Inclusions between quantified provability logics

Taishi Kurahashi Kobe University, Japan

International Workshop on Gödel's Incompleteness Theorems August 19, 2021

Outline

- Background
- Artemov's Lemma
- 8 Results

Outline

- Background
- Artemov's Lemma
- 8 Results

- Let $\mathcal{L}_A = \{0, S, +, \times, <, =\}$ be the language of first-order arithmetic.
- In this talk, T, T_0 and T_1 always denote recursively enumerable \mathcal{L}_A -theories extending $\mathbf{I}\Sigma_1$.
- Let $\mathsf{Th}(T)$ be the set of all \mathcal{L}_A -sentences provable in T.
- Let $Pr_T(x)$ be a natural provability predicate of T.

Fact

For any formulas φ and ψ ,

- $2 \mathbf{I} \Sigma_1 \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil))$
- $\mathbf{3} \ \mathbf{I} \Sigma_1 \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil) \rceil)$

These properties of $Pr_T(x)$ can be described using modal logic.

Definition (GL)

The axioms and rules of the modal propositional logic GL are as follows:

- A1 All tautologies
- **A2** $\Box(A \to B) \to (\Box A \to \Box B)$
- **A3** $\Box(\Box A \to A) \to \Box A$
- R1 $\frac{A \quad A \to B}{B}$ (Modus ponens)
- R2 $\frac{A}{\Box A}$ (Necessitation)

To connect arithmetic and modal logic precisely, I introduce the notion of arithmetical interpretation.

Definition (arithmetical interpretation)

A mapping f from the set of all propositional variables to the set of \mathcal{L}_A -sentences is called an arithmetical interpretation.

Each arithmetical interpretation f is uniquely extended to a mapping f_T from the set of all propositional modal formulas to the set of \mathcal{L}_A -sentences inductively as follows:

- **1** $f_T(\perp)$ **is** 0 = 1;
- **2** f_T commutes with each propositional connective;
- **6** $f_T(\Box A)$ is $\Pr_T(\lceil f_T(A) \rceil)$.

Propositional provability logic and Solovay's theorem

Definition (propositional provability logic)

 $PL(T) := \{A \mid \forall f : \text{ arithmetical interpretation}, T \vdash f_T(A)\}$ is the propositional provability logic of T.

Proposition (arithmetical soundness)

For any theory T, $GL \subseteq PL(T)$.

Solovay's arithmetical completeness theorem states that the converse inclusion holds for many theories.

Arithmetical completeness theorem (Solovay, 1976)

If T is Σ_1 -sound, then PL(T) = GL.

More on Solovay's theorem

Moreover, Visser listed all the possibilities for PL(T).

Definition

The sequence $(\operatorname{Con}_T^n)_{n\in\omega}$ of Π_1 sentences is defined as follows:

- Con_T^0 is the sentence 0=0;
- $\operatorname{Con}_{T}^{n+1}$ is the sentence $\operatorname{Con}_{T+\operatorname{Con}_{T}^{n}}$.

Theorem (Visser, 1984)

- $PL(T) = GL \iff T + \{Con_T^n \mid n \ge 0\}$ is consistent;
- $PL(T) = \mathbf{GL} + \Box^n \bot \iff n = \min\{k \mid T \vdash \neg \operatorname{Con}_T^k\}.$

$$\Box^n \bot$$
 is $\underline{\Box \cdots \Box} \bot$.

From Solovay's and Visser's theorems, we have:

- \bullet PL(T) is a primitive recursive set.
- PL(T) depends only on the least n such that $T \vdash \neg Con_T^n$, and therefore depends very little on the theory T itself.
- Since $GL + \Box^m \bot \subseteq GL + \Box^n \bot \iff m \ge n$, for any theories T_0 and T_1 ,

$$\mathsf{PL}(T_0) \subseteq \mathsf{PL}(T_1)$$
 or $\mathsf{PL}(T_1) \subseteq \mathsf{PL}(T_0)$.

- By extending the framework of the argument to predicate logic, the provability logic of T may become dependent on the theory T and have more fine-grained properties regarding the provability predicate $\Pr_T(x)$ of T.
- Many works on quantified provability logic were done, especially in the 1980s.

The language of quantified modal logic

The language of quantified modal logic

- The language of quantified modal logic is the language of first-order predicate logic without function and constant symbols equipped with the unary modal operators \Box and \Diamond .
- The languages of quantified modal logic and first-order arithmetic have the same variables.

