Provability and consistency principles for the second incompleteness theorem

Taishi Kurahashi Kobe University, Japan

18th Asian Logic Conference Kyoto Sangyo University September 9, 2025

The textbook G2: From Gödel to Hilbert–Bernays

In this talk, T always denotes a consistent c.e. extension of Peano Arithmetic (PA) in the language of arithmetic.

Gödel's second incompleteness theorem (G2)

T cannot prove a sentence Con_T asserting the consistency of T.

- In his famous paper, Gödel presented only a sketched proof of G2.
- The first detailed proof of G2 was presented by Hilbert and Bernays in 1939.
- In particular, they proposed the derivability conditions, which are requirements on provability predicates sufficient to establish G2.

Definition

A formula $\Pr_T(x)$ is a provability predicate of T: $\iff \Pr_T(x)$ is a Σ_1 formula and for any formula φ , $\mathbb{N} \models \Pr_T(\lceil \varphi \rceil) \iff T \vdash \varphi$.

The textbook G2: Derivability conditions

Derivability conditions were later systematized by Löb in 1955 into the following well-known form.

Löb's derivability conditions

D1
$$T \vdash \varphi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil)$$
.

D2
$$T \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)).$$

D3
$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil) \rceil)$$
.

A mathematically precise formulation of G2 is currently known as follows:

G_2

If a provability predicate $\Pr_T(x)$ of T satisfies Löb's derivability conditions, then $T \nvdash \neg \Pr_T(\lceil 0 = 1 \rceil)$.

Overview of this talk

Here, I note the following facts:

- Besides the conditions of Hilbert and Bernays and of Löb, several other sufficient conditions for G2 are known.
- For provability predicates that do not satisfy Löb's derivability conditions, G2 does not hold in general.

Overview of this talk

- In the light of these facts, we will present the relationships among several versions of G2 and the corresponding derivability conditions.
- In particular, we import certain principles that have been studied in the context of non-normal modal logic into the analysis of G2.

This talk is based on the following papers:

- Kurahashi, A note on derivability conditions, JSL, 2020.
- Kurahashi, Refinements of provability and consistency principles for the second incompleteness theorem, arXiv, 2025.

- 1 Derivability conditions
- 2 Several versions of G2
- Refinements

Local derivability conditions

Local derivability conditions

D1
$$T \vdash \varphi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil)$$
.

D2
$$T \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)).$$

D3
$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil) \rceil)$$
.

$$\Sigma_1$$
C If φ is a Σ_1 sentence, then $T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil)$.

$$\mathbf{M} \ T \vdash \varphi \to \psi \Rightarrow T \vdash \mathrm{Pr}_T(\lceil \varphi \rceil) \to \mathrm{Pr}_T(\lceil \psi \rceil).$$

- Note that every $Pr_T(x)$ automatically satisfies D1 in our setting.
- $D2 \Rightarrow M$
- $\Sigma_1 C \Rightarrow D3$

Uniform derivability conditions

 $\lceil \varphi(\dot{x}) \rceil$ is a term corresponding to a primitive recursive function calculating the Gödel number of $\varphi(\overline{n})$ from n.

Uniform derivability conditions

$$\begin{array}{ll} \mathbf{D}\mathbf{1}^{\mathrm{U}} & T \vdash \varphi(x) \Rightarrow T \vdash \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil). \\ \mathbf{D}\mathbf{2}^{\mathrm{U}} & T \vdash \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rightarrow \psi(\dot{x}) \rceil) \\ & \rightarrow (\mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil) \rightarrow \mathrm{Pr}_{T} \lceil \psi(\dot{x}) \rceil). \\ \mathbf{\Delta}_{\mathbf{0}}\mathbf{C}^{\mathrm{U}} & \mathbf{If} \ \varphi(x) \ \mathbf{is} \ \mathbf{a} \ \Delta_{\mathbf{0}} \ \mathbf{formula}, \ \mathbf{then} \ T \vdash \varphi(x) \rightarrow \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil). \\ \mathbf{\Sigma}_{\mathbf{1}}\mathbf{C}^{\mathrm{U}} & \mathbf{If} \ \varphi(x) \ \mathbf{is} \ \mathbf{a} \ \Sigma_{\mathbf{1}} \ \mathbf{formula}, \ \mathbf{then} \ T \vdash \varphi(x) \rightarrow \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil). \\ \mathbf{M}^{\mathrm{U}} & T \vdash \varphi(x) \rightarrow \psi(x) \\ & \Rightarrow T \vdash \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil) \rightarrow \mathrm{Pr}_{T} \lceil \psi(\dot{x}) \rceil). \\ \mathbf{CB} & T \vdash \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil) \rightarrow \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil). \\ \mathbf{CB}_{\exists} & T \vdash \exists x \mathrm{Pr}_{T} \lceil \varphi(\dot{x}) \rceil) \rightarrow \mathrm{Pr}_{T} \lceil \exists x \varphi(x) \rceil. \end{array}$$

