### Floer-theoretic filtration on Painlevé Hitchin systems

Filip Živanović Simons Center for Geometry and Physics

Joint work with Szilárd Szabó Alfréd Rényi Institute of Mathematics

Web-seminar on Painlevé Equations and related topics Zoom, 26. June 2024.

### Outline

- Painlevé equations → Hitchin moduli spaces
- $P_1, P_{II}, \dots, P_{VI}$ , all 2-dimensional
- We prove: Only  $P_I, P_{II}, P_{IV}, P_{VI}$  admit  $\mathbb{C}^*$ -actions
- [Ritter- $\check{Z}$ . '23] Hamiltonian Floer theory  $+ \mathbb{C}^*$ -action on real-symplectic  $Y \implies$  filtration  $\mathscr{F}$  on  $H^*(Y)$  by cup ideals
- We compute  $\mathscr{F}$  for  $P_{I,II,IV}$  and compare with P=W on  $H^2$
- [Ritter- $\check{Z}$ . '23]: the same for *parabolic* Higgs moduli dim  $\mathcal{M}_{\Gamma}=2$
- Outcome:  $\mathscr{F} \subset P$  for Painlevé, but  $\mathscr{F} \supset P$  for parabolic
- Uniformising both families:  $\mathscr{F}|_{H^2}=\mathscr{M}$ , multiplicity filtration (scheme theoretic on the nilpotent core)

## **Very** brief intro to symplectic manifolds

- **Def:** Symplectic manifold  $(Y, \omega)$  is a manifold (..) with a non-degenerate  $(\omega(X, \cdot) = 0 \implies X = 0)$  closed  $(d\omega = 0)$  2-form  $\omega$ .
- Necessarily even-dimensional
- Simplest example:  $(\mathbb{C}^n = \mathbb{R}^{2n}, \omega_{std} = \sum_i dx_i \wedge dy_i),$
- Darboux chart:  $d\omega = 0 \implies (Y, \omega)$  locally  $\cong (\mathbb{R}^{2n}, \omega_{std})$
- Kähler manifolds  $(X, \omega, I)$ ,  $g = \omega(\cdot, I \cdot)$  is Riemannian.
- In particular, smooth (quasi)projective varieties /C.

## **Very** brief intro to Floer theory

- Floer theory studies Hamiltonian flows = "symplectic gradients"  $\omega(\cdot, X_H) = dH$  on symplectic manifolds  $(Y, \omega)$ .
- Given a Hamiltonian  $H: Y \to \mathbb{R}$ , Floer chain complex  $CF^*(H) := \mathbb{K}\langle x: S^1 \to Y \mid \dot{x} = X_H(x)\rangle$   $\mathrm{d} := \mathrm{counts}\ \partial_s u + I(\partial_t u X_H) = 0.$  (Morse complex for  $\mathcal{A}_H: \mathcal{L}M \to \mathbb{R}$ )
- **Upshot:** For closed Y,  $HF^*(H) \cong H^*(Y)$ .
- For open Y and a "small"  $H_{\delta}$  still get  $HF^*(H_{\delta}) \cong H^*(Y)$ .
- for non-small H issue: non-compactness of Y  $\Longrightarrow$  assume  $(Y,\omega)$   $\underline{\text{Liouville}} = (\Sigma \times [1,\infty), d(R\alpha))$  at  $\infty$   $+ H_{\lambda} = \lambda R$  at  $\infty$ ,  $\lambda > 0$  generic  $\Longrightarrow$  symplectic cohomology  $SH^*(Y) := \lim_{\lambda \to \infty} HF^*(H_{\lambda})$ .

### **Example:** $SH^*(T^*Q) \cong H_{\dim M-*}(\mathcal{L}Q)$

# Symplectic $\mathbb{C}^*$ -manifolds (Ritter- $\check{Z}$ .)

#### Definition

**Symplectic**  $\mathbb{C}^*$ -manifold is a connected symplectic manifold  $(Y, \omega, I)$  admitting a pseudoholomorphic  $\mathbb{C}^*$ -action  $\varphi$  whose  $S^1$ -part is Hamiltonian.