Definition (arithmetical interpretation)

A mapping f from the set of all atomic formulas of quantified modal logic to the set of \mathcal{L}_A -formulas satisfying the following condition is called an arithmetical interpretation: For each atomic formula $P(x_1, \ldots, x_n)$,

- $f(P(x_1,...,x_n))$ is an \mathcal{L}_A -formula $\varphi(x_1,...,x_n)$ with the same free variables;
- $f(P(y_1,\ldots,y_n))$ is $\varphi(y_1,\ldots,y_n)$ for any variables y_1,\ldots,y_n .

Each arithmetical interpretation f is uniquely extended to a mapping f_T from the set of all quantified modal formulas to the set of \mathcal{L}_A -formulas inductively as follows:

- $f_T(\perp)$ is 0 = 1;
- **2** f_T commutes with each propositional connective and quantifier;
- $f_T(\Box A(x_1,\ldots,x_n))$ is the formula $\Pr_T(\lceil f_T(A(\dot{x_1},\ldots,\dot{x_n}))\rceil)$.

Definition (quantified provability logic)

QPL(T)

 $:= \{A \mid A \text{: sentence and } \forall f \text{: arithmetical interpretation}, T \vdash f_T(A)\}$

is the quantified provability logic of T.

Proposition (arithmetical soundness)

For any theory T, $\mathbf{QGL} \subseteq \mathsf{QPL}(T)$.

• Does $QPL(PA) \subseteq QGL \text{ hold}$?

(Avron, 1984)

• Is QPL(PA) r.e.?

(Boolos, 1979)

Vardanyan's theorem

Vardanyan gave a negative answer to these questions.

Theorem (Vardanyan, 1985)

 $QPL(\mathbf{PA})$ is Π_2^0 -complete.

Montagna's theorem

 $\mathsf{QPL}(T)$ may heavily depends on the theory T.

Theorem (Montagna, 1984)

If T_1 is finitely axiomatizable, $T_1 \nvdash \neg \operatorname{Con}_{T_1}$ and $T_0 \vdash \operatorname{Con}_{T_1} \to \operatorname{Con}_{T_0}^2$, then $\operatorname{\mathsf{QPL}}(T_0) \nsubseteq \operatorname{\mathsf{QPL}}(T_1)$.

Example

For 0 < i < j, $QPL(I\Sigma_i) \nsubseteq QPL(I\Sigma_j)$.

Notice that $\mathsf{PL}(\mathbf{I}\Sigma_i) = \mathsf{PL}(\mathbf{I}\Sigma_j) = \mathbf{GL}.$

Moreover, QPL(T) also depends on Σ_1 formulas defining T.

Definition (Σ_1 definition)

We say a formula $\tau(v)$ is a definition of a theory T if for any natural number n,

 $\mathbb{N} \models \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of some axiom of } T.$

A Σ_1 formula defining T is called a Σ_1 definition of T.

Let $\tau(v)$ be a Σ_1 definition of T.

- We can construct a Σ_1 provability predicate $\Pr_{\tau}(x)$ of T saying that "x is provable in the theory defined by $\tau(v)$ ".
- For each arithmetical interpretation f, the mapping obtained by extending f by using $\Pr_{\tau}(x)$ is denoted by f_{τ} . That is, $f_{\tau}(\Box A(x_1,\ldots,x_n))$ is $\Pr_{\tau}(\ulcorner f_{\tau}(A(\dot{x}_1,\ldots,\dot{x}_n))\urcorner)$.
- $\mathsf{QPL}_{\tau}(T)$:= $\{A \mid A \colon \text{ sentence and } \forall f \colon \text{ arithmetical interpretation}, T \vdash f_{\tau}(A)\}$

Theorem (Artemov, 1986)

For any Σ_1 -sound theory T and Σ_1 definition $\tau_0(v)$ of T, there exists a Σ_1 definition $\tau_1(v)$ of T s.t. $\mathsf{QPL}_{\tau_0}(T) \not\subseteq \mathsf{QPL}_{\tau_1}(T)$.

Theorem (K., 2013)

Let 0 < i < j.

