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Simons Center for Geometry and Physics

Joint work with Szilárd Szabó
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Outline

Painlevé equations ⇝ Hitchin moduli spaces

PI ,PII , . . . ,PVI , all 2-dimensional

We prove: Only PI ,PII ,PIV ,PVI admit C∗-actions

[Ritter-Ž. ’23] Hamiltonian Floer theory + C∗-action on
real-symplectic Y =⇒ filtration F on H∗(Y ) by cup ideals

We compute F for PI ,II ,IV and compare with P = W on H2

[Ritter-Ž. ’23]: the same for parabolic Higgs moduli dimMΓ = 2

Outcome: F ⊂ P for Painlevé, but F ⊃ P for parabolic

Uniformising both families: F |H2 = M , multiplicity filtration
(scheme theoretic on the nilpotent core)



Very brief intro to symplectic manifolds

Def: Symplectic manifold (Y , ω) is a manifold (..) with a
non-degenerate (ω(X , ·) = 0 =⇒ X = 0) closed (dω = 0) 2-form ω.

Necessarily even-dimensional

Simplest example: (Cn = R2n, ωstd =
∑

i dxi ∧ dyi ),

Darboux chart: dω = 0 =⇒ (Y , ω) locally ∼= (R2n, ωstd)

Kähler manifolds (X , ω, I ), g = ω(·, I ·) is Riemannian.

In particular, smooth (quasi)projective varieties /C.



Very brief intro to Floer theory

Floer theory studies Hamiltonian flows = ”symplectic gradients”
ω(·,XH) = dH on symplectic manifolds (Y , ω).

Given a Hamiltonian H : Y → R, Floer chain complex
CF ∗(H) := K⟨x : S1 → Y | ẋ = XH(x)⟩
d := counts ∂su + I (∂tu − XH) = 0.
(Morse complex for AH : LM → R)
Upshot: For closed Y , HF ∗(H) ∼= H∗(Y ).

For open Y and a “small” Hδ still get HF ∗(Hδ) ∼= H∗(Y ).

for non-small H issue: non-compactness of Y
=⇒ assume (Y , ω) Liouville = (Σ× [1,∞), d(Rα)) at ∞

+ Hλ = λR at ∞, λ > 0 generic
=⇒ symplectic cohomology SH∗(Y ) := limλ→∞HF ∗(Hλ).

Example: SH∗(T ∗Q) ∼= HdimM−∗(LQ)



Symplectic C∗-manifolds (Ritter-Ž.)

Definition

Symplectic C∗-manifold is a connected symplectic manifold (Y , ω, I )
admitting a pseudoholomorphic C∗-action φ whose S1-part is Hamiltonian.

Assume C∗-action is contracting, F := Y C∗
is compact and

∀y ,∃ lim
C∗∋t→0

t · y ∈ F.

The other limit defines the Core(Y ) := {y ∈ Y | ∃ lim
C∗∋t→∞

t · y}.

Theorem

1. Core(Y ) is compact and connected.
2. It is deformation retract of Y when (Y ,Core(Y )) CW-pair
3. H∗(Y ) ∼=

⊕
αH

∗(Fα)[−µα]
=⇒ ∃!Fmin minimum of H (minimal component).



Symplectic C∗-manifolds over a convex base

Attempt to define SH∗(Y ) as for Liouville (Y almost never Liouville)
Issue: Analysis does not work (apriori).

Motivated by examples, impose further: there is a proper map

Ψ : (Y \ compact, I ) → (Σ× [1,∞), IB), Ψ∗XS1 = (f > 0) · RB .

Such Y we call Symplectic C∗-manifolds over a convex base.

Main examples: Equivariant projective morphisms p : Y → X to
affine X with a contracting C∗-action.
Here equivariantly embed X ⊂ Cn =: B and compose with p to get Ψ.

