一対比較型測定における因子構造の探索的推定

分寺 杏介

神戸大学 経営学研究科

杉山剛

岡田 謙介

株式会社リクルートマネジメントソリューションズ 東京大学 教育学研究科

bunji@bear.kobe-u.ac.jp

日本計算機統計学会第39回シンポジウム

2025年11月9日

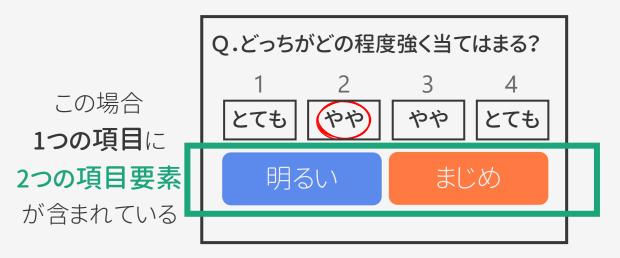
心理学でよく使われる質問の形式

■リッカート尺度


一つ一つの項目について「程度」を答える e.g., 自分に当てはまる程度, 賛成する程度

■ 系統的バイアスの影響を受けやすい

中心化傾向…5段階なら3を選びやすい


黙従傾向(寛大化傾向)…内容とは無関係に「あてはまる」を選びやすい

フェイキング…自分がよく見えるように意 図的に回答を変える など

Single-Stimulus (SS); Likert scale

バイアスが発生しにくい質問方法

■ (多肢)強制選択式(Forced-Choice; FC)

複数の項目要素の中から回答する形式

- 最も当てはまる/らないもの
- 当てはまる順にランキング
- ▶ 中心化傾向などは起こり得ない フェイキングもかなり抑えられる

Single-Stimulus (SS); Likert scale

FCのほうが妥当性が高いという先行研究あり (e.g., Christiansen et al., 2005 Salgado & Táuriz, 2014

一対比較(多肢選択)心理測定の作り方

■基本的な流れ

因子構造を決める

項目(要素)を用意

- ▶ リッカート式などによってデータを収集
- ► EFAまたはCFAによって因子構造を決定
- 2 異なる因子の項目要素を組み合わせる

様々な条件を考慮して

(因子の組のバランス,逆転項目,社会的望ましさ etc.)

3 項目(要素)パラメタを推定する

例:OPQ32

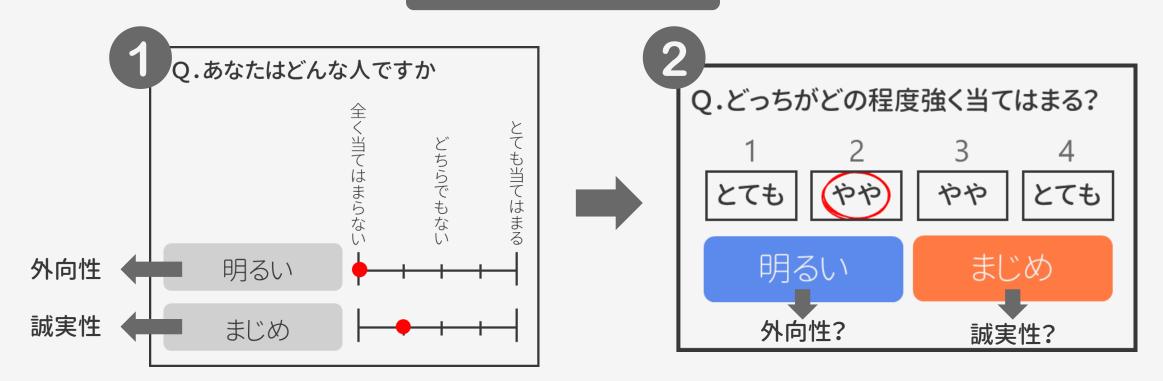
(職務行動に関するアセスメントツールとして最も有名なものの一つ)

Relationships with People:

