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Background

Let LA = {0, S,+,×, <,=} be the language of first-order

arithmetic.

In this talk, T , T0 and T1 always denote recursively

enumerable LA-theories extending IΣ1.

Let Th(T ) be the set of all LA-sentences provable in T .

Let PrT (x) be a natural provability predicate of T .

Fact

For any formulas φ and ψ,

1 T ⊢ φ⇒ IΣ1 ⊢ PrT (⌜φ⌝)
2 IΣ1 ⊢ PrT (⌜φ→ ψ⌝) → (PrT (⌜φ⌝) → PrT (⌜ψ⌝))
3 IΣ1 ⊢ PrT (⌜φ⌝) → PrT (⌜PrT (⌜φ⌝)⌝)
4 IΣ1 ⊢ PrT (⌜PrT (⌜φ⌝) → φ⌝) → PrT (⌜φ⌝) (Löb’s theorem)
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Background

GL

These properties of PrT (x) can be described using modal logic.

Definition (GL)

The axioms and rules of the modal propositional logic GL are as

follows:

A1 All tautologies

A2 □(A→ B) → (□A→ □B)

A3 □(□A→ A) → □A

R1
A A→ B

B
(Modus ponens)

R2
A

□A (Necessitation)
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Arithmetical interpretations

To connect arithmetic and modal logic precisely, I introduce the

notion of arithmetical interpretation.

Definition (arithmetical interpretation)

A mapping f from the set of all propositional variables to the set

of LA-sentences is called an arithmetical interpretation.

Each arithmetical interpretation f is uniquely extended to a

mapping fT from the set of all propositional modal formulas to

the set of LA-sentences inductively as follows:

1 fT (⊥) is 0 = 1;

2 fT commutes with each propositional connective;

3 fT (□A) is PrT (⌜fT (A)⌝).
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Propositional provability logic and Solovay’s theorem

Definition (propositional provability logic)

PL(T ) := {A | ∀f : arithmetical interpretation, T ⊢ fT (A)}
is the propositional provability logic of T .

Proposition (arithmetical soundness)

For any theory T , GL ⊆ PL(T ).

Solovay’s arithmetical completeness theorem states that the

converse inclusion holds for many theories.

Arithmetical completeness theorem (Solovay, 1976)

If T is Σ1-sound, then PL(T ) = GL.
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Background

More on Solovay’s theorem

Moreover, Visser listed all the possibilities for PL(T ).

Definition

The sequence (Conn
T )n∈ω of Π1 sentences is defined as follows:

Con0
T is the sentence 0 = 0;

Conn+1
T is the sentence ConT+Conn

T
.

Theorem (Visser, 1984)

PL(T ) = GL ⇐⇒ T + {Conn
T | n ≥ 0} is consistent;

PL(T ) = GL+□n⊥ ⇐⇒ n = min{k | T ⊢ ¬Conk
T }.

□n⊥ is □ · · ·□︸ ︷︷ ︸
n

⊥.
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Background

From Solovay’s and Visser’s theorems, we have:

PL(T ) is a primitive recursive set.

PL(T ) depends only on the least n such that T ⊢ ¬Conn
T , and

therefore depends very little on the theory T itself.

Since GL+□m⊥ ⊆ GL+□n⊥ ⇐⇒ m ≥ n,

for any theories T0 and T1,

PL(T0) ⊆ PL(T1) or PL(T1) ⊆ PL(T0).
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Background

By extending the framework of the argument to predicate

logic, the provability logic of T may become dependent on the

theory T and have more fine-grained properties regarding the

provability predicate PrT (x) of T .

