

問題 1

- 1. ベクトレ三重種の公式の×(b×C)= (a·C) b-(a·b) とち生せよ
- 2. CNEA(1/2 Ox(OxE)= O(O·E) O·DE を示せ.
- 1 完全の対称ランツルとなるを用いると、ベクルの外積は

L axboissoom

JoZ. (Qx (bxc)) = Eige a; (bxc) &

= Eijk aj Erem be Cm

227. Eijk Elmk = Sie Sin - Sin Sie & Ekan = Elmk & Alld.

L&Acheck?

(a x (bxc)); = (sie sin-sin sie) a; be Cm - (x)

= (a.c) bi - (a.b) ci/

2. (※)を用いると.

(x(xE)); = (8;28;m-8;n8j2) 3; 32 Em

= 9; (D.E) - (D.D) E;

= (D (D.E) - (D.D)E)

問題2

- | (トのの一般解を並め、海を記述していることを確認せよ
- 2. \$\frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{2}{2} \

波動方程式はGalilei変使 t'et, ヹ゠ヹーutのもとで、どう変換されるか? 特に治の序は分変化することを確認せよ

1、物理教学で習っているところらいので、空間にステの場合のみましょう。 このとき、海動方柱がは、次のように変形を出る

$$Q = \left(\frac{\sqrt{s}}{l} \frac{34s}{3s} - \frac{3x_s}{3s}\right) + (4x) = \left(\frac{\sigma}{l} \frac{34}{9} + \frac{38}{9}\right) \left(\frac{\sigma}{l} \frac{34}{l} - \frac{34}{l}\right) + (4x)$$

ここで、変数 Xt = Xtatを風すると、

$$\left(\begin{array}{c} 0 & \frac{34}{9} = \frac{0}{1} \left(\frac{34}{9x_{1}} + \frac{34}{9x_{2}} + \frac{3x}{9} - \frac{3x}{9}\right) = \frac{3x_{1}}{9} - \frac{9x_{2}}{9} \\ \frac{3x}{9} = \frac{3x}{9x_{1}} + \frac{9x}{9} + \frac{9x}{9x_{2}} - \frac{9x}{9} + \frac{9x}{9} \end{array}\right)$$

735. 0= (1/3 / 3/2 - 3/2) f = - 4 - 3/2 - 2 + 205.

子はxtとxの片方にしかる在でまない。

fがxtにのみ他再すな主生度すいの浴を急す

2.
$$\frac{\partial}{\partial t} = \frac{\partial t'}{\partial t'} \frac{\partial}{\partial t'} + \frac{\partial x}{\partial x'} \frac{\partial x'}{\partial t} = \frac{\partial}{\partial x'} - u \frac{\partial x'}{\partial x'}$$

$$\frac{\partial}{\partial t'} = \frac{\partial t'}{\partial t'} \frac{\partial}{\partial t'} + \frac{\partial x}{\partial x'} \frac{\partial x'}{\partial t'} = \frac{\partial}{\partial x'} - u \frac{\partial x'}{\partial x'}$$

$$\left(\frac{\sqrt{2}}{1}\frac{34}{35}-\frac{34}{35}\right)=0 \iff \left(\frac{\sqrt{2}}{1}\frac{34}{35}-5\frac{\sqrt{2}}{1}\frac{34}{35}+\left(7+\frac{\sqrt{2}}{1}\frac{34}{35}\right)\right)=0$$

※. 角子達なせいしいのはときす

必須動対的は Galilei 更便のもこで不复でない。

門題3 O. Loventa 計量 Mpu の意味やテンツルの Loventa 多検性を復習 (スないてください 1. 特殊相対論になける 無粒子の運動方程式を書きてし (a) 運動方程式が、 Loventa 不まなこと。 (b) 粒子が遅い極限で、 Meutonの運動方程式に りみ着すること。 を確認でない。 O. 省略 1. 可ではないます。

1. 固角瞬刻でも

固有時刻てになける点粒子の位置をスト(で)のように、萬人しよう.

て、まえられる、

$$\chi^{r}(\tau) \rightarrow \chi^{r}(\tau) = \Lambda^{r} \mathcal{L}^{r}(\tau), F^{r} \rightarrow F^{r} = \Lambda^{r} \mathcal{L}^{r}$$

と変长

$$2^{2} \cdot \sqrt{\frac{4c_{5}}{4c_{5}}} - E_{i} = \sqrt{\frac{4c_{5}}{4c_{5}}} - E_{i} = 0$$

$$\frac{3}{3}\frac{dx}{dx} = \frac{dt}{dx} = \left(1 - \frac{v^2}{c^2}\right)^2 \left(N = \frac{v}{x}, V = |v|\right)$$

$$\frac{1}{3}\frac{dx}{dx} = \frac{dt}{dx} = \frac{v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\frac{d\tau}{d\tau} = \frac{d\tau}{d\tau} \frac{d}{d\tau} \left(\frac{dx}{d\tau} \right) = \frac{1}{1 - \frac{v^2}{c^2}} \left(\frac{\dot{x}}{\dot{x}} + \frac{(\dot{x} \cdot \dot{x})\dot{x}}{c^2 - v^2} \right)$$

$$\frac{d\tau}{d\tau} = \frac{d\tau}{d\tau} \frac{d\tau}{d\tau} \left(\frac{d\tau}{d\tau} \right) = \frac{1}{1 - \frac{v^2}{c^2}} \left(\frac{\dot{x}}{\dot{x}} + \frac{(\dot{x} \cdot \dot{x})\dot{x}}{c^2 - v^2} \right)$$

$$\frac{dz}{dz} = \frac{d}{dz} \left(\frac{dz}{dz} \right) = \frac{v^2}{1 - \frac{v^2}{c^2}} \left(\dot{\vec{x}} + \frac{(\dot{\vec{x}} + \dot{\vec{x}} + \dot{\vec{x}})}{(\dot{\vec{x}} + \dot{\vec{x}} + \dot{\vec{x}})} \right)$$
 。 本知対論的対象で $v \ll c z$ は、 $\frac{d^2 x}{dz^2} \simeq \dot{\vec{x}}$

图题4

- 1. Bianchife等なと(1-c)の2つの方程なが等価なことを陰ごせよ。
- 2 Bianchi恒等すかで美す Fre= 3rA-- 2Ar からたっことを示し、
- 1 1, 1, 1 = 1,2,31-7-112

·二れを用いると、Bianchile等式のかこの成分は

·同様に. μ=i 成分は

 $0 = \varepsilon^{i \log \delta} \partial_{\nu} f_{\rho \delta} = \varepsilon^{i \circ j k} \partial_{\sigma} f_{j k} + \varepsilon^{i j \circ k} \partial_{j} f_{\sigma k} + \varepsilon^{i j k \circ} \partial_{j} f_{k \circ}$ $= \varepsilon_{i j k} \partial_{\sigma} f_{j k}$ $= \varepsilon_{i j k} \partial_{j} f_{\sigma k} = -\varepsilon_{i j k} \partial_{j} f_{k \circ}$

5-2. Eijk dofik = - 1 Eijk dofik/

必 レeseの人外類之に対し、Emes が反対な、20garが対れなことがAT