There exists a Σ_1 definition $\tau_i(v)$ of some axiomatization of $\mathbf{I}\Sigma_i$ s.t. for any Σ_1 definition $\tau_j(v)$ of $\mathbf{I}\Sigma_j$,

$$\mathsf{QPL}_{\tau_i}(\mathbf{I}\mathbf{\Sigma_i}) \nsubseteq \mathsf{QPL}_{\tau_j}(\mathbf{I}\mathbf{\Sigma_j}) \text{ and } \mathsf{QPL}_{\tau_j}(\mathbf{I}\mathbf{\Sigma_j}) \nsubseteq \mathsf{QPL}_{\tau_i}(\mathbf{I}\mathbf{\Sigma_i}).$$

The situation of the inclusion relation between quantified provability logics is completely different from that of propositional case.

- From Vardanyan's theorem, no recursively axiomatizable formal system characterizes $\mathsf{QPL}_\tau(T)$.
- Furthermore, the inclusion between quantified provability logics seems to be rarely established.
- From these circumstances, I investigated the inclusion relation between quantified provability logics in order to know more about the dependence of $\mathsf{QPL}_\tau(T)$ on T and $\mathsf{Pr}_\tau(x)$, and to better understand past researches.

Outline

- Background
- 2 Artemov's Lemma
- 8 Results

Background

Artemov's Lemma

- The main tool of my study is Artemov's Lemma used in the proof of Vardanyan's theorem.
- To state Artemov's Lemma, I prepare some definitions.

Definition

- We prepare predicate symbols $P_Z(x)$, $P_S(x,y)$, $P_A(x,y,z)$, $P_M(x,y,z)$, $P_L(x,y)$ and $P_E(x,y)$ corresponding to 0, S, +, \times , < and =, respectively.
- For each \mathcal{L}_A -formula φ , let φ^* be a logically equivalent \mathcal{L}_A -formula where each atomic formula is one of the forms x = 0, S(x) = y, x + y = z, $x \times y = z$, x < y and x = y.
- Let φ° be a relational formula obtained from φ^{*} by replacing each atomic formula with the corresponding relation symbol in $\{P_Z, P_S, P_A, P_M, P_L, P_E\}$ adequately.
- Then φ° is a quantified modal formula.

For example, $(S(0) = x)^*$ is $\exists v(v = 0 \land S(v) = x)$ and $(S(0) = x)^{\circ}$ is $\exists v (P_Z(v) \land P_S(v, x))$.

Artemov's Lemma

Definition

Let D be the modal sentence

$$\bigwedge_{K \in \{Z,S,A,M,L,E\}} \Big(\forall \vec{x} (P_K(\vec{x}) \to \Box P_K(\vec{x})) \land \forall \vec{x} (\neg P_K(\vec{x}) \to \Box \neg P_K(\vec{x})) \Big).$$

Artemov's Lemma

There exists an \mathcal{L}_A -sentence ξ such that $\mathbf{I}\Sigma_1 \vdash \xi$ and for any arithmetical interpretation f, Σ_1 definition $\tau(v)$ of T and \mathcal{L}_A -sentence φ ,

$$\mathbf{I}\Sigma_1 \vdash \mathrm{Con}_\tau \land f_\tau(\mathrm{D}) \land f_\tau(\xi^\circ) \to (\varphi \leftrightarrow f_\tau(\varphi^\circ)).$$

In the statement of the lemma, the \mathcal{L}_A -sentence ξ is a conjunction of several basic sentences of arithmetic such as $\forall x \exists y (S(x) = y)$ and $\forall x (x+0=x)$.

Visser and de Jonge's observation

What is important to me is the following consequence of Artemov's Lemma.

Proposition (Visser and de Jonge, 2006)

For any Σ_1 definition $\tau(v)$ of T and \mathcal{L}_A -sentence φ , TFAE:

- $\textcircled{3} \ \lozenge \top \wedge \mathbf{D} \wedge \xi^{\circ} \rightarrow \varphi^{\circ} \in \mathsf{QPL}_{\tau}(T).$

 $(1 \Rightarrow 2)$: Suppose $T + \operatorname{Con}_{\tau} \vdash \varphi$.

By Artemov's Lemma, for any arithmetical interpretation f,

$$\mathbf{I}\Sigma_1 \vdash \mathrm{Con}_\tau \land f_\tau(\mathrm{D}) \land f_\tau(\xi^\circ) \to (\varphi \leftrightarrow f_\tau(\varphi^\circ)).$$

Then $T \vdash \operatorname{Con}_{\tau} \wedge f_{\tau}(D) \wedge f_{\tau}(\xi^{\circ}) \to f_{\tau}(\varphi^{\circ})$.

