Floer-theoretic filtration on Painlevé Hitchin systems

Filip Zivanovi¢

Simons Center for Geometry and Physics

Joint work with Szilard Szabé
Alfréd Rényi Institute of Mathematics

Web-seminar on Painlevé Equations and related topics
Zoom, 26. June 2024.



Painlevé equations ~~ Hitchin moduli spaces
Py, Py, ..., Py, all 2-dimensional
We prove: Only Py, Py, Py, Py; admit C*-actions

[Ritter-Z. '23] Hamiltonian Floer theory + C*-action on
real-symplectic Y = filtration .% on H*(Y') by cup ideals

e We compute .# for P; ;v and compare with P = W on H?

o [Ritter-Z. '23]: the same for parabolic Higgs moduli dim .#; = 2

@ Qutcome: & C P for Painlevé, but % D P for parabolic

@ Uniformising both families: .% |2 = .4, multiplicity filtration
(scheme theoretic on the nilpotent core)



Very brief intro to symplectic manifolds

Def: Symplectic manifold (Y,w) is a manifold (..) with a
non-degenerate (w(X,:) =0 = X = 0) closed (dw = 0) 2-form w.
@ Necessarily even-dimensional

o Simplest example: (C" = R2" wgy = Y, dx; A dy;),

e Darboux chart: dw =0 = (Y,w) locally = (R?", wgg)

e Kahler manifolds (X,w, /), g = w(+,/-) is Riemannian.

°

In particular, smooth (quasi)projective varieties /C.



Very brief intro to Floer theory

@ Floer theory studies Hamiltonian flows = "symplectic gradients”
w(+, Xy) = dH on symplectic manifolds (Y,w).
@ Given a Hamiltonian H : Y — R, Floer chain complex
CF*(H) :=K(x:S' = Y | x = Xy(x))
d := counts Osu + 1(0ru — Xy) = 0.
(Morse complex for Ay : LM — R)
@ Upshot: For closed Y, HF*(H) = H*(Y).
@ For open Y and a “small” H; still get HF*(Hs) = H*(Y).
o for non-small H issue: non-compactness of Y
— assume (Y,w) Liouville = (X x [1,00),d(Ra)) at co
+ H), = AR at oo, A > 0 generic
— symplectic cohomology SH*(Y) := limy_,oc HF*(H\).

Example: SH*(T*Q) = Hgim m—+(£LQ)



Symplectic C*-manifolds (Ritter-Z.)

Definition

Symplectic C*-manifold is a connected symplectic manifold (Y,w, /)
admitting a pseudoholomorphic C*-action ¢ whose S!-part is Hamiltonian.

@ Assume C*-action is contracting, § := Y< s compact and
Vy,3 lim t-y €5.
C*>5t—0

@ The other limit defines the Core(Y):={y € Y |3 lim ¢t-y}.

C*3t—o0

1. Core(Y) is compact and connected.

2. It is deformation retract of Y when (Y, Core(Y)) CW-pair
3. H*(Y) = @, H* (Sa)[—1al

= 3! min minimum of H (minimal component).




Symplectic C*-manifolds over a convex base

o Attempt to define SH*(Y') as for Liouville (Y almost never Liouville)
Issue: Analysis does not work (apriori).

@ Motivated by examples, impose further: there is a proper map
V(Y \ compact,/) = (X x [1,0),Ig), ViXs1 = (f >0)-Rp.
@ Such Y we call Symplectic C*-manifolds over a convex base.

@ Main examples: Equivariant projective morphisms p: Y — X to
affine X with a contracting C*-action.
Here equivariantly embed X C C" =: B and compose with p to get W.

@ In particular: toric varieties, symplectic resolutions, weighted
homogeneous singularities, quotient singularities, Higgs moduli spaces



Construction of Symplectic cohomology

Theorem (Construction of SH)

Given a symplectic C*-manifold over a convex base (Y ,w, I, ),
SH(Y,p) = lim HF(F) is a well-defined unital ring (F = AH at infinity)

Considering “clean” Hamiltonians AH, for p-generic \, we get:

Proposition

ca(Y)=0 = SH*(Y,¢)=0.
(idea: support of HF*(AH) shifts negatively, linearly with \)




Application: Filtration on cohomology

e Canonical c§ : QH*(Y) =2 HF*(Fsmall siope) — HF*(F)

o Filtration ﬁf :=kercy “survival time”

Proposition

3 Floer-theoretic filtration Zy (QH*(Y)) by ideals on the ring QH*(Y).
If SH*(Y) = 0, it exhausts it, otherwise define F{ = QH*(Y)

o .F¥ is compatible with grading = get filtrations .Z¥(QH*(Y)).
e Although SH*(Y, ) is usually p-independent, . %% can depend on ¢!
@ Specialise at T =0 (Novikov K={>"_a,T™ |R > r, = +o0})

= filtration .7\ on H*(Y,B) by cup-ideals,

rkx %) = rkp7p ).