- Assume  $\mathbb{C}^*$ -action is *contracting*,  $\mathfrak{F}:=Y^{\mathbb{C}^*}$  is compact and  $\forall y,\exists \lim_{\mathbb{C}^*\ni t\to 0}t\cdot y\in \mathfrak{F}.$
- The other limit defines the  $\operatorname{Core}(Y) := \{ y \in Y \mid \exists \lim_{\mathbb{C}^* \ni t \to \infty} t \cdot y \}.$

#### **Theorem**

- 1. Core(Y) is compact and connected.
- 2. It is deformation retract of Y when (Y, Core(Y)) CW-pair
- 3.  $H^*(Y) \cong \bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}]$
- $\implies \exists ! \mathfrak{F}_{\min} \text{ minimum of } H \text{ (minimal component)}.$

### Symplectic $\mathbb{C}^*$ -manifolds over a convex base

- Attempt to define SH\*(Y) as for Liouville (Y almost never Liouville)
   Issue: Analysis does not work (apriori).
- Motivated by examples, impose further: there is a proper map

$$\Psi: (Y \setminus \mathsf{compact}, I) \to (\Sigma \times [1, \infty), I_B), \ \Psi_* X_{S^1} = (f > 0) \cdot \mathcal{R}_B.$$

- Such Y we call **Symplectic**  $\mathbb{C}^*$ -manifolds over a convex base.
- Main examples: Equivariant projective morphisms  $p: Y \to X$  to affine X with a contracting  $\mathbb{C}^*$ -action. Here equivariantly embed  $X \subset \mathbb{C}^n =: B$  and compose with p to get  $\Psi$ .
- <u>In particular:</u> toric varieties, symplectic resolutions, weighted homogeneous singularities, quotient singularities, Higgs moduli spaces

# Construction of Symplectic cohomology

### Theorem (Construction of SH)

Given a symplectic  $\mathbb{C}^*$ -manifold over a convex base  $(Y, \omega, I, \varphi)$ ,  $SH(Y, \varphi) := \varinjlim_{\lambda} HF(F)$  is a well-defined unital ring  $(F = \lambda H)$  at infinity)

Considering "clean" Hamiltonians  $\lambda H$ , for  $\varphi$ -generic  $\lambda$ , we get:

#### Proposition

$$c_1(Y) = 0 \implies SH^*(Y, \varphi) = 0.$$
 (idea: support of HF\*( $\lambda$ H) shifts negatively, linearly with  $\lambda$ )

# Application: Filtration on cohomology

- Canonical  $c_{\lambda}^*: QH^*(Y) \cong HF^*(F_{\text{small slope}}) \rightarrow HF^*(F_{\lambda})$
- Filtration  $\mathscr{F}^{\varphi}_{\lambda} := \ker c^*_{\lambda}$  "survival time"

#### Proposition

 $\exists$  Floer-theoretic filtration  $\mathscr{F}^{\varphi}_{\lambda}(QH^*(Y))$  by ideals on the ring  $QH^*(Y)$ . If  $SH^*(Y)=0$ , it exhausts it, otherwise define  $\mathscr{F}^{\varphi}_{+\infty}:=QH^*(Y)$ 

- $\mathscr{F}^{\varphi}$  is compatible with grading  $\implies$  get filtrations  $\mathscr{F}^{\varphi}(QH^{k}(Y))$ .
- Although  $SH^*(Y,\varphi)$  is usually  $\varphi$ -independent,  $\mathscr{F}^{\varphi}$  can depend on  $\varphi!$
- Specialise at T=0 (Novikov  $\mathbb{K}=\{\sum_n a_n T^{r_n} \mid \mathbb{R} \ni r_n \to +\infty\}$ )  $\Longrightarrow$  filtration  $\mathscr{F}^{\varphi}_{\mathbb{B},\lambda}$  on  $H^*(Y,\mathbb{B})$  by cup-ideals,  $\mathrm{rk}_{\mathbb{K}}\mathscr{F}_{\lambda}=\mathrm{rk}_{\mathbb{B}}\mathscr{F}_{\mathbb{B},\lambda}$ .