In particular: toric varieties, symplectic resolutions, weighted
homogeneous singularities, quotient singularities, Higgs moduli spaces



Construction of Symplectic cohomology

Theorem (Construction of SH)

Given a symplectic C∗-manifold over a convex base (Y , ω, I , φ),
SH(Y , φ) := lim−→λ

HF (F ) is a well-defined unital ring (F = λH at infinity)

Considering “clean” Hamiltonians λH, for φ-generic λ, we get:

Proposition

c1(Y ) = 0 =⇒ SH∗(Y , φ) = 0.
(idea: support of HF ∗(λH) shifts negatively, linearly with λ)



Application: Filtration on cohomology

Canonical c∗λ : QH∗(Y ) ∼= HF ∗(Fsmall slope)→HF ∗(Fλ)

Filtration Fφ
λ := ker c∗λ “survival time”

Proposition

∃ Floer-theoretic filtration Fφ
λ (QH

∗(Y )) by ideals on the ring QH∗(Y ).
If SH∗(Y ) = 0, it exhausts it, otherwise define Fφ

+∞ := QH∗(Y )

Fφ is compatible with grading =⇒ get filtrations Fφ(QHk(Y )).

Although SH∗(Y , φ) is usually φ-independent, Fφ can depend on φ!

Specialise at T = 0 (Novikov K = {
∑

n anT
rn | R ∋ rn → +∞})

=⇒ filtration Fφ
B,λ on H∗(Y ,B) by cup-ideals,

rkKFλ = rkBFB,λ.



Lower bounds on filtration

Using clean Hamiltonian λH we get the energy spectral sequence

⊕αH
∗(Fα)[−µλ(Fα)] =⇒ HF ∗(λH)

where 2 | µλ(Fα) computable via weights TFαY = ⊕Cwi .

When Hodd(Y ) = 0 get

⊕αH
∗(Fα)[−µλ(Fα)] ∼= HF ∗(λH)

The continuation maps c∗λ : ⊕αH
∗(Fα)[−µα] → ⊕αH

∗(Fα)[−µλ(Fα)]

Proposition

rk (Fλ(H
k(Y )) ≥

∑
α

bk−µα(Fα)− bk−µλ(Fα)(Fα).



Survival of the minimal component

Assuming that Hodd(Y ) = 0, recall the continuation map becomes:
c∗λ : ⊕αH

∗(Fα)[−µα] → ⊕αH
∗(Fα)[−µλ(Fα)]

Proposition

Assume Hodd(Y ) = 0 and λ < 1/(max absolute weight of Fmin).

c∗λ|H∗(Fmin) = idH∗(Fmin)[−µλ(Fmin)] + (T>0-terms),

hence

Fφ
B,λ ⊂

⊕
α̸=min

H∗(Fα;B)[−µα].



Spectral sequence reads the filtration

On Cn (Liouville), use a convex Hamiltonian Hλ that is linear at
infinity, and the action functional AH to filter CF ∗(Hλ).

Theorem

Projecting via Ψ : Y → B, can use the modification of [McLean–Ritter’18]
filtration on B to get filtration on CF ∗(Hλ), that follows the value of
moment map H, such that the continuation maps CF ∗(Hλ) ⊂ CF ∗(Hλ′).

Corollary

There is a Morse–Bott–Floer spectral sequence⊕
αH

∗(Fα)[−µα]⊕
⊕

H∗(Bp,β)[−µp,β] ⇒ SH∗(Y , φ), where

⊔βBp,β = {H = Hp} ∩ Y Z/m, c ′(Hp) =: Tp = 2πk
m , (k ,m) = 1.

Proposition (Spectral sequence reads the filtration)

x ∈ Fφ
λ ⇔ the columns having Tp ≤ λ kill x ∈ E 0,q

1 = H∗(Y ).



C∗-action on Painlevé moduli spaces

Ordinary Higgs moduli M := {[E , θ] | stable pairs}/gauge have
natural C∗-action induced from the Higgs field
t · (E , θ) = (E , tθ). It acts t · ΩI = tΩI on holo-symplectic form.

Painlevé spaces are irregular Higgs moduli on CP1 with Higgs poles at
|D| = 4. Choices of partition of 4 and linear algebra at poles
distinguish PI , . . . ,PVI

Irregular Higgs moduli boundary conditions at poles need not to be
C∗-equivariant =⇒ no C∗-action apriori.

Theorem

For PI, PII, PIV, PVI, with a degenerate choice of parameters (residue not
regular semi-simple), there is equivariant C∗-action on
hPX : MPX → BPX ∼= C ΩI is weight-1 only in PVI.