$$D2^{U} + D1^{U} \xrightarrow{} M^{U} \xrightarrow{} CB \xrightarrow{} D1^{U}$$
 CB_{\exists}

Derivability conditions

Global derivability conditions

Global derivability conditions

D2^G
$$T \vdash \forall x \forall y (\Pr_T(x \rightarrow y) \rightarrow (\Pr_T(x) \rightarrow \Pr_T(y))).$$

PC^G $T \vdash \forall x (\Pr_{\emptyset}(x) \rightarrow \Pr_T(x)).$

 $\Pr_{\emptyset}(x)$ is a standard provability predicate of pure first-order predicate calculus.

Remark

Global \Rightarrow Uniform \Rightarrow Local.

- Derivability conditions
- 2 Several versions of G2
- Refinements

- Several versions of G2
 - o Gödel (1931)
 - 9 Hilbert and Bernays (1939)
 - **8** Löb (1955)
 - **1** Jeroslow (1973)
 - Montagna (1979)
 - Buchholz (1993)
- ② Derivability conditions
- 8 Refinements

Several versions of G2

Gödel (1931)

G2 (Gödel (1931))

$$T \nvdash \exists x (\operatorname{Fml}(x) \land \neg \operatorname{Pr}_T(x)).$$

- Gödel explained that by formalizing his proof of the first incompleteness theorem, G2 is proved.
- He wrote that a detailed proof would be presented in a forthcoming work, but the paper never appeared.

Hilbert and Bernays (1939)

The first detailed proof of G2 was presented in the second volume of Grundlagen der Mathematik by Hilbert and Bernays.

G2 (Hilbert and Bernays (1939))

If $\Pr_T(x)$ satisfies M, CB, and $\Delta_0 \mathbf{C}^{\mathrm{U}}$, then $T \nvdash \forall x (\operatorname{Fml}(x) \land \Pr_T(x) \to \neg \Pr_T(\dot{\neg}x))$.

$$\mathbf{M} \ T \vdash \varphi \to \psi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil).$$

$$\mathbf{CB} \ T \vdash \Pr_T(\lceil \forall x \, \varphi(x) \rceil) \to \forall x \Pr_T(\lceil \varphi(\dot{x}) \rceil).$$

$$\Delta_0 \mathbf{C}^{\mathrm{U}} \ \mathbf{If} \ \varphi(x) \ \mathbf{is} \ \mathbf{a} \ \Delta_0 \ \mathbf{formula}, \ \mathbf{then} \ T \vdash \varphi(x) \to \Pr_T(\lceil \varphi(\dot{x}) \rceil).$$

In practice, they employed slightly different conditions.

Löb (1955)

Löb's Theorem (1955)

If $\Pr_T(x)$ satisfies the following conditions D2 and D3, then for any sentence φ ,

$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \varphi \Rightarrow T \vdash \varphi.$$

Corollary (G2)

If $Pr_T(x)$ satisfies D2 and D3, then $T \nvdash \neg Pr_T(\lceil 0 = 1 \rceil)$.

- This is the most well-known form of G2.
- Löb's derivability conditions also provide the basis for the study of provability predicates in modal logic.

D1
$$T \vdash \varphi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil)$$
.

D2
$$T \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)).$$

D3
$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil) \rceil)$$
.

Löb, Solution of a problem of Leon Henkin, 1955.

Jeroslow (1973)

Jeroslow proved that an alternative form of G2 holds.

G2 (Jeroslow (1973))

If $\Pr_T(x)$ satisfies $\Sigma_1 \mathbf{C}$, then $T \nvdash \Pr_T(\lceil \varphi \rceil) \to \neg \Pr_T(\lceil \neg \varphi \rceil)$ for some sentence φ .

$$\Sigma_1$$
C If φ is a Σ_1 sentence, then $T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil)$.