### Lower bounds on filtration

ullet Using clean Hamiltonian  $\lambda H$  we get the energy spectral sequence

$$\oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})] \implies HF^*(\lambda H)$$

where  $2 \mid \mu_{\lambda}(\mathfrak{F}_{\alpha})$  computable via **weights**  $T_{\mathfrak{F}_{\alpha}}Y = \oplus \mathbb{C}_{w_i}$ .

• When  $H^{odd}(Y) = 0$  get

$$\oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})] \cong HF^*(\lambda H)$$

• The continuation maps  $c_{\lambda}^*: \oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}] \to \oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})]$ 

#### Proposition

$$\operatorname{rk}(\mathscr{F}_{\lambda}(H^{k}(Y)) \geq \sum b_{k-\mu_{\alpha}}(\mathfrak{F}_{\alpha}) - b_{k-\mu_{\lambda}}(\mathfrak{F}_{\alpha})(\mathfrak{F}_{\alpha}).$$

### Survival of the minimal component

• Assuming that  $H^{odd}(Y) = 0$ , recall the continuation map becomes:  $c_{\lambda}^* : \bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}] \to \bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})]$ 

#### Proposition

Assume  $H^{odd}(Y)=0$  and  $\lambda<1/(\max absolute weight of \mathfrak{F}_{\min}).$ 

$$c_{\lambda}^*|_{H^*(\mathfrak{F}_{min})} = \mathrm{id}_{H^*(\mathfrak{F}_{min})[-\mu_{\lambda}(\mathfrak{F}_{min})]} + (T^{>0}\text{-}terms),$$

hence

$$\mathscr{F}^{\varphi}_{\mathbb{B},\lambda}\subset \bigoplus_{lpha
eq \min}H^*(\mathfrak{F}_{lpha};\mathbb{B})[-\mu_{lpha}].$$

# Spectral sequence reads the filtration

• On  $\mathbb{C}^n$  (Liouville), use a convex Hamiltonian  $H_{\lambda}$  that is linear at infinity, and the action functional  $\mathcal{A}_H$  to filter  $CF^*(H_{\lambda})$ .

#### Theorem

Projecting via  $\Psi: Y \to B$ , can use the modification of [McLean–Ritter'18] filtration on B to get filtration on  $CF^*(H_\lambda)$ , that follows the value of moment map H, such that the continuation maps  $CF^*(H_\lambda) \subset CF^*(H_{\lambda'})$ .

#### Corollary

$$\bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}] \oplus \bigoplus H^*(B_{p,\beta})[-\mu_{p,\beta}] \Rightarrow SH^*(Y,\varphi), \text{ where }$$

 $\sqcup_{\beta} \mathcal{B}_{p,\beta} = \{ H = H_p \} \cap Y^{\mathbb{Z}/m}, \ c'(H_p) =: T_p = \frac{2\pi k}{m}, \ (k,m) = 1.$ 

### Proposition (Spectral sequence reads the filtration)

$$x \in \mathscr{F}^{\varphi}_{\lambda} \Leftrightarrow \text{the columns having } T_p \leq \lambda \text{ kill } x \in E_1^{0,q} = H^*(Y).$$

### $\mathbb{C}^*$ -action on Painlevé moduli spaces

- Ordinary Higgs moduli  $\mathcal{M} := \{ [E, \theta] \mid \text{stable pairs} \} / \text{gauge have}$  natural  $\mathbb{C}^*$ -action induced from the Higgs field  $t \cdot (E, \theta) = (E, t\theta)$ . It acts  $t \cdot \Omega_I = t\Omega_I$  on holo-symplectic form.
- Painlevé spaces are irregular Higgs moduli on  $\mathbb{CP}^1$  with Higgs poles at |D|=4. Choices of partition of 4 and linear algebra at poles distinguish  $PI,\ldots,PVI$
- Irregular Higgs moduli boundary conditions at poles need not to be  $\mathbb{C}^*$ -equivariant  $\implies$  no  $\mathbb{C}^*$ -action apriori.