 $T \vdash f_{\tau}(\Diamond \top \wedge D \wedge \xi^{\circ} \to \varphi^{\circ}).$

Hence $\lozenge \top \land D \land \xi^{\circ} \to \varphi^{\circ} \in \mathsf{QPL}_{\tau}(T)$.

 $(2\Rightarrow 1) \textbf{: Suppose } \lozenge \top \land \mathsf{D} \land \xi^{\circ} \to \varphi^{\circ} \in \mathsf{QPL}_{\tau}(T) \textbf{.}$

Let f be an arithmetical interpretation such that for each $K \in \{Z, S, A, M, L, E\}$, $f(P_K(\vec{x}))$ is the intended \mathcal{L}_A -formula (for example, $f(P_A(x, y, z))$ is x + y = z).

Then $\mathbf{I}\Sigma_1 \vdash f_{\tau}(D) \land f_{\tau}(\xi^{\circ})$ and $\mathbf{I}\Sigma_1 \vdash \varphi \leftrightarrow f_{\tau}(\varphi^{\circ})$.

Since $T \vdash \operatorname{Con}_{\tau} \wedge f_{\tau}(D) \wedge f_{\tau}(\xi^{\circ}) \to f_{\tau}(\varphi^{\circ})$,

 $T + \operatorname{Con}_{\tau} \vdash \varphi$.

- Visser and de Jonge's result shows that $QPL_{\tau}(T)$ has the complete information about $Th(T + Con_{\tau})$.
- Moreover, the following corollary concerning inclusions between quantified provability logics is important.

Corollary

If
$$\mathsf{QPL}_{\tau_0}(T_0) \subseteq \mathsf{QPL}_{\tau_1}(T_1)$$
, then $\mathsf{Th}(T_0 + \mathsf{Con}_{\tau_0}) \subseteq \mathsf{Th}(T_1 + \mathsf{Con}_{\tau_1})$.

Proof.

Suppose $\mathsf{QPL}_{\tau_0}(T_0)\subseteq \mathsf{QPL}_{\tau_1}(T_1)$. Let φ be any \mathcal{L}_A -sentence with $T_0+\mathrm{Con}_{\tau_0}\vdash \varphi$. $\Diamond \top \wedge \mathrm{D} \wedge \xi^\circ \to \varphi^\circ \in \mathsf{QPL}_{\tau_0}(T_0)$. (by Proposition) $\Diamond \top \wedge \mathrm{D} \wedge \xi^\circ \to \varphi^\circ \in \mathsf{QPL}_{\tau_1}(T_1)$. (by the supposition) $T_1+\mathrm{Con}_{\tau_1}\vdash \varphi$. (by Proposition)

Outline

- Background
- Artemov's Lemma
- 8 Results

Main theorem 1

Inspired by Visser and de Jonge's proposition, I investigated further consequences of inclusions between quantified provability logics that result from Artemov's Lemma.

Theorem (K.)

Let $\tau_0(v)$ and $\tau_1(v)$ be Σ_1 definitions of T_0 and T_1 , respectively. Suppose $\mathsf{QPL}_{\tau_0}(T_0) \subseteq \mathsf{QPL}_{\tau_1}(T_1)$.

Then:

- $\bullet T_1 \vdash \operatorname{Con}_{\tau_0}^n \leftrightarrow \operatorname{Con}_{\tau_1}^n \text{ for any } n \geq 1;$
- **2** $Th(T_0) \cap \Sigma_1 \subseteq Th(T_1) \cap \Sigma_1;$
- **3** for any \mathcal{L}_A -sentence φ ,

$$T_1 \vdash \Pr_{\tau_0}(\lceil \operatorname{Con}_{\tau_0} \to \varphi \rceil) \leftrightarrow \Pr_{\tau_1}(\lceil \operatorname{Con}_{\tau_1} \to \varphi \rceil);$$

• for any Π_1 -sentence φ ,

$$T_1 \vdash \Pr_{\tau_1}(\lceil \varphi \rceil) \to \Pr_{\tau_0}(\lceil \varphi \rceil).$$

Main theorem 1

Theorem (K.)