Jeroslow, Redundancies in the Hilbert-Bernays derivability conditions for Gödel's second incompleteness theorem, 1973.

Montagna (1979)

G2 (Montagna (1979))

If $Pr_T(x)$ satisfies $D2^G$ and PC^G , then $T \nvDash \exists x (Fml(x) \land \neg Pr_T(x))$.

D2^G
$$T \vdash \forall x \forall y (\Pr_T(x \rightarrow y) \rightarrow (\Pr_T(x) \rightarrow \Pr_T(y))).$$

PC^G $T \vdash \forall x (\Pr_\emptyset(x) \rightarrow \Pr_T(x)).$

Montagna, On the formulas of Peano arithmetic which are provably closed under modus ponens, 1979.

Buchholz proved the following theorem in his lecture note.

Theorem (Buchholz (1993))

If $Pr_T(x)$ satisfies the conditions $D1^U$ and $D2^U$, then it also satisfies $\Sigma_1 C^U$.

This provides a clear proof of formalized Σ_1 -completeness.

Corollary (G2)

If $\Pr_T(x)$ satisfies the conditions $\mathbf{D}\mathbf{1}^{\mathrm{U}}$ and $\mathbf{D}\mathbf{2}^{\mathrm{U}}$, then $T \nvdash \neg \Pr_T(\lceil 0 = 1 \rceil)$.

$$\begin{aligned} \mathbf{D}\mathbf{1}^{\mathrm{U}} & T \vdash \varphi(x) \Rightarrow T \vdash \mathrm{Pr}_{T}(\lceil \varphi(\dot{x}) \rceil). \\ \mathbf{D}\mathbf{2}^{\mathrm{U}} & T \vdash \mathrm{Pr}_{T}(\lceil \varphi(\dot{x}) \rightarrow \psi(\dot{x}) \rceil) \\ & \rightarrow (\mathrm{Pr}_{T}(\lceil \varphi(\dot{x}) \rceil) \rightarrow \mathrm{Pr}_{T}(\lceil \psi(\dot{x}) \rceil)). \end{aligned}$$

Different consistency statements

- $\operatorname{Con}_T^{\mathrm{H}} := \forall x (\operatorname{Fml}(x) \wedge \operatorname{Pr}_T(x) \to \neg \operatorname{Pr}_T(\dot{\neg} x))$
- $\operatorname{Con}_T^{\mathcal{S}} := \{ \operatorname{Pr}_T(\lceil \varphi \rceil) \to \neg \operatorname{Pr}_T(\lceil \neg \varphi \rceil) \mid \varphi \text{ is a sentence} \}$
- $\operatorname{Con}_T^{\mathbf{L}} :\equiv \neg \operatorname{Pr}_T(\lceil 0 = 1 \rceil)$
- $\operatorname{Con}_T^{\mathbf{G}} :\equiv \exists x (\operatorname{Fml}(x) \land \neg \operatorname{Pr}_T(x))$

Different consequences

Gödel
$$T \nvdash \operatorname{Con}_T^G$$

Hilbert and Bernays $\{M, CB, \Delta_0C^U\} \Rightarrow T \nvdash Con_T^H$

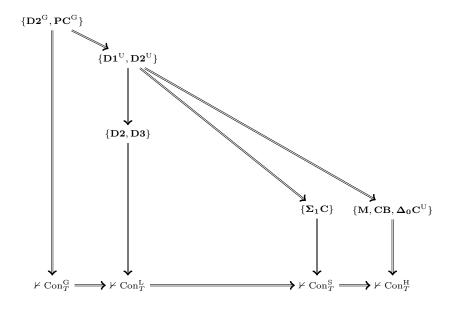
$$\mathbf{L\ddot{o}b} \ \{\mathbf{D2}, \mathbf{D3}\} \Rightarrow T \nvdash \mathbf{Con}_T^{\mathbf{L}}$$

Jeroslow
$$\{\Sigma_1 \mathbf{C}\} \Rightarrow T \nvdash \mathrm{Con}_T^{\mathrm{S}}$$

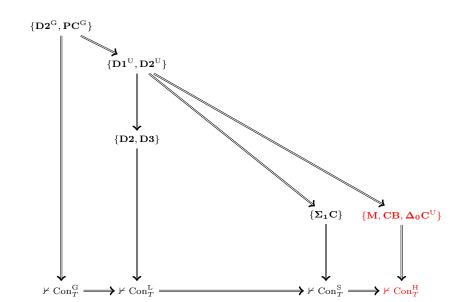
Montagna
$$\{D2^G, PC^G\} \Rightarrow T \nvdash Con_T^G$$