Other Painlevé (PIII, PV) have more than one singular Hitchin fibre,
so no equivariant C∗-action on hPX : MPX → C.



Computing F on Painlevé I

Core(MPI ) = cuspidal(x2 = y3) curve of genus 0.

(MPI )C
∗
= F0(cusp) ⊔ F1, Fi ∼= ∗

TF0 = C2 ⊕ C3,TF1 = C−1 ⊕ C6

Method [Ritter-Ž. I] gives complete description:
1. Lower bounds F1/6 ⊃ H2,F1/3 = H∗,
2. Unit survival 1 /∈ F1/3−

=⇒ F1/6 = H2 ⊂ F1/3 = H∗,



Computing F on Painlevé I, via spectral sequence

Can also use the method from [Ritter-Ž. II], i.e. spectral sequence

B1/6 = S1,B1/3 = S1 ⊔ S1,B1/2 = S1 ⊔ S1.

p+q\p

2    •
1 • 
0    • • 
-1 •   •
-2 •   •
-3 •   •
-4 •   •
-5 •   •
-6 •   •
-7 •  •  
-8 •  •  
-9 •  
-10 •  

H*(MPI) H*(B
1/6

)[0] H*(B
1/3

)[2] H*(B
1/2

)[4] H*(B
2/3

)[6] H*(B
5/6

)[8] H*(B
1
)[10]

=⇒ F1/6 = H2 ⊂ F1/3 = H∗ again.



Computing F on Painlevé II, IV, VI

p+q\p

2    •    •
1 •    •
0         • •    •
-1 •    •   •
-2 •    •   •
-3 •    • •  
-4 •    • •  
-5 •  
-6 •  

H*(MPII) H*(B
1/4

)[0] H*(B
1/2

)[2] H*(B
3/4

)[4] H*(B
1
)[6]

p+q\p

2
1 •   •   •
0           • •   •   •
-1 •   •   • •
-2 •   •   • •
-3 •
-4 •

H*(MPIV) H*(B
1/3

)[0] H*(B
2/3

)[2] H*(B
1
)[4]

   •  •  •

p+q\p

2    •  •  •  •  •
1 •   •   •   • •
0    • •   •   •   • •
-1 • •   •   •   • •
-2 • •   •   •   • •
-3 •
-4 •

H*(MPVI) H*(B
1/2

)[0] H*(B
1
)[2] H*(B

3/2
)[2] H*(B

2
)[4]

Upshot: F is refined by P = W



F on parabolic Higgs moduli MΓ (Ritter–Ž.)

Parabolic Higgs moduli of dim = 2 are
MΓ = T ∗E/Γ, Γ ∈ {0,Z2,Z3,Z4,Z6}
projection T ∗E ∼= E × C → C yields the Hitchin map MΓ → C, and
C∗-action from fibre-dilation on T ∗E makes it equivariant.

In [Szabo–Ž.] describe this in the Higgs moduli language.

Core(MΓ) = QΓ-tree of curves, where QΓ = Ã0, D̃4, Ẽ6, Ẽ7, Ẽ8

p+q\p

2 •  •  •  •  •  •  •  •  •
1 • •   • •   • •   • • •
0 • • •   • •   • •   • • •
-1 • • •   •
-2 • • •   •

H*(M
ℤ/6

) H*(B
1/6

)[0] H*(B
1/3

)[0] H*(B
1/2

)[0] H*(B
2/3

)[4] H*(B
5/6

)[0] H*(B
1
)[0] H*(B

7/6
)[0] H*(B

4/3
)[2]

Upshot: F is a refinement of P = W , for all MΓ.



Comparison with multiplicity fitration

Noticed that F=imaginary root labels

Fact: Imaginary root of QΓ depicts the multiplicities of the
components of Core(MΓ)

h : M → Cn =⇒ Core(M) = h−1(0) = ∪imiEi (scheme)

Core(M) is Lagrangian =⇒ Ei equidimensional
=⇒ [Ei ] is a base on Hmid(M)
=⇒ filtration Mk := {[Ei ] | mi ≤ k} on Hmid(M ).

Theorem

FB(H
mid(M)) = M (rank-wise), for *all* dimC = 2 Higgs moduli M.

Higher dimensions? (Hilbn(MΓ), in progress with S. Minets)



The end

Thank you for listening.