Let $\tau_0(v)$ and $\tau_1(v)$ be Σ_1 definitions of T_0 and T_1 , respectively. Suppose $\mathsf{Th}(\mathbf{PA}) \subseteq \mathsf{Th}(T_0)$ and $\mathsf{QPL}_{\tau_0}(T_0) \subseteq \mathsf{QPL}_{\tau_1}(T_1)$. Then:

• for any \mathcal{L}_A -formula $\varphi(\vec{x})$,

$$T_1 \vdash \forall \vec{x} \left(\Pr_{\tau_0}(\lceil \operatorname{Con}_{\tau_0} \to \varphi(\vec{x}) \rceil) \leftrightarrow \Pr_{\tau_1}(\lceil \operatorname{Con}_{\tau_1} \to \varphi(\vec{x}) \rceil) \right);$$

2 then for any Π_1 -formula $\varphi(\vec{x})$,

$$T_1 \vdash \forall \vec{x} (\Pr_{\tau_1}(\lceil \varphi(\vec{x}) \rceil) \to \Pr_{\tau_0}(\lceil \varphi(\vec{x}) \rceil));$$

 $\textcircled{9} \ \mathsf{QPL}_{\tau_0 + \mathsf{Con}_{\tau_0}^n}(T_0 + \mathsf{Con}_{\tau_0}^n) \subseteq \mathsf{QPL}_{\tau_1 + \mathsf{Con}_{\tau_1}^n}(T_1 + \mathsf{Con}_{\tau_1}^n) \ \text{for any} \ n \geq 1.$

Corollaries (1/3)

From this theorem, I obtained several refinements of known results.

Corollary 1 (A refinement of Montagna's theorem)

If $T_1 \nvdash \neg \operatorname{Con}_{\tau_1}$ and $T_0 \vdash \operatorname{Con}_{\tau_1} \to \operatorname{Con}_{\tau_0}^2$, then $\operatorname{\mathsf{QPL}}_{\tau_0}(T_0) \nsubseteq \operatorname{\mathsf{QPL}}_{\tau_1}(T_1)$.

Proof.

Suppose $T_0 \vdash \operatorname{Con}_{\tau_1} \to \operatorname{Con}_{\tau_0}^2$ and $\operatorname{\mathsf{QPL}}_{\tau_0}(T_0) \subseteq \operatorname{\mathsf{QPL}}_{\tau_1}(T_1)$.

Then $T_1 \vdash \operatorname{Con}_{\tau_1} \to \operatorname{Con}_{\tau_0}^2$ and $T_1 \vdash \operatorname{Con}_{\tau_0}^2 \leftrightarrow \operatorname{Con}_{\tau_1}^2$.

So $T_1 \vdash \operatorname{Con}_{\tau_1} \to \operatorname{Con}_{\tau_1}^2$.

By Löb's theorem, $T_1 \vdash \neg Con_{\tau_1}$.

Theorem (Montagna, 1984), restated

If T_1 is finitely axiomatizable, $T_1 \nvdash \neg \operatorname{Con}_{T_1}$ and $T_0 \vdash \operatorname{Con}_{T_1} \to \operatorname{Con}_{T_0}^2$, then $\operatorname{QPL}(T_0) \nsubseteq \operatorname{QPL}(T_1)$.

Corollaries (2/3)

Corollary 2 (A refinement of Artemov's theorem)

For any Σ_1 -sound theory T and Σ_1 definition $\tau_0(v)$ of T, there exists a Σ_1 definition $\tau_1(v)$ of T s.t. $\mathsf{QPL}_{\tau_0}(T) \not\subseteq \mathsf{QPL}_{\tau_1}(T)$ and $\mathsf{QPL}_{\tau_1}(T) \not\subseteq \mathsf{QPL}_{\tau_0}(T)$.

Proof.

Let $\tau_0(v)$ be any Σ_1 definition of T.

Since T is Σ_1 -sound, it is known that there exists a Σ_1 definition $\tau_1(v)$ of T such that $T \nvdash \operatorname{Con}_{\tau_0} \to \operatorname{Con}_{\tau_1}$.

By the theorem, $QPL_{\tau_0}(T) \nsubseteq QPL_{\tau_1}(T)$ and $QPL_{\tau_1}(T) \nsubseteq QPL_{\tau_0}(T)$.

Theorem (Artemov, 1986), restated

For any Σ_1 -sound theory T and Σ_1 definition $\tau_0(v)$ of T, there exists a Σ_1 definition $\tau_1(v)$ of T s.t. $\mathsf{QPL}_{\tau_0}(T) \not\subseteq \mathsf{QPL}_{\tau_1}(T)$.