Buchholz
$$\{D1^U, D2^U\} \Rightarrow \Sigma_1 C^U$$

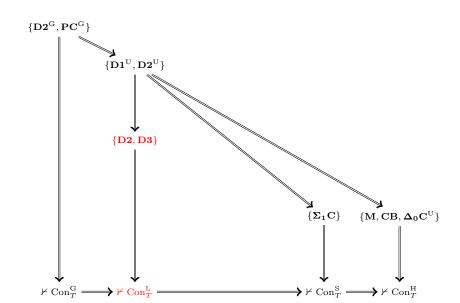
- $\bullet \ \mathsf{PA} + \mathsf{Con}_T^{\mathsf{H}} \vdash \mathsf{Con}_T^{\mathsf{S}}, \ \mathsf{PA} + \mathsf{Con}_T^{\mathsf{S}} \vdash \mathsf{Con}_T^{\mathsf{L}}, \ \mathbf{and} \ \mathsf{PA} + \mathsf{Con}_T^{\mathsf{L}} \vdash \mathsf{Con}_T^{\mathsf{G}}.$
- In what follows, we clarify the situation.



Hilbert and Bernays (1939)



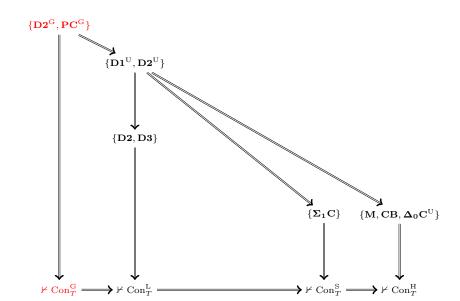
Löb (1955)



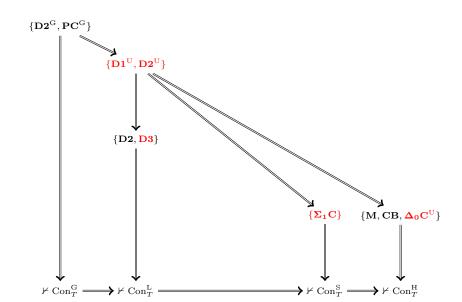
Jeroslow (1973)



Montagna (1979)



Buchholz (1993)



- Derivability conditions
- 2 Several versions of G2
- Refinements

Some refinements

The picture surrounding G2 and the derivability conditions can be refined as follows.

- We refine Hilbert and Bernays' formulation of G2.
- We import certain principles studied in the context of non-normal modal logic into the analysis of G2.
- **3** We sharpen Buchholz's sufficient conditions for $\Sigma_1 C$ and $\Sigma_1 C^U$.

A refinement of Hilbert–Bernays' G2

G2 (Hilbert and Bernays) restated

$$\{\mathbf{M}, \mathbf{CB}, \mathbf{\Delta_0}\mathbf{C}^{\mathrm{U}}\} \Rightarrow T \nvdash \mathrm{Con}_T^{\mathrm{H}}.$$

By using the uniform Δ_0 reflection principle

$$RFN_T(\Delta_0) := \{ \forall x (\Pr_T(\lceil \varphi(\dot{x}) \rceil) \to \varphi(x)) \mid \varphi(x) \in \Delta_0 \},$$

their proof can be decomposed as follows.

Theorem (K., 2025+)

The first clause is itself a version of G2.

Corollary (K., 2025+)

$$\{\mathbf{CB}, \boldsymbol{\Delta_0}\mathbf{C}^{\mathrm{U}}\} \Rightarrow T \nvdash \mathrm{Con}_T^{\mathrm{H}}.$$

M is redundant.

On the other hand, Hilbert-Bernays' conditions are not sufficient for the unprovability of Con_T^S .

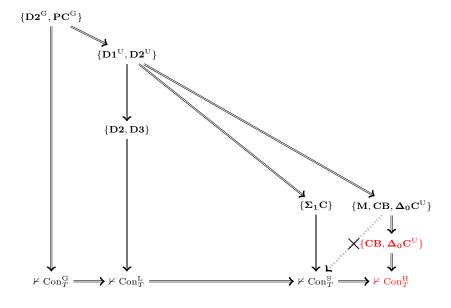
Theorem (K., 2021)

There exists $Pr_T(x)$ satisfying M, CB, and $\Delta_0 C^U$ such that $T \vdash Con_T^S$.