- Influence: Persuasive, Controlling, Outspoken, Independent Minded
- · Sociability: Outgoing, Affiliative, Socially Confident
- · Empathy: Modest, Democratic, Caring

Thinking Style:

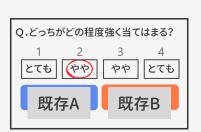
- · Analysis: Data Rational, Evaluative, Behavioural
- · Creativity and Change: Conventional, Conceptual, Innovative, Variety Seeking, Adaptable
- Structure: Forward Thinking, Detail Conscious, Conscientious, Rule Following

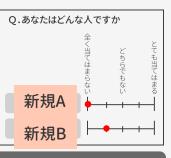

Feelings and Emotions:

- Emotions: Relaxed, Worrying, Tough-minded, Optimistic, Trusting, Emotionally Controlled
- Dynamism: Vigorous, Competitive, Achieving, Decisive

	Most	Least
I like to discuss abstract concepts	•	0
I enjoy interpreting statistics	•	0
I feel that people are honest	•	0

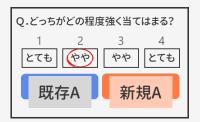
▶ リッカート測定で推定された因子構造が一対比較でも同一である

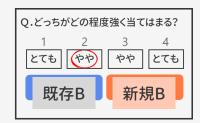

項目要素と因子の対応関係



比較対象によらず因子構造が同じなのか? という点についてはほぼ検証されていない

- 一対比較型測定を前提とした状況で因子構造を**探索的に**決定したい
- 【メリット1】因子構造の不変性をデータから検証できるようになる
 - 一般的なモデル(TIRT:後述)でもモデル適合度は評価可能だが項目(要素)レベルでの評価を行うためにはモデル拡張が必要
- ■【メリット2】自然な形で新規項目要素を提示して因子構造を推定できる


従来の方法だと



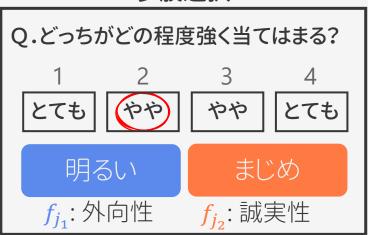
同じ見た目には新規項目を入れられない

提案手法がうまくいけば

同じ見た目の中に混ぜられるようになる

研究の目的(【メリット2】のイメージ)

項目(要素)セットを 拡張したい


すでに因子構造と 項目要素が用意されている 尺度において

作った新しい項目要素が どの因子にかかるのかを 推定したい

e.g., Hommel et al. (2021)

Thurstonian IRTモデル多値版 (Brown and Maydeu-Olivares, 2018)

多肢選択

μ: 項目要素の選好の平均

λ: 因子負荷

 η :因子得点(特性值)

2つの項目要素 (j_1,j_2) はそれぞれ異なる因子 (f_{i_1},f_{j_2}) を測定する

$$X_{ij}^* = \underbrace{u_{ij_2}} - u_{ij_1}$$

$$X_{ij}^* = u_{ij_2} - u_{ij_1}$$

$$X_{ij}^* = \begin{cases} 1 & \text{if} & X_{ij}^* < \alpha_{j,2} \\ c & \text{if} & \alpha_{j,c} \le X_{ij}^* < \alpha_{j,c+1} \\ C & \text{if} & X_{ij}^* \ge \alpha_{j,c} \end{cases}$$

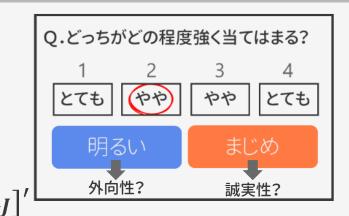
$$u_{ij_2} = \mu_{j_2} + \lambda_{j_2} \eta_{if_{j_2}} + \varepsilon_{ij_2} \qquad \varepsilon_{ij_2} \sim N(0, \Psi_{j_2}^2)$$