Corollaries (3/3)

Corollary 3

Suppose that T_0 is consistent, T_1 is Σ_1 -sound and there exists a Σ_1 definition $\sigma_0(v)$ of T_0 such that $T_1 \vdash \mathrm{Rfn}_{\sigma_0}(\Sigma_1)$. Then, for any respective Σ_1 definitions $\tau_0(v)$ and $\tau_1(v)$ of T_0 and T_1 , $\mathsf{QPL}_{\tau_0}(T_0) \not\subseteq \mathsf{QPL}_{\tau_1}(T_1)$ and $\mathsf{QPL}_{\tau_1}(T_1) \not\subseteq \mathsf{QPL}_{\tau_0}(T_0)$.

Example (A refinement my previous result)

Let 0 < i < j.

For any respective Σ_1 definitions $\tau_i(v)$, $\tau_j(v)$ of $\mathbf{I}\Sigma_i$ and $\mathbf{I}\Sigma_j$,

$$\mathsf{QPL}_{\tau_i}(\mathbf{I}\Sigma_{\mathbf{i}}) \nsubseteq \mathsf{QPL}_{\tau_j}(\mathbf{I}\Sigma_{\mathbf{j}}) \text{ and } \mathsf{QPL}_{\tau_j}(\mathbf{I}\Sigma_{\mathbf{j}}) \nsubseteq \mathsf{QPL}_{\tau_i}(\mathbf{I}\Sigma_{\mathbf{i}}).$$

Theorem (K., 2013), restated

Let 0 < i < j.

There exists a Σ_1 definition $\tau_i(v)$ of some axiomatization of $\mathbf{I}\Sigma_{\mathbf{i}}$ s.t. for any Σ_1 definition $\tau_j(v)$ of $\mathbf{I}\Sigma_{\mathbf{j}}$

$$\mathsf{QPL}_{\tau_i}(\mathbf{I}\Sigma_{\mathbf{i}}) \nsubseteq \mathsf{QPL}_{\tau_i}(\mathbf{I}\Sigma_{\mathbf{i}}) \text{ and } \mathsf{QPL}_{\tau_i}(\mathbf{I}\Sigma_{\mathbf{i}}) \nsubseteq \mathsf{QPL}_{\tau_i}(\mathbf{I}\Sigma_{\mathbf{i}}).$$

Σ_1 provability logics

Researches on restricted arithmetical interpretations have also been done by many authors.

Definition (Σ_1 arithmetical interpretation)

An arithmetical interpretation f is called Σ_1 if

- (Propositional case) for any propositional variable p, f(p) is a Σ_1 sentence;
- (Predicate case) for any atomic formula $P(\vec{x})$, $f(P(\vec{x}))$ is a Σ_1 formula.

Definition (Σ_1 provability logics)

- $\mathsf{PL}^{\Sigma_1}(T) := \{ A \mid \forall f : \Sigma_1 \text{ arithmetical interpretation}, T \vdash f_T(A) \}$
- $\mathsf{QPL}^{\Sigma_1}(T)$

 $:= \{A \mid A \text{ is a sentence and } \forall f : \textcolor{red}{\Sigma_1} \text{ arithmetical interpretation}, T \vdash f_T(A)\}$

- $\mathsf{QPL}^{\Sigma_1}_{\tau}(T)$
 - $:= \{A \mid A \text{ is a sentence and } \forall f : \Sigma_1 \text{ arithmetical interpretation}, T \vdash f_{\tau}(A)\}$

In the propositional case, $\mathsf{PL}^{\Sigma_1}(T)$ is recursively axiomatizable.

Theorem (Visser)

If T is $\Sigma_1\text{-sound,}$ then $\mathsf{PL}^{\Sigma_1}(T)$ is characterized by a formal system GLV.

In the predicate case, an analogue of Vardanyan's theorem holds.

Theorem (Berarducci, 1989)

 $\mathsf{QPL}^{\Sigma_1}(\mathbf{PA})$ is Π_2^0 -complete.

However, there is some benefit to deal with Σ_1 arithmetical interpretations in my study.