#### Theorem

For PI, PII, PIV, PVI, with a degenerate choice of parameters (residue not regular semi-simple), there is equivariant  $\mathbb{C}^*$ -action on  $h^{PX}: \mathcal{M}^{PX} \to \mathcal{B}^{PX} \cong \mathbb{C} \ \Omega_I$  is weight-1 only in PVI.

• Other Painlevé (PIII, PV) have more than one singular Hitchin fibre, so no equivariant  $\mathbb{C}^*$ -action on  $h^{PX}: \mathcal{M}^{PX} \to \mathbb{C}$ .

# Computing F on Painlevé I

- $Core(\mathcal{M}^{PI}) = cuspidal(x^2 = y^3)$  curve of genus 0.
- $(\mathcal{M}^{PI})^{\mathbb{C}^*} = F_0(\operatorname{cusp}) \sqcup F_1, \ F_i \cong *$
- $\bullet \ T_{F_0}=\mathbb{C}_2\oplus\mathbb{C}_3,\,T_{F_1}=\mathbb{C}_{-1}\oplus\mathbb{C}_6$



- Method [Ritter-Ž. I] gives complete description:
  - 1. Lower bounds  $\mathscr{F}_{1/6} \supset H^2, \mathscr{F}_{1/3} = H^*$ ,
  - 2. Unit survival  $1 \notin \mathscr{F}_{1/3}$

$$\implies \mathscr{F}_{1/6} = H^2 \subset \mathscr{F}_{1/3} = H^*$$
,

## Computing $\mathscr{F}$ on Painlevé I, via spectral sequence

- Can also use the method from [Ritter-Ž. II], i.e. spectral sequence
- $B_{1/6} = S^1, B_{1/3} = S^1 \sqcup S^1, B_{1/2} = S^1 \sqcup S^1.$



|   | p+q\p | H*(M <sup>PI</sup> ) | H <sup>*</sup> (B <sub>1/6</sub> )[0] | H <sup>*</sup> (B <sub>1/3</sub> )[2] | H <sup>*</sup> (B <sub>1/2</sub> )[4] | H*(B <sub>2/3</sub> )[6] | H <sup>*</sup> (B <sub>5/6</sub> )[8] | H'(B <sub>1</sub> )[10] |
|---|-------|----------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------|---------------------------------------|-------------------------|
|   | 2     | Ó                    |                                       |                                       |                                       |                          |                                       |                         |
|   | 1     |                      | 9                                     |                                       |                                       |                          |                                       |                         |
|   | 0     | ·                    |                                       |                                       |                                       |                          |                                       |                         |
|   | -1    |                      |                                       | •                                     |                                       |                          |                                       |                         |
|   | -2    |                      |                                       | • •                                   |                                       |                          |                                       |                         |
| ١ | -3    |                      |                                       |                                       |                                       |                          |                                       |                         |
|   | -4    |                      |                                       |                                       |                                       |                          |                                       |                         |
|   | -5    |                      |                                       |                                       |                                       |                          |                                       |                         |
|   | -6    |                      |                                       |                                       |                                       |                          |                                       |                         |
|   | -7    |                      |                                       |                                       |                                       |                          | •                                     | •                       |
|   | -8    |                      |                                       |                                       |                                       |                          | •                                     | •                       |
|   | -9    |                      |                                       |                                       |                                       |                          |                                       | •                       |
|   | -10   |                      |                                       |                                       |                                       |                          |                                       | •                       |
|   |       |                      |                                       |                                       |                                       |                          |                                       |                         |

$$\implies \mathscr{F}_{1/6} = H^2 \subset \mathscr{F}_{1/3} = H^*$$
 again.

# Computing F on Painlevé II, IV, VI



Upshot:  $\mathscr{F}$  is refined by P = W

# ${\mathscr F}$ on parabolic Higgs moduli ${\mathcal M}_\Gamma$ (Ritter–Ž.)

- Parabolic Higgs moduli of dim = 2 are  $\mathcal{M}_{\Gamma} = T^*E/\Gamma, \ \Gamma \in \{0, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6\}$
- projection  $T^*E \cong E \times \mathbb{C} \to \mathbb{C}$  yields the Hitchin map  $\mathcal{M}_{\Gamma} \to \mathbb{C}$ , and  $\mathbb{C}^*$ -action from fibre-dilation on  $T^*E$  makes it equivariant.
- In [Szabo-Ž.] describe this in the Higgs moduli language.
- $\operatorname{Core}(\mathcal{M}_{\Gamma}) = \mathcal{Q}_{\Gamma}$ -tree of curves, where  $\mathcal{Q}_{\Gamma} = \widetilde{\mathcal{A}}_{0}, \widetilde{\mathcal{D}}_{4}, \widetilde{\mathcal{E}}_{6}, \widetilde{\mathcal{E}}_{7}, \widetilde{\mathcal{E}}_{8}$



| p+q\p | $H^{\scriptscriptstyle{t}}(\mathcal{M}_{\scriptscriptstyle{\mathbb{Z}/\!6}})$ | H*(B <sub>1/6</sub> )[0] | H <sup>*</sup> (B <sub>1/3</sub> )[0] | H*(B <sub>1/2</sub> )[0] | H*(B <sub>2/3</sub> )[4] | H <sup>*</sup> (B <sub>5/6</sub> )[0] | H <sup>*</sup> (B <sub>1</sub> )[0] | H*(B <sub>7/6</sub> )[0] | H*(B <sub>4/3</sub> )[2] |
|-------|-------------------------------------------------------------------------------|--------------------------|---------------------------------------|--------------------------|--------------------------|---------------------------------------|-------------------------------------|--------------------------|--------------------------|
| 2     | ••••••                                                                        |                          |                                       |                          |                          |                                       |                                     |                          |                          |
| 1     |                                                                               | •                        |                                       | •••                      | •••                      | •                                     | •                                   |                          |                          |
| 0     | •                                                                             |                          | • •                                   |                          |                          | •                                     | ĺ                                   |                          |                          |
| -1    |                                                                               |                          |                                       |                          |                          |                                       | •                                   | •                        |                          |
| -2    |                                                                               |                          |                                       |                          |                          |                                       | •                                   | •                        |                          |

• Upshot:  $\mathscr{F}$  is a refinement of P=W, for all  $\mathcal{M}_{\Gamma}$ .

# Comparison with multiplicity fitration

• Noticed that  $\mathscr{F}=$ imaginary root labels



- Fact: Imaginary root of  $Q_{\Gamma}$  depicts the multiplicities of the components of  $\operatorname{Core}(\mathcal{M}_{\Gamma})$
- $h: \mathcal{M} \to \mathbb{C}^n \implies \operatorname{Core}(\mathcal{M}) = h^{-1}(0) = \cup_i m_i E_i$  (scheme)
- $\operatorname{Core}(\mathcal{M})$  is Lagrangian  $\Longrightarrow E_i$  equidimensional  $\Longrightarrow [E_i]$  is a base on  $H^{mid}(\mathcal{M})$   $\Longrightarrow$  filtration  $\mathcal{M}_k := \{[E_i] \mid m_i \leq k\}$  on  $H^{mid}(\mathcal{M})$ .

#### **Theorem**

$$\mathscr{F}_{\mathbb{B}}(H^{mid}(\mathcal{M}))=\mathscr{M}\ (\mathit{rank-wise}),\ \textit{for *all*}\ dim_{\mathbb{C}}=2\ \textit{Higgs moduli}\ \mathcal{M}.$$

• Higher dimensions? ( $\mathrm{Hilb}^n(\mathcal{M}_{\Gamma})$ , in progress with S. Minets)

The end

Thank you for listening.