The statement is abbreviated as " $\{M, CB, \Delta_0C^U\} \not\Rightarrow T \nvdash Con_T^S$ ".

K., Rosser provability and the second incompleteness theorem, 2021.

K., Refinements of provability and consistency principles for the second incompleteness theorem, 2025+.



Principles studied in non-normal modal logic

- D2 corresponds to the axiom scheme $K: \Box(A \to B) \to (\Box A \to \Box B)$ of normal modal logic.
- In the context of non-normal modal logics that do not validate K,
 the following inference rules and axiom scheme have been studied.

$$\begin{array}{l} \operatorname{RE} \ \frac{A \leftrightarrow B}{\Box A \leftrightarrow \Box B} \\ \\ \operatorname{RM} \ \frac{A \to B}{\Box A \to \Box B} \\ \\ \operatorname{C} \ \Box A \wedge \Box B \to \Box (A \wedge B) \end{array}$$

- We have already introduced the derivability conditions M and M^U corresponding to RM.
- Similarly, we introduce the following derivability conditions corresponding to RE and C.

$$\mathbf{E} \ T \vdash \varphi \leftrightarrow \psi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil) \leftrightarrow \Pr_T(\lceil \psi \rceil).$$

$$\mathbf{E}^{U} \ T \vdash \varphi(x) \leftrightarrow \psi(x) \Rightarrow T \vdash \Pr_T(\lceil \varphi(\dot{x}) \rceil) \leftrightarrow \Pr_T(\lceil \psi(\dot{x}) \rceil).$$

$$\mathbf{C} \ T \vdash \Pr_T(\lceil \varphi \rceil) \land \Pr_T(\lceil \psi \rceil) \rightarrow \Pr_T(\lceil \varphi \land \psi \rceil).$$

A new G2

The following implications are easily verified.

$$D2 \longleftrightarrow M + C$$

$$M \quad C$$

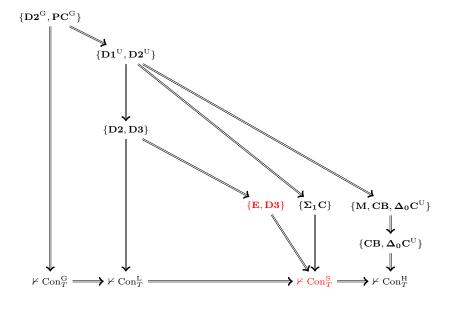
$$\downarrow$$

$$E$$

Then, we have the following new version of G2 for Con_T^S .

Theorem (K., 2025+)

$$\{\mathbf{E}, \mathbf{D3}\} \Rightarrow T \nvdash \mathrm{Con}_{T}^{\mathrm{S}}.$$



Principles D and P

The following modal principles D and P correspond to $\mathrm{Con}_T^{\mathrm{S}}$ and $\mathrm{Con}_T^{\mathrm{L}}$, respectively.

- D : $\Box A \rightarrow \neg \Box \neg A$
- P: ¬□⊥
- These are equivalent over normal modal logic and characterize seriality: $\forall x \exists y (xRy)$ on Kripke frames.
- However, these are not equivalent over non-normal modal logics that do not validate K.
- Moreover, seriality exactly corresponds to the following rule Ros which is strictly intermediate between D and P in the context of the pure logic of necessitation.

Ros:
$$\frac{\neg A}{\neg \Box A}$$

Fitting, Marek and Truszczyński, The pure logic of necessitation, 1992.

K., The provability logic of all provability predicates, 2024.

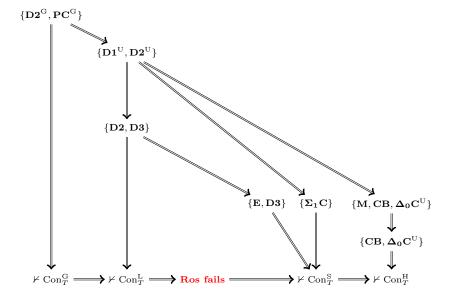
The condition Ros

We introduce the following arithmetical condition Ros corresponding to Ros.