Many works on quantified provability logic were done,

especially in the 1980s.
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The language of quantified modal logic

The language of quantified modal logic

The language of quantified modal logic is the language of

first-order predicate logic without function and constant

symbols equipped with the unary modal operators □ and ♢.
The languages of quantified modal logic and first-order

arithmetic have the same variables.
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Arithmetical interpretation

Definition (arithmetical interpretation)

A mapping f from the set of all atomic formulas of quantified

modal logic to the set of LA-formulas satisfying the following

condition is called an arithmetical interpretation: For each

atomic formula P (x1, . . . , xn),

f(P (x1, . . . , xn)) is an LA-formula φ(x1, . . . , xn) with the same

free variables;

f(P (y1, . . . , yn)) is φ(y1, . . . , yn) for any variables y1, . . . , yn.

Each arithmetical interpretation f is uniquely extended to a

mapping fT from the set of all quantified modal formulas to the

set of LA-formulas inductively as follows:

1 fT (⊥) is 0 = 1;

2 fT commutes with each propositional connective and

quantifier;

3 fT (□A(x1, . . . , xn)) is the formula PrT (⌜fT (A(ẋ1, . . . , ẋn))⌝).
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Quantified provability logic

Definition (quantified provability logic)

QPL(T )

:= {A | A: sentence and ∀f : arithmetical interpretation, T ⊢ fT (A)}
is the quantified provability logic of T .

Proposition (arithmetical soundness)

For any theory T , QGL ⊆ QPL(T ).

Does QPL(PA) ⊆ QGL hold? (Avron, 1984)

Is QPL(PA) r.e.? (Boolos, 1979)
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Vardanyan’s theorem

Vardanyan gave a negative answer to these questions.

Theorem (Vardanyan, 1985)

QPL(PA) is Π0
2-complete.
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Montagna’s theorem

QPL(T ) may heavily depends on the theory T .

Theorem (Montagna, 1984)

If T1 is finitely axiomatizable, T1 ⊬ ¬ConT1 and T0 ⊢ ConT1 → Con2
T0
,

then QPL(T0) ⊈ QPL(T1).

Example

For 0 < i < j, QPL(IΣi) ⊈ QPL(IΣj).

Notice that PL(IΣi) = PL(IΣj) = GL.
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Moreover, QPL(T ) also depends on Σ1 formulas defining T .

Definition (Σ1 definition)

We say a formula τ(v) is a definition of a theory T if for any

natural number n,

N |= τ(n) ⇐⇒ n is the Gödel number of some axiom of T.

A Σ1 formula defining T is called a Σ1 definition of T .

Let τ(v) be a Σ1 definition of T .

We can construct a Σ1 provability predicate Prτ (x) of T saying

that “x is provable in the theory defined by τ(v)”.

For each arithmetical interpretation f , the mapping obtained

by extending f by using Prτ (x) is denoted by fτ .

That is, fτ (□A(x1, . . . , xn)) is Prτ (⌜fτ (A(ẋ1, . . . , ẋn))⌝).
QPLτ (T )

:= {A | A: sentence and ∀f : arithmetical interpretation, T ⊢ fτ (A)}



Background Artemov’s Lemma Results

Background

Theorem (Artemov, 1986)

For any Σ1-sound theory T and Σ1 definition τ0(v) of T ,

there exists a Σ1 definition τ1(v) of T s.t.

QPLτ0(T ) ⊈ QPLτ1(T ).

Theorem (K., 2013)

Let 0 < i < j.

There exists a Σ1 definition τi(v) of some axiomatization of IΣi s.t.

for any Σ1 definition τj(v) of IΣj,

QPLτi(IΣi) ⊈ QPLτj (IΣj) and QPLτj (IΣj) ⊈ QPLτi(IΣi).

The situation of the inclusion relation between quantified

provability logics is completely different from that of

propositional case.
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Background

From Vardanyan’s theorem, no recursively axiomatizable

formal system characterizes QPLτ (T ).

Furthermore, the inclusion between quantified provability

logics seems to be rarely established.

From these circumstances, I investigated the inclusion

relation between quantified provability logics in order to

know more about the dependence of QPLτ (T ) on T and Prτ (x),

and to better understand past researches.
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Artemov’s Lemma

φ◦

The main tool of my study is Artemov’s Lemma used in the

proof of Vardanyan’s theorem.