■ したがって (j_1, j_2) 間の比較における選択確率は

Φ(・) ▶ 標準正規分布の累積分布関数

正規累積
モデル
$$P(X_{ij} = c | \boldsymbol{\eta}_i) = \begin{cases} 1 - \Phi(u_{j2} - u_{j1} - \alpha_{j,2}) & \text{if} & c = 1 \\ \Phi(u_{j2} - u_{j1} - \alpha_{j,c}) - \Phi(u_{j2} - u_{j1} - \alpha_{j,c+1}) & \text{if} & 1 < c < C \\ \Phi(u_{j2} - u_{j1} - \alpha_{j,c}) & \text{if} & c = C \end{cases}$$

▶ 以後 $OP(X_{ij} = c)$ と表記します。


Ordered Probit **の略です**。

モデルの拡張(因子)

■ TIRTでは通常,各項目要素は1つの因子にのみ負荷量を持つ

例:6因子構造の尺度の項目 j について(f_{j1} , f_{j2}) = (1,3)のとき

$$\boldsymbol{\Lambda}_{j} = \begin{bmatrix} \boldsymbol{\lambda}_{j1} \\ \boldsymbol{\lambda}_{j2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\lambda}_{j1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \boldsymbol{\lambda}_{j2} & 0 & 0 & 0 \end{bmatrix} \quad \blacktriangleright \quad \boldsymbol{\Lambda} = \begin{bmatrix} \boldsymbol{\Lambda}_{1} & \boldsymbol{\Lambda}_{2} & \cdots & \boldsymbol{\Lambda}_{J} \end{bmatrix}'$$

- 今回は「どの因子に負荷量をもつか」を推定したい
 - ▶ すべての因子負荷を独立に推定する (Chen et al., 2021の考え方を利用)

例:項目jの要素 j_2 の因子を推定したいとき

$$\Lambda_{j} = \begin{bmatrix} \lambda_{j1} \\ \lambda_{j2} \end{bmatrix} = \begin{bmatrix} \lambda_{j1} & 0 & 0 & 0 & 0 & 0 \\ \lambda_{j2}^{(1)} & \lambda_{j2}^{(2)} & \lambda_{j2}^{(3)} & \lambda_{j2}^{(4)} & \lambda_{j2}^{(5)} & \lambda_{j2}^{(6)} \end{bmatrix}$$

 λ_{jk} $\lambda_{jk}^{(f)}$ 上付き添字なし 上付き添字あり $\mathsf{CFA要素}$ $\mathsf{EFA要素}$

因子負荷行列の設定(通常のTIRT)

項目		因子A	因子B	因子C	因子D
1	要素1				
	要素2				
2	要素3				
	要素4				
3	要素5				
	要素6				
4	要素7				
	要素8				0
5	要素9	0			
	要素10				0

$$\Lambda = \begin{bmatrix}
\lambda_{11} \\
\lambda_{12} \\
\lambda_{21} \\
\lambda_{22} \\
\lambda_{31} \\
\lambda_{32} \\
\lambda_{41} \\
\lambda_{42} \\
\lambda_{51} \\
\lambda_{52}
\end{bmatrix} = \begin{bmatrix}
\lambda_{11} & 0 & 0 & 0 \\
0 & \lambda_{12} & 0 & 0 \\
0 & 0 & \lambda_{22} & 0 \\
0 & 0 & \lambda_{22} & 0 \\
0 & 0 & \lambda_{31} \\
0 & 0 & \lambda_{32} & 0 \\
0 & 0 & \lambda_{41} & 0 & 0 \\
0 & 0 & 0 & \lambda_{42} \\
\lambda_{51} & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{52}
\end{bmatrix}$$

因子負荷行列の設定(今回の方法)