Ros
$$T \vdash \neg \varphi \Rightarrow T \vdash \neg \Pr_T(\lceil \varphi \rceil)$$

Proposition

- Every Rosser provability predicate satisfies Ros.
- $T \vdash \operatorname{Con}_T^{\mathcal{S}} \Rightarrow \{\operatorname{\mathbf{Ros}}\}.$
- $\{\mathbf{Ros}\} \Rightarrow T \vdash \mathbf{Con}_T^{\mathbf{L}}$.



Refinements

Non-implications

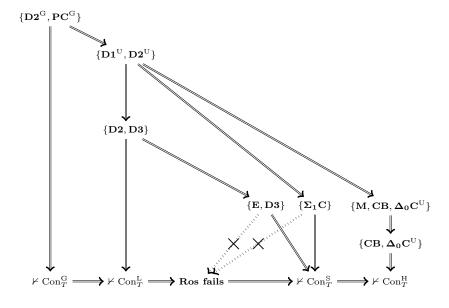
In the context of arithmetic, the failure of Ros is strictly stronger than the unprovability of Con_T^S .

Theorem (K., 2021)

 $\{E, D3\} \not\Rightarrow Ros fails.$

Theorem (K., 2025+)

 $\{\Sigma_1 C\} \not\Rightarrow \text{Ros fails.}$



G2 for Ros

The condition D3 is generalized as follows.

For
$$m, n \in \omega$$
,

$$\mathbf{D3}_{m}^{n} \ T \vdash \mathrm{Pr}_{T}^{n}(\lceil \varphi \rceil) \to \mathrm{Pr}_{T}^{m}(\lceil \varphi \rceil).$$

For 0 < n < m, we have $\mathbf{D3} \Rightarrow \mathbf{D3}_m^n$.

Theorem (K., 2025+)

Suppose 0 < n < m.

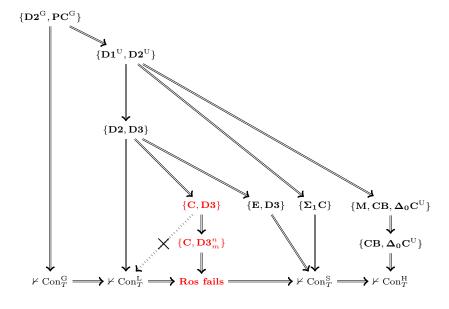
 $\{\mathbf{C}, \mathbf{D3}_m^n\} \Rightarrow \mathbf{Ros} \text{ fails.}$

On the other hand, we have:

Theorem (Mostowski, 1965)

$$\{\mathbf{C}, \mathbf{D3}\} \not\Rightarrow T \nvdash \mathrm{Con}_T^{\mathrm{L}}.$$

Mostowski, Thirty years of foundational studies, 1965.



Refinements

A refinement of G2 for Con_T^L

Theorem (K., 2025+)

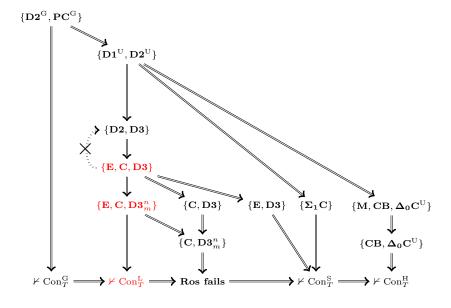
Suppose 0 < n < m.

 $\{\mathbf{E}, \mathbf{C}, \mathbf{D3}_m^n\} \Rightarrow T \nvdash \mathrm{Con}_T^{\mathrm{L}}.$

This theorem is actually a strengthening of the well-known form " $\{D2, D3\} \Rightarrow T \nvdash Con_L^T$ " of G2.

Theorem (K., 2025+)

 $\{E, C, D3\} \not\Rightarrow D2.$



Buchholz's result

Finally, we consider Buchholz's result.

Theorem (Buchholz) restated

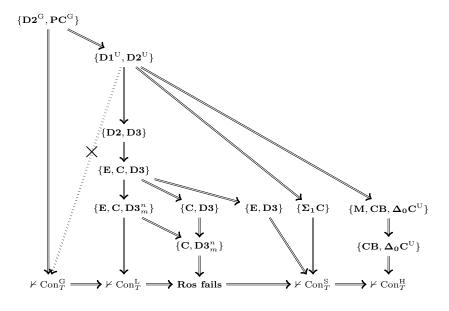
$$\{\mathbf{D}\mathbf{1}^{\mathrm{U}},\mathbf{D}\mathbf{2}^{\mathrm{U}}\}\Rightarrow \mathbf{\Sigma_{1}}\mathbf{C}^{\mathrm{U}}.$$

- \bullet Buchholz's result shows that $\{D1^U,D2^U\}$ is so powerful that all known uniform derivability conditions follow from it.
- ullet On the other hand, $\{\mathbf{D}\mathbf{1}^{\mathrm{U}},\mathbf{D}\mathbf{2}^{\mathrm{U}}\}$ is not even sufficient for the unprovability of $\mathrm{Con}_T^{\mathrm{G}}$.