Lower bounds on filtration

@ Using clean Hamiltonian AH we get the energy spectral sequence

SaH*(Fa)[—1r(Sa)]l = HF*(AH)

where 2 | ux(Fa) computable via weights T, Y = ¢C,,,.
o When Ho%(Y) =0 get

H*(3a)[=1(Sa)] = HF*(AH)

@ The continuation maps ¢} : @ H*(Sa)[—ta] = BaH* (Fa)[—1aA(Sa)]

Proposition

rk(FA(H (Y Zbk o (§ar) = br—py (50) (Ba)-




Survival of the minimal component

o Assuming that H°#(Y) = 0, recall the continuation map becomes:
¢y BaH* (o)~ ta]l = BaH*(Fa)[—1A(Ta)]

Proposition

Assume H°%(Y) =0 and \ < 1/(maz absolute weight of Fmin)-
Xl @) = 1 i) iG] + (T tErms),

hence

FE\C D H BaiB)—pal.

a7min




Spectral sequence reads the filtration

@ On C" (Liouville), use a convex Hamiltonian H) that is linear at
infinity, and the action functional Ay to filter CF*(H,).

Projecting via V : Y — B, can use the modification of [McLean—Ritter'18]
filtration on B to get filtration on CF*(H)), that follows the value of
moment map H, such that the continuation maps CF*(Hy) C CF*(Hy).

There is a Morse—Bott—Floer spectral sequence
Do H* (Sa)—1al & B H*(Bpg)[—1ip,s] = SH*(Y, ¢), where

UgBps = {H = Hp} N YZ/™, ¢'(Hp) =: T, = X (k,m) = 1.

Proposition (Spectral sequence reads the filtration)
x € FY & the columns having T, < X kill x € Ef’q = H*(Y).




C*-action on Painlevé moduli spaces

@ Ordinary Higgs moduli M := {[E, 0] | stable pairs}/gauge have
natural C*-action induced from the Higgs field
t-(E,0) = (E,tf). It acts t - Q; = t£2; on holo-symplectic form.

@ Painlevé spaces are irregular Higgs moduli on CP! with Higgs poles at
|D| = 4. Choices of partition of 4 and linear algebra at poles
distinguish PI, ..., PVI

@ lrregular Higgs moduli boundary conditions at poles need not to be
C*-equivariant = no C*-action apriori.

For PI, PII, PIV, PVI, with a degenerate choice of parameters (residue not
regular semi-simple), there is equivariant C*-action on
hPX . MPX — BPX = C Q, is weight-1 only in PVI.

@ Other Painlevé (PIll, PV) have more than one singular Hitchin fibre,
so no equivariant C*-action on hPX : MPX — C.



Computing .# on Painlevé |

Core(MF") = cuspidal(x? = y3) curve of genus 0.
° (MP')C* = Fo(cusp) Ll F1, Fi = x

° =CoaCs, T =C_18GCs
Q c
o Method [Ritter—Z. ] gives complete description:

1. Lower bounds % /6 D H?, .7y /3 = H*,
2. Unit survival 1 ¢ 9’1/3_
- J1/6 H? Cﬁl/:;



Computing .# on Painlevé |, via spectral sequence

@ Can also use the method from [Ritter—z 1], i.e. spectral sequence
® Bijp =S5, B3 = Stust, Byjp = stust

o
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— §1/6 =H’C 91/3 = H* again.



Computing .# on Painlevé Il, IV, VI
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Upshot: .# is refined by P = W



F on parabolic Higgs moduli M (Ritter-Z7.)

@ Parabolic Higgs moduli of dim = 2 are
Mr = T*E/F, e {0,Zz,Z3,Z4,Z6}

@ projection T*E = E x C — C yields the Hitchin map M — C, and
C*-action from fibre-dilation on T*E makes it equivariant.

@ In [Szabo—Z] describe this in the Higgs moduli language.

o Core(Mr) = Qr-tree of curves, where Qr = Ao, D4, Es, E7, Eg
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@ Upshot: . is a refinement of P = W, for all M.



Comparison with multiplicity fitration

@ Noticed that .# =imaginary root labels
2 4 6 5 4

LN
[ 3]
o —

o Fact: Imaginary root of @Qr depicts the multiplicities of the
components of Core(Mr)
e h: M — C" = Core(M) = h~}(0) = U;m;E; (scheme)
e Core(M) is Lagrangian = E; equidimensional
— [Ej] is a base on H™d(M)
= filtration .# := {[Ej] | m; < k} on H™4(.#).

Fp(H™4(M)) = A (rank-wise), for *all* dimc = 2 Higgs moduli M.

e Higher dimensions? (Hilb"(Mr), in progress with S. Minets)



Thank you for listening.