項目		因子A	因子B	因子C	因子D
1	要素1				
	要素2	?	?	?	?
2	要素3				
	要素4	?	?	?	?
3	要素5				
	要素6				
4	要素7		0		
	要素8				
5	要素9	0			
	要素10				

$$\Lambda = \begin{bmatrix}
\lambda_{11} \\
\lambda_{12} \\
\lambda_{21} \\
\lambda_{21} \\
\lambda_{31} \\
\lambda_{32} \\
\lambda_{41} \\
\lambda_{42} \\
\lambda_{51} \\
\lambda_{52}
\end{bmatrix} = \begin{bmatrix}
\lambda_{11} & 0 & 0 & 0 \\
\lambda_{12}^{(1)} & \lambda_{12}^{(2)} & \lambda_{12}^{(3)} & \lambda_{12}^{(4)} \\
\lambda_{21}^{(1)} & \lambda_{22}^{(2)} & \lambda_{22}^{(3)} & \lambda_{22}^{(4)} \\
0 & 0 & 0 & \lambda_{31} \\
0 & 0 & \lambda_{32} & 0 \\
0 & \lambda_{41} & 0 & 0 \\
0 & 0 & 0 & \lambda_{42} \\
\lambda_{51} & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{52}
\end{bmatrix}$$

EFA要素とCFA要素を組み合わせて ペアを作成する ■ 実用上は(完全)単純構造が望ましい

TIRTモデルは一般的にこれを仮定しているため リッカート尺度でも最終的には単純構造を勝手に(?)与えている場合もある

■ 因子負荷パラメータの非ゼロ成分の数を制限する

Horseshoe事前分布を利用した スパース推定にしよう!

- 事前分布のscaleパラメータをうまく変えることで
 - あまり大きくないパラメータはshrinkが効いてゼロに近づく
 - 十分に大きいパラメータはshrinkがほぼ効かなくなり過小推定を抑える
- 具体的な設定 (Piironen & Vehtari, 2017 に基づく) 抄録から改良しました

$$(\tau^2 = 0.001)$$
のとき e.g., $\tilde{\lambda}_{ik}^{(f)} = 1 \rightarrow \lambda_{ik}^{(f)} \sim Normal(0, 0.001)$

e.g.,
$$\tilde{\lambda}_{jk}^{(f)} = 100 \rightarrow \lambda_{jk}^{(f)} \sim Normal(0, 10)$$

$$\lambda_{jk}^{(f)} \sim Normal\left(0, \tau^2 \tilde{\lambda}_{jk}^{(f)^2}\right)$$

- グローバルshrinkageの強さで非ゼロ要素の数を制限する
 - ▶ Piironen & Vehtari, 2017 に基づいて設定

(例)6因子構造で、各項目について1つだけ非ゼロが想定される場合

その他のパラメータの事前分布 他のパラメータは一般的なTIRTと同様

$$\tilde{\lambda}_{jk}^{(f)} \sim Cauchy^+(0,1), \qquad \alpha_j \sim Normal(0,5). \quad \lambda_{jk} \sim Normal^+(1,3)$$

 $m{\eta}_i \sim MVN(m{0}_M, m{\Sigma}_{M imes M})$ $m{\Sigma}_{M imes M} \sim LKJCorr(2)$ EFA要素の因子負荷の符号は既知 $m{\Sigma}_{m imes M}$ 正の制約で推定して,必要に応じて反転

まずは「理想的な状況」での挙動を見ておく

■ 条件設定 ※因子数 *M* = 6 で固定

回答者数 N = 200,500,1000

総項目要素数 J_T = (30,60) ▶ 実際には2つの選択肢で1項目

探索する項目要素の数 $J_E = (1, 5, 15)$

探索する項目要素の因子負荷 $\lambda_{jk}^{(\text{true})} = (0.5, 1, 1.5)$

因子間相関 r = (0, 0.3)

