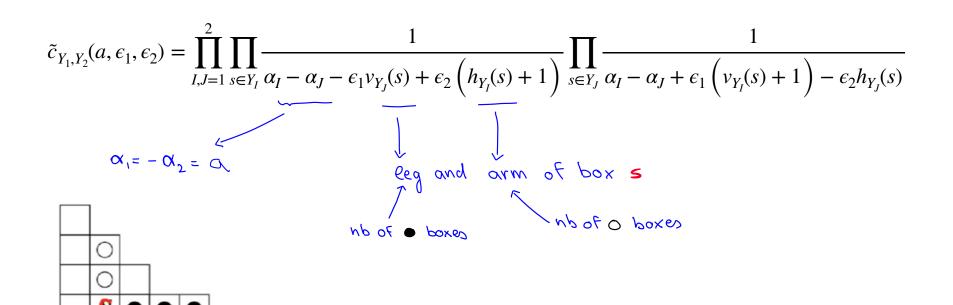
- Gopakumar-Vafa functions
- Nekrasov functions (in 4dim or 5dim)
- Nekrasov-Shatashvili functions (in 4dim or 5dim)

• • •

Special functions

Example 1: the Nekrasov partition function for 4-dim SU(2) $\mathcal{N}=2$ SYM

$$Z^{\text{Nek}}(\Lambda, a, \epsilon_1, \epsilon_2) = \sum_{\substack{Y_1, Y_2 \\ \text{Young Eableaux}}} \Lambda^{\ell(Y_1) + \ell(Y_2)} \tilde{c}_{Y_1, Y_2}(a, \epsilon_1, \epsilon_2) = 1 + \sum_{n \geq 1} c_n(a, \epsilon_1, \epsilon_2) \Lambda^n$$



Arnaudo, Bonelli, Tanzini]

<u>Thm:</u> This is a convergent expansion [Its,Lisovyy,Tykhyy-

Special functions

Example 2: the Nekrasov-Shatashvili free energy the for 4-dim SU(2) $\mathcal{N}=2$ SYM $\epsilon_2 \to 0$

$$F^{\rm NS}(\Lambda, a, \epsilon_1) = \lim_{\epsilon_2 \to 0} \epsilon_2 \epsilon_1 \log Z^{\rm Nek}(\Lambda, a, \epsilon_1, \epsilon_2) = 1 + \sum_{n \ge 1} \Lambda^n b_n(a, \epsilon_1)$$

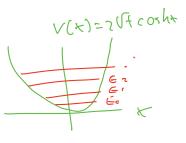
with
$$b_1(a, \epsilon_1) = \frac{2}{4\epsilon_1^4 \sigma^2 - 1}$$
, $b_2(a, \epsilon_1) = \frac{\left(20\sigma^2 + 7\right)}{\epsilon_1^8 \left(4\sigma^2 - 1\right)^3 \left(4\sigma^2 - 4\right)}$, ... where $\sigma = \frac{a}{\epsilon_1}$

Comments:

- $\sum_{n\geq 1} \Lambda^n b_n(a, \epsilon_1)$ is convergent [Desiraju, Ghosal, Prokhorov 2024]
- We often define $t = \frac{\Lambda}{\epsilon_1^4}$, then the function just depend on σ, t

he modified Mathiev.

$$H = L^{2}(IR) \qquad O_{N} = - O_{X}^{2} + 2\sqrt{1 + cosh x}$$



In the context of Painleve (Novonshenov 80,)

$$\frac{d^2q}{dt^2} = \frac{1}{q} \left(\frac{dq}{dt}\right)^2 - \frac{1}{t} \frac{dq}{dt} + \frac{2q^2}{t^2} - \frac{2}{t}$$

The associated 2 x 2 linear system is (see Fokas, Its, Kapaev, Novokshenov)

$$\frac{d \psi}{d z} = A(z) \psi \qquad A(z) = z^{-2} \begin{pmatrix} 0 & 0 \\ q & 0 \end{pmatrix} + z^{-1} \begin{pmatrix} -p/q & t/q \\ -1 & p/q \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

where
$$q=q(t,\sigma,\eta)$$
 solves PIII₃ and $p=p(t,\sigma,\eta)=\frac{t}{2}\frac{\mathrm{d}q}{\mathrm{d}t}-\frac{q}{2}$