Theorem (K. 2020)

$$\{\mathbf{D}\mathbf{1}^{\mathrm{U}},\mathbf{D}\mathbf{2}^{\mathrm{U}}\} \not\Rightarrow T \nvdash \mathrm{Con}_{T}^{\mathrm{G}}.$$

K., A note on derivability conditions, 2020.



An improvement of Buchholz's result

We sharpen Buchholz's result as follows:

Theorem (K. 2020)

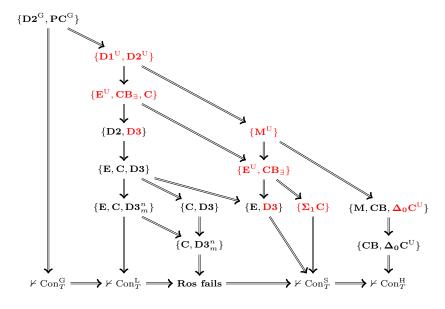
$$\{\mathbf{M}^{\mathrm{U}}\}\Rightarrow \mathbf{\Sigma_{1}C^{\mathrm{U}}}$$
.

Theorem (K. 2025+)

$$\{\mathbf{E}^{\mathrm{U}},\mathbf{C}\mathbf{B}_{\exists}\}\Rightarrow \mathbf{\Sigma_{1}C}.$$

My proofs use the formalized MRDP theorem.

$$\begin{split} \mathbf{M}^{\mathrm{U}} & T \vdash \varphi(x) \to \psi(x) \Rightarrow T \vdash \mathrm{Pr}_{T}(\ulcorner \varphi(\dot{x}) \urcorner) \to \mathrm{Pr}_{T}(\ulcorner \psi(\dot{x}) \urcorner). \\ \mathbf{E}^{\mathrm{U}} & T \vdash \varphi(x) \leftrightarrow \psi(x) \Rightarrow T \vdash \mathrm{Pr}_{T}(\ulcorner \varphi(\dot{x}) \urcorner) \leftrightarrow \mathrm{Pr}_{T}(\ulcorner \psi(\dot{x}) \urcorner). \\ \mathbf{CB}_{\exists} & T \vdash \exists x \, \mathrm{Pr}_{T}(\ulcorner \varphi(\dot{x}) \urcorner) \to \mathrm{Pr}_{T}(\ulcorner \exists x \, \varphi(x) \urcorner). \end{split}$$



${\bf Non\text{-}implication}$

 M^{U} is strong enough to yield $\Sigma_1 C^{\mathrm{U}};$ however, it does not yield C.

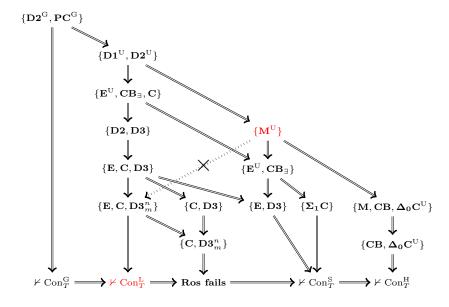
Theorem (K. 2020)

$$\{\mathbf{M}^{\mathrm{U}}\} \not\Rightarrow \mathbf{C}.$$

I have been considering the following problem for some years; however, it remains open.

Open problem

$$\{\mathbf{M}^{\mathrm{U}}\} \Rightarrow T \nvdash \mathrm{Con}_{T}^{\mathrm{L}}$$
?



Conclusion

- There is no single mathematically precise formulation of G2.
- I have constructed various artificial provability predicates, but one may argue that such predicates should be excluded from the scope of G2.
- However, the notion of a "naturally defined provability predicate" is not mathematically well-defined.
- Accordingly, I do not fix a precise admissible class of provability predicates for G2 at this time.
- At present, I view G2 as a family of theorems asserting the unprovability of suitably formulated consistency statements.

A related modal logical analysis of provabily predicates has been carried out by Haruka Kogure, who will give a talk on Friday.