真値 各因子の項目要素数が J_T/M 個ずつ,かつペアが同じ因子にならないように

 $\lambda_{jk} \sim Unif(0.5,1.5)$ **D** 因子構造と符号はランダムに決定 $\alpha_{j,2} \sim Unif(-3,-1.5)$, for (c in 3:C) $\gamma_{j,c} \sim Unif(\gamma_{j,c-1} + 0.5, \gamma_{j,c-1} + 1)$ $\eta \sim MVN(\mathbf{0}_M, \mathbf{\Sigma}_{M\times M})$

【例】 (J_T, J_E)	= (60,5)の場合
------------------	-------------

_	項目ID	要素1	要素2	
ſ	1	1	2)
J_T	2	3	4	
$\frac{J_T}{2}$	3	5	6	$ I_E $
_	4	7	8	
	5	9	10	J
	6	11	12	
	•	•	•	
	29 30	57	58	
l	30	59	60	

まずは「理想的な状況」での挙動を見ておく

■ 結果の指標

 $(\theta - \hat{\theta})^2$ $\theta - \hat{\theta}$ $Cor(\theta, \hat{\theta})$ • α, η および「CFA要素の λ_{jk} 」のRMSE, Bias, (真値との相関)

• EFA要素について真の因子(true)の $\lambda_{jk}^{(f)}$ の割合,その他の因子の因子負荷 $\left|\lambda_{ik}^{\widehat{(other)}}\right|$

P(true) =
$$\frac{\lambda_{jk}^{(\text{true})^2}}{\sum_{f=1}^{F} \lambda_{jk}^{(f)^2}}$$

EFA要素について真の因子の因子負荷が最大値になった割合 P(max)

MCMC設定

Stanによる推定 (chain=4, warmup=150, sampling=500) \blacktriangleright max $(\hat{R}) < 1.1$ の結果のみ使用

理想的な状況では問題ない挙動を確認

 $J_T = 30$ を記録し忘れていました……

■ 条件設定 ※因子数 M = 6 で固定

回答者数 N = 200,500,1000

総項目要素数 $J_T=(30,60)$ \blacktriangleright 実際には2つの選択肢で1項目

探索する項目要素の数 $J_E = (1, 5, 15)$

探索する項目要素の因子負荷 $\lambda_{ik}^{(\text{true})} = (0.5, 1, 1.5)$

因子間相関 r = (0,0.3)

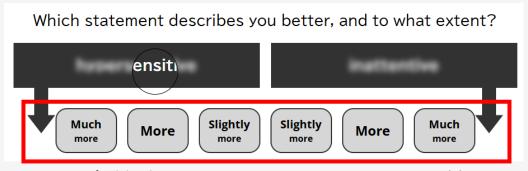
					RMSE		bias		EFA要素				
N	J_T	J_E	$\lambda_{jk}^{(\mathrm{true})}$	r	λ_{jk}	α	η	λ_{jk}	α	η	P(true)	$\left \widehat{\lambda_{jk}^{(\text{other})}}\right $	P(max)
1000	60	1	1.5	0	0.111	0.108	0.534	0.028	-0.008	-0.008	0.986	0.017	1.000
200	60	1	1.5	0	0.328	0.269	0.545	0.146	-0.043	0.001	0.953	0.040	1.000
1000	60	15	1.5	0	0.115	0.114	0.497	0.035	-0.005	0.002	0.969	0.029	1.000
1000	60	1	0.5	0	0.113	0.107	0.539	0.026	-0.009	0.004	0.925	0.012	1.000
1000	60	1	1.5	0.3	0.116	0.107	0.519	0.020	-0.005	0.000	0.983	0.018	1.000
200	60	15	0.5	0.3	0.433	0.286	0.591	0.163	-0.055	-0.006	0.399	0.038	0.706
1000	60	15	0.5	0.3	0.129	0.105	0.558	0.031	-0.004	0.002	0.799	0.028	0.993
200	60	15	1.5	0.3	0.344	0.289	0.506	0.159	-0.061	-0.001	0.885	0.077	1.000