To state Artemov’s Lemma, I prepare some definitions.

Definition

We prepare predicate symbols PZ(x), PS(x, y), PA(x, y, z),

PM (x, y, z), PL(x, y) and PE(x, y) corresponding to 0, S, +, ×, <

and =, respectively.

For each LA-formula φ, let φ∗ be a logically equivalent

LA-formula where each atomic formula is one of the forms

x = 0, S(x) = y, x+ y = z, x× y = z, x < y and x = y.

Let φ◦ be a relational formula obtained from φ∗ by replacing

each atomic formula with the corresponding relation symbol

in {PZ , PS , PA, PM , PL, PE} adequately.

Then φ◦ is a quantified modal formula.

For example, (S(0) = x)∗ is ∃v(v = 0 ∧ S(v) = x)

and (S(0) = x)◦ is ∃v(PZ(v) ∧ PS(v, x)).
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Artemov’s Lemma

Artemov’s Lemma

Definition

Let D be the modal sentence∧
K∈{Z,S,A,M,L,E}

(
∀x⃗(PK(x⃗) → □PK(x⃗)) ∧ ∀x⃗(¬PK(x⃗) → □¬PK(x⃗))

)
.

Artemov’s Lemma

There exists an LA-sentence ξ such that IΣ1 ⊢ ξ
and for any arithmetical interpretation f , Σ1 definition τ(v) of T

and LA-sentence φ,

IΣ1 ⊢ Conτ ∧ fτ (D) ∧ fτ (ξ◦) → (φ↔ fτ (φ
◦)).

In the statement of the lemma, the LA-sentence ξ is a conjunction

of several basic sentences of arithmetic such as ∀x∃y(S(x) = y) and

∀x(x+ 0 = x).
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Artemov’s Lemma

Visser and de Jonge’s observation

What is important to me is the following consequence of

Artemov’s Lemma.

Proposition (Visser and de Jonge, 2006)

For any Σ1 definition τ(v) of T and LA-sentence φ, TFAE:

1 T +Conτ ⊢ φ.
2 ♢⊤ ∧D ∧ ξ◦ → φ◦ ∈ QPLτ (T ).
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Artemov’s Lemma

Proof of Visser and de Jonge’s proposition.

(1 ⇒ 2): Suppose T +Conτ ⊢ φ.
By Artemov’s Lemma, for any arithmetical interpretation f ,

IΣ1 ⊢ Conτ ∧ fτ (D) ∧ fτ (ξ◦) → (φ↔ fτ (φ
◦)).

Then T ⊢ Conτ ∧ fτ (D) ∧ fτ (ξ◦) → fτ (φ
◦).

T ⊢ fτ (♢⊤ ∧D ∧ ξ◦ → φ◦).

Hence ♢⊤ ∧D ∧ ξ◦ → φ◦ ∈ QPLτ (T ).

(2 ⇒ 1): Suppose ♢⊤ ∧D ∧ ξ◦ → φ◦ ∈ QPLτ (T ).

Let f be an arithmetical interpretation such that for each

K ∈ {Z, S,A,M,L,E}, f(PK(x⃗)) is the intended LA-formula (for

example, f(PA(x, y, z)) is x+ y = z).

Then IΣ1 ⊢ fτ (D) ∧ fτ (ξ◦) and IΣ1 ⊢ φ↔ fτ (φ
◦).

Since T ⊢ Conτ ∧ fτ (D) ∧ fτ (ξ◦) → fτ (φ
◦),

T +Conτ ⊢ φ.



Background Artemov’s Lemma Results

Artemov’s Lemma

Visser and de Jonge’s result shows that QPLτ (T ) has the

complete information about Th(T +Conτ ).

Moreover, the following corollary concerning inclusions

between quantified provