20世紀初頭の2つの大発見:

- 1. Einstein の一般相対性理論
- 2. 宇宙膨張の観測的発見

Einstein の一般相対性理論 (1915年頃)

重力 = 時空のダイナミクス!

cf. 電磁気力は電磁場のダイナミクス

Einstein

相対性理論における重力:

太陽が時空を歪める → 地球が力を感じる

cf. 電荷が電場を生成 → 他の電荷にクーロンカ

もはや時空は静的な"入れ物"ではない!

膨張する宇宙 (1920年代 Hubble)

- ・銀河が地球から遠ざかっている
- ・遠くの銀河ほど速く離れている

Hubble のオリジナルデータ (1929)

Velocity-Distance Relation among Extra-Galactic Nebulae.

 $v[\text{km/s}] \simeq 500[\text{km/s} \cdot \text{Mpc}] \times d[\text{Mpc}]$

ハッブル望遠鏡 2001

Hubble の時代より 100 倍以上遠くまで!

 $v[\mathrm{km/s}] \sim 70[\mathrm{km/s \cdot Mpc}] \times d[\mathrm{Mpc}]$

他の観測結果も合わせると [Planck 2015]

 $v[\text{km/s}] = (67 \pm 5)[\text{km/s·Mpc}] \times d[\text{Mpc}]$

宇宙膨張・加速度膨張の発見

見かけの明るさ vs 赤方偏移

S. Perlmutter, April 2003, Physics Today, pp. 53-60.

宇宙膨張・加速度膨張の発見

見かけの明るさ vs 赤方偏移

S. Perlmutter, April 2003, Physics Today, pp. 53-60.

20世紀: 定常宇宙 → 時間変化する宇宙

19世紀まで:

時間や空間は定常的で無限に広がっていると仮定し、 その中を運動する物質の法則を考えた(ex. ニュートンカ学)

20世紀前半のパラダイムシフト:

- 1. 一般相対論 → 時空はダイナミカルで時間変化する!
- 2. 観測実験 → 宇宙は実際に膨張している!

Q. 宇宙膨張から何がわかるか?

A. 宇宙の温度や大きさ、密度

ヘアスプレー缶は?

- 1. 熱い
- 2. 室温程度
- 3. 冷たい

ヘアスプレー缶は?

- 1. 熱い
- 2. 室温程度
- 3. 冷たい

ヘアスプレー缶は?

- 1. 熱い
- 2. 室温程度
- 3. 冷たい

断熱膨張(熱のやり取りなし):

気体が急激に膨張すると冷たくなる

ヘアスプレー缶は?

同様に、

宇宙も膨張するにつれて温度が下がる!

3. 冷たい

断熱膨張(熱のやり取りなし):

気体が急激に膨張すると冷たくなる

時間を巻き戻してみると...

宇宙の"始まり"は…

- とても小さくて高密度
- とても熱い (宇宙膨張で温度が下がる)

- 宇宙膨張だけから色々と予想できる
- このような宇宙像をビッグバン宇宙という
- 以上は20世紀前半の成果!

宇宙の"始まり"は…

- とても小さくて高密度
- とても熱い (宇宙膨張で温度が下がる)

1.2 最新の宇宙像

暗黒エネルギーによる 加速度膨張

ビッグバン膨張138億年

過去

現在

WMAP の絵をベースに編集

これまでの観測の要:宇宙背景放射

暗黒エネルギーによる 加速度膨張

過去

現在

宇宙背景放射の温度分布

Planck 衛星で見る宇宙背景放射 (2015)

- 宇宙背景放射の温度は 2.7K でほぼ一様
- よく見ると $10^{-5}\,\mathrm{K}$ 程度のわずかなムラ

実験精度の向上

この20年で解像度などが大幅に進歩!

→ 宇宙論の理解も大きく進展!

明らかになった新たなパラダイム

- 1. インフレーション
- 2. 暗黒物質・暗黒エネルギー

暗黒エネルギーによる 加速度膨張

インフレーション中に

宇宙背景放射のムラなど宇宙構造の種が形成される

※ インフレーションが起きる原理や機構は未だ謎

士

一スに編集

暗黒物質・暗黒エネルギー

現在の宇宙の構成要素の エネルギーの内訳がわかった!

宇宙の構成要素

約25%:見えない未知の物質暗黒物質

約70%:宇宙膨張を加速させる謎の暗黒エネルギー

※ その存在はわかっているが正体は未だ謎のまま