厳しすぎる条件では流石に難しそう

結果に強く影響する条件はNと $\lambda_{jk}^{(\mathrm{true})}$

■参加者

クラウドソーシング (Prolific) で募集した英語話者210名(18歳以上)


シミュレーションの結果を踏まえて もう少し増やす予定です

●使用した項目

HEXACO形容詞版 (Romano et al., 2023) ▶ 5因子で計60単語 (30ペア)

- 予備調査で社会的望ましさ得点を求めて,これが近くなるようにペアを構成
- +因子のペアのバランスを取るように & 異方向ペアを一定数含むように構成

■回答方法

赤枠内のボタンをクリックして回答

使用した単語(=項目要素)および組み合わせ

item_1	fac_1	sign_1	item_2	fac_2	sign_2
conventional	0	-1	extraverted	X	1
asocial	X	-1	disorganized	С	-1
accurate	С	1	intellectual	0	1
undisciplined	С	-1	quarrelsome	Α	-1
aggressive	Α	-1	shy	X	-1
fragile	Е	1	inaccurate	С	-1
attentive	С	1	honest	Н	1
inattentive	С	-1	hypersensitive	Е	1
impassive	Е	-1	uncreative	0	-1
sociable	X	1	humble	Н	1
curious	0	1	tolerant	Α	1
cheerful	X	1	diligent	С	1
fearful	Е	1	overbearing	Α	-1
calm	Α	1	courageous	Е	-1
hostile	Α	-1	dishonest	Н	-1

item_1	fac_1	sign_1	item_2	fac_2	sign_2
unemotional	Е	-1	poser	Н	-1
choleric	Α	-1	silent	X	-1
secure	Е	-1	exuberant	X	1
tranquil	Α	1	who appreciates art	0	1
vivacious	X	1	traditional	0	-1
haughty	Н	-1	solitary	X	-1
emotional	Е	1	introverted	X	-1
hypocritical	Н	-1	unoriginal	0	-1
innovative	0	1	sincere	Н	1
conscientious	С	1	original	0	1
loyal	Н	1	stable (emotionally)	Е	-1
peaceful	Α	1	faithful	Н	1
patient	Α	1	organized	С	1
vulnerable	Е	1	uninterested in art	О	-1
greedy	Н	-1	reckless	С	-1

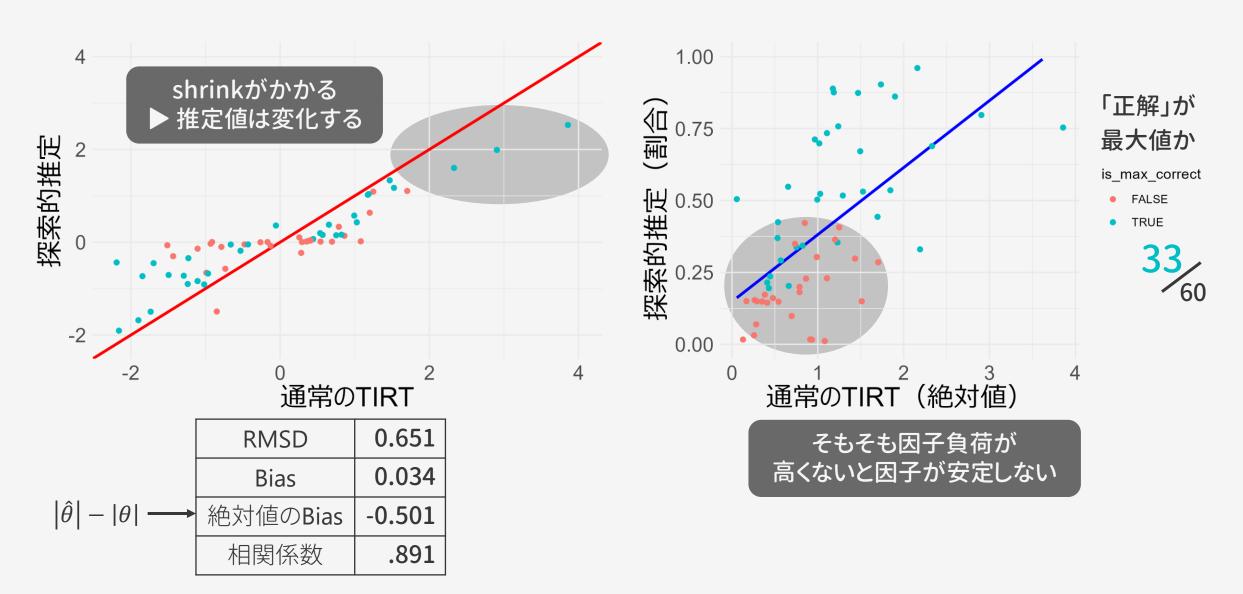
	因子			-1	計
Н	Honesty-Humility	正直さ	5	5	10
Е	Emotionality	情動性	5	5	10
X	eXtroversion	外向性	5	5	10
Α	Agreeableness	協調性	5	5	10
С	Conscientiousness	誠実性	5	5	10
0	Openness	開放性	5	5	10