Start from a 2 x 2 linear system

$$\frac{\mathrm{d}}{\mathrm{d}z}\begin{pmatrix} Y_1(z) \\ Y_2(z) \end{pmatrix} = \begin{pmatrix} A_{11}(z) & A_{12}(z) \\ A_{21}(z) & A_{22}(z) \end{pmatrix} \begin{pmatrix} Y_1(z) \\ Y_2(z) \end{pmatrix} \qquad \xrightarrow{\qquad \qquad Y_2 = f_1\left(Y_1, \frac{\mathrm{d}}{\mathrm{d}z}Y_1\right)} \\ \xrightarrow{\qquad \qquad \qquad } \frac{\mathrm{d}}{\mathrm{d}z}Y_2 = f_2\left(Y_1, Y_2\right) \end{cases} \qquad \text{2nd order equation for } Y_1$$

Define
$$\tilde{Y}_1(z) = Y_1(z)/\sqrt{A_{12}(z)}$$
 \Longrightarrow $\left(-\partial_z^2 + W(z)\right) \widetilde{Y}_1(z) = 0$
$$\text{where} \qquad W(z) = \left(-\det A + A_{11}' - \frac{A_{11}A_{12}'}{A_{12}} - \frac{2A_{12}A_{12}'' - 3(A_{12}')^2}{4A_{12}^2}\right)$$

For Painlevé III 3:

The potential is $(z = e^x)$:

$$W(x) = \frac{p^2 + pq - q(t + q^2)}{q^2} + \frac{t(p+q)}{q(qe^x - t)} + \frac{3t^2}{4(t - qe^x)^2} + \frac{t}{e^x} + e^x + \frac{1}{4}$$

By expanding around
$$q = \infty$$
 (316,044,11)=0

$$\left(-\partial_{z}^{2}+W(z)\right)\widetilde{Y}_{1}(z)=0 \qquad \qquad \left(-\partial_{x}^{2}+\sqrt{t}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)+E(t)\right)\widetilde{Y}_{1}(x)=0$$

mod. Marthion

$$E(1) = t = \frac{1}{4} \log \frac{3}{7}$$

$$9^{-1}/\frac{2}{3\log^{4}} 3(t)$$

$$7 = \frac{1}{3\log^{4}} \log \frac{3}{3}$$

The McCoy-Tracy-Wu operator

$$S_{MTW}$$
: $L^{2}(IR) \longrightarrow L^{2}(IR)$ with Rernel
$$S_{MTW}(x,y) = \frac{e^{-2t^{1/2}}(coshx + coshy)}{cosh(x-y)}$$

The Let telly. Then Show is self-adjoint without asserted spectrum of En Inso and it is of trace claim => its Freaksten det.

det (I+ESmow) is an entire Function of E.

Inverse The inverse of this operator is associated with the Following Liff. eq $\psi(x+i\pi)+\varphi(x-i\pi)=\frac{1}{E}e^{-8t^{1/4}}\cosh \psi(t)$

Relation to Painleve Thin (Mc-T-W, W) $C(+, \sigma) = e^{-4\sqrt{t}} \det \left(1 + \cos(2\pi\sigma) \right) S_{MTW}$

computes Pour III 3 & Function with initial conditions specified by T

$$\frac{\mathrm{d}^2 w}{\mathrm{d}^2 t} = \frac{1}{w} \left(\frac{\mathrm{d}w}{\mathrm{d}t}\right)^2 - \frac{1}{t} \frac{\mathrm{d}w}{\mathrm{d}t} + \frac{2w^2}{t^2} - \frac{2}{t}.$$

Relating the two operators [MF-AG]

Let Un be a basis OF L2(IR) st

Let Pn = 14n> <4n) the ort-prof on 4n.

We go fine $G(x) = (f G) + \sum_{n \in \mathbb{Z}} (\frac{2\pi}{n}) + \sum_{n \in \mathbb{Z}} (\frac{$

New-Shat.

By de Einidion

$$G(S_{MTW}) := E G(E_{N}^{MTW}) - P_{N}$$

Then we Find

I Lace of proef

1 mathier and MTW op community

$$\exists S_N = \underbrace{\xi}_{NO} \underbrace{F_N}_{NO}$$

2 Need to show that

$$E_{n}^{\text{Math}} = t \partial_{\varepsilon} F^{\mu s} \left(\frac{1}{2\pi} \text{ Arcsech} \left(\frac{E_{n}}{2\pi} \right) \right) t$$

- a) AGT correspondence
- b) MTW-W thecrem about
- c) Ryiv Formula For Painleur B-fonction
- 2) NY Blow op relation.

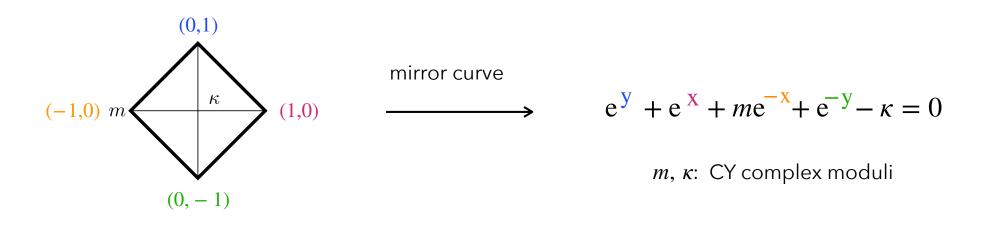
Toric Calabi-Yau threefolds can be classified in terms of two-dimensional polytopes. To each such polytope, we associate a curve known as the mirror curve.

[Batyrev , Chiang-Klemm-Yau-Zaslow, Hori-Vafa - ...].

 e^{ax+by}

Example: local $\mathbb{P}_1 \times \mathbb{P}_1$.

(a,b) vertex



One can quantize such mirror curves by using Weyl's prescription

$$e^{ax+by} \xrightarrow{\text{quantization}} e^{a\hat{x}+b\hat{p}}$$

where \hat{x} , \hat{p} are momentum and position operators on $L^2(\mathbb{R})$ in one dimensional quantum mechanics: $\left[\hat{x},\hat{p}\right]=\mathrm{i}\hbar$

$$e^{\hat{x}}\phi(x) = e^x\phi(x)$$
 $e^{\hat{p}}\phi(x) = \phi(x - i\hbar)$

[Aganagic-Dijkgraaf-Klemm-Mariño-Vafa, Aganagic-Dijkgraaf-Cheng-Krefl-Vafa, Mironov-Morozov, Nekrasov-Shatashvili,...]

Example: local $\mathbb{P}_1 \times \mathbb{P}_1$

The quantization leads to $\mathcal{O}=\mathrm{e}^{\hat{p}}+\mathrm{e}^{-\hat{p}}+m\mathrm{e}^{-\hat{x}}+\mathrm{e}^{\hat{x}}$ whose eigenvalue equation is

$$\phi(x - i\hbar) + \phi(x + i\hbar) + (me^{-x} + e^{x} + \kappa)\phi(x) = 0$$

Theorem: The operator $\rho = \mathcal{O}^{-1}$ has a discrete spectrum $\{E_n^{-1}\}_{n\geq 0}$ and it is of trace class on $L^2(\mathbb{IR})$

[AG-Hatsuda-Mariño, Kashaev-Mariño, Laptev-Schwimmer-Takhtajan]

$$\mathrm{Tr}\rho^N = \sum_{n \ge 0} E_n^{-N} < \infty$$

Example: local $\mathbb{P}_1 \times \mathbb{P}_1$ (genus one mirror curve)

The kernel of the operator
$$\rho$$
 is $\rho(x,y) = \frac{\mathrm{e}^{-u(x,m,\hbar) - u(y,m,\hbar)}}{4\pi\cosh\left(\frac{x-y}{2}\right)}$
[Kashaev-Marino-Zakany]

$$u(x, m, \hbar) = \pi x b/2 + \log \left| \frac{\phi_b(x - \frac{1}{4\pi b} \log m + ib/4)}{\phi_b(x + \frac{1}{4\pi b} \log m - ib/4)} \right| + \frac{1}{8} \log m \qquad \hbar = \pi b^2$$

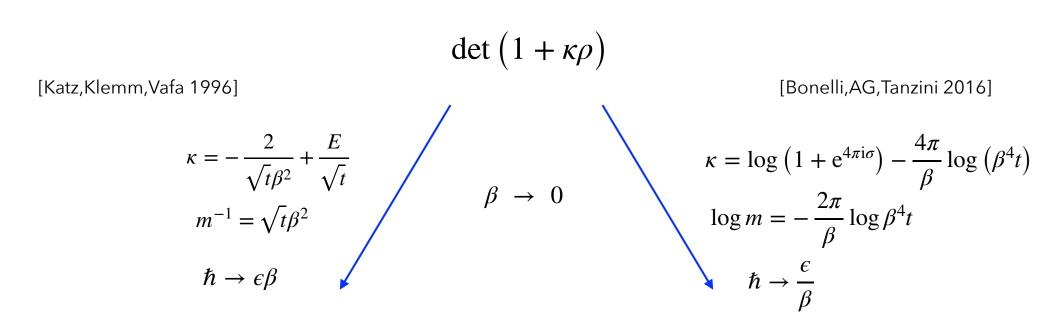
where $\phi_{\rm h}$ is the Faddeev quantum dilogarithm

If Im(b)>0 it reduces to
$$\Phi_b(x) = \frac{(e^{2\pi b(x+c_b)}, e^{2i\pi b^2})_{\infty}}{(e^{2\pi b^{-1}(x+c_b)}, e^{-2i\pi b^{-2}})_{\infty}}$$

$$2c_b = i(b+b^{-1})$$

Two limits

Let us consider the case of local $\mathbb{P}^1 \times \mathbb{P}^1$, we have

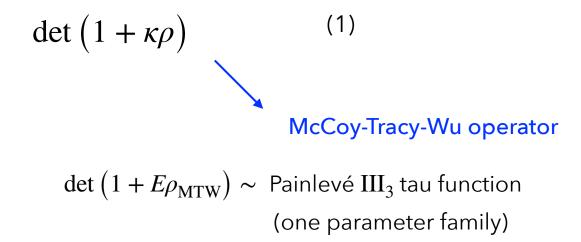


Mod. Mathieu operator

McCoy-Tracy-Wu operator

On Painlevé equations

Let us consider the case of local $\mathbb{P}^1 \times \mathbb{P}^1$, we have



Question 1: what does (1) mean in the context of Painlevé equations?

It computes the tau function of the q-deformed Painlevé equation with specific initial conditions [Bonelli, AG, Tanzini 2017].

Question 2: can we generalise this to other toric CY3?

Quantum curves and q-Painleve

Yes, this holds more in general

Fredholm determinant of quantum mirror curves computes the tau function of q-Painlevé equations with specific initial conditions [Bonelli,AG,Tanzini 17+...].

The construction also extends to higher genus geometries [Gavrylenko, AG, Hao 23].

... all this is related the topological string/spectral theory correspondence and its interplay with Kyiv formula ...

Thank you!

old slides

Example: $qP_{\rm III_3}$ equation corresponding to local CP1

$$G(qZ)G(q^{-1}Z) = \left(\frac{G(Z) - Z}{G(Z) - 1}\right)^2$$

If you rescale $G(Z) = e^2 w(t)$, $Z = e^4 t$, $q = e^\epsilon$ in the limit $\epsilon \to 0$ the above equation reduces to Painleve III₃

$$\frac{d^2w}{dt^2} = \frac{1}{w} \left(\frac{dw}{dt}\right)^2 - \frac{1}{t} \frac{dw}{dt} + \frac{2w^2}{t^2} - \frac{2}{t}$$

Recall: we can write the solution to PIII₃ as

$$w(t, \sigma, \eta) = \sqrt{t} e^{-2\pi i \eta} \left(\frac{\tau(t, \sigma, \eta)}{\tau(t, \sigma + \frac{1}{2}, \eta)} \right)^{2}$$
tau function

Likewise we write the solution to $qPIII_3$ as

$$G(Z, q, u, s) = Z^{1/2} \left(\frac{\tau(Z, q, u, s)}{\tau(Zq, q, u, s)} \right)^{2}$$
q-tau function