• In the proof of Artemov's Lemma, the sentence $\operatorname{Con}_{\tau} \wedge f_{\tau}(D)$ is used to make the formulas $f(P_K(\vec{x}))$ and $\neg f(P_K(\vec{x}))$ equivalent to Σ_1 formulas for each $K \in \{Z, S, A, M, L, E\}$:

$$f_{\tau}(P_{K}(\vec{x})) \leftrightarrow \operatorname{Pr}_{\tau}(\lceil f_{\tau}(P_{K}(\vec{x})) \rceil)$$
$$\neg f_{\tau}(P_{K}(\vec{x})) \leftrightarrow \operatorname{Pr}_{\tau}(\lceil \neg f_{\tau}(P_{K}(\vec{x})) \rceil).$$

- In the case that f is a Σ_1 arithmetical interpretation, the same result holds without assuming $\mathrm{Con}_{\tau} \wedge f_{\tau}(\mathrm{D})$ by adding sufficiently many theorems of $\mathrm{I}\Sigma_1$ to the sentence ξ as conjuncts.
- This is guaranteed by the following equivalences:
 - $\neg P_Z(x) \leftrightarrow \exists y P_S(y,x);$
 - $\neg P_S(x,y) \leftrightarrow \exists z (P_S(x,z) \land (P_L(z,y) \lor P_L(y,z)));$
 - . .
 - $\neg P_E(x,y) \leftrightarrow P_L(x,y) \vee P_L(y,x)$.

Artemov's Lemma w.r.t. Σ_1 arithmetical interpretations

Then I obtained the following version of Artemov's Lemma with respect to Σ_1 arithmetical interpretations.

Lemma (K.)

There exists an \mathcal{L}_A -sentence ξ such that $\mathbf{I}\Sigma_1 \vdash \xi$ and for any Σ_1 arithmetical interpretation f, Σ_1 definition $\tau(v)$ of T and any \mathcal{L}_A -sentence φ ,

$$\mathbf{I}\Sigma_{\mathbf{1}} \vdash f_{\tau}(\xi^{\circ}) \to (\varphi \leftrightarrow f_{\tau}(\varphi^{\circ})).$$

Main theorem 2

By using this lemma, I proved the following theorem.

Theorem (K.)

Let $\tau_0(v)$ and $\tau_1(v)$ be Σ_1 definitions of T_0 and T_1 , respectively. TFAE:

- ② $\mathsf{Th}(T_0) \subseteq \mathsf{Th}(T_1)$ and for any \mathcal{L}_A -formula $\varphi(\vec{x})$,

$$T_1 \vdash \forall \vec{x} (\Pr_{\tau_0}(\lceil \varphi(\vec{x}) \rceil) \leftrightarrow \Pr_{\tau_1}(\lceil \varphi(\vec{x}) \rceil)).$$

Corollary

If $\mathsf{QPL}_{\tau_0}^{\Sigma_1}(T_0) \subseteq \mathsf{QPL}_{\tau_1}^{\Sigma_1}(T_1)$, then $\mathsf{QPL}_{\tau_0}(T_0) \subseteq \mathsf{QPL}_{\tau_1}(T_1)$.

Corollary and Problem

Conlusion

- By investigating several conclusions of the inclusion $\mathsf{QPL}_{\tau_0}(T_0) \subseteq \mathsf{QPL}_{\tau_1}(T_1)$, I showed that $\mathsf{QPL}_{\tau}(T)$ really depends on T and $\mathsf{Pr}_{\tau}(x)$, and that the inclusion $\mathsf{QPL}_{\tau_0}(T_0) \subseteq \mathsf{QPL}_{\tau_1}(T_1)$ rarely hold.
- By providing a necessary and sufficient condition for the inclusion $\mathsf{QPL}_{\tau_0}^{\Sigma_1}(T_0) \subseteq \mathsf{QPL}_{\tau_1}^{\Sigma_1}(T_1),$ I found an order in the world of quantified provability logics.

Problem

Can we characterize the relation $QPL_{\tau_0}(T_0) \subseteq QPL_{\tau_1}(T_1)$?

References

- S. Artemov, Numerically correct logics of provability, *Doklady Akademii Nauk SSSR*, vol.290, no.6, pp.1289–1292 (1986).
- T. Kurahashi, On predicate provability logics and binumerations of fragments of Peano arithmetic, Archive for Mathematical Logic, vol.52, no.7-8, pp.871–880 (2013).
- T. Kurahashi, On inclusions between quantified provability logic, *Studia Logica*, to appear.
- F. Montagna, The predicate modal logic of provability, *Notre Dame Journal of Formal Logic*, vol.25, no.2, pp.179–189 (1984).
- A. Visser and M. de Jonge. No escape from Vardanyan's theorem, *Archive for Mathematical Logic*, vol.45, no.5, pp.539–554 (2006).