【制約条件】

- すべての因子が,他の因子と2回ずつペアになっている
- signが1と-1の組み合わせが 6個以上含まれている

■ 全60項目要素のうち1つだけを探索的に推定してみる

「正解」の因子はとりあえず元論文に示されていたものとする(前ページ参照)

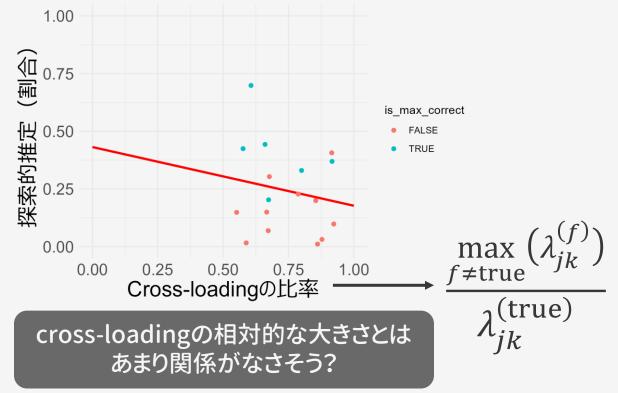

■以下の観点からチェックする

- 1. CFA(通常のTIRT)で推定したときとの $\lambda_{jk}^{(f)}$ の推定値の差
- 2. Prop(true) ▶ 単純構造に近ければ高い値になっているはず
- 3. 「正解」の因子の因子負荷が最大値になっているか

MCMC推定の設定

シミュレーション時よりもiteration数を増やしています(500→2000)

結果


追加検証:報告されたcross-loadingとの関係

- Romano et al. (2023)では「絶対値0.3以上」のloadingが報告されている
 - ▶これとの関係を見てみる

cross-loadingの 個数	「正解」 一致率
0	0.605
1	0.429
2	0.333

0.3以上のcross-loadingがあると 一致率は低下する傾向が見られる

Adjective	Reverse Code	Н	E	X	Α	С	0
haughty	R	-0.48	0.34		0.41		
greedy	R	-0.48				0.32	
dishonest	R	-0.53				0.35	
faithful		0.47					
1		0.5					

■ 一対比較データから因子構造を部分的に探索的に推定する方法を提案した

とりあえず理想的な(人工)データではうまくいくことを確認 実データにも当てはめてみた

【今後の課題】

- ■もう少し厳しい状況下での挙動の確認
 - cross-loadingの影響
 - EFA要素の「真の因子」がたまたまペアの相手と同じであった場合 etc.
- 実データでの検証の継続

まずはサンプルサイズを増やすことから

【ちなみに】CFA(Mplus)で推定した際のモデル適合度は CFI=0.807; RMSEA=0.055; SRMR=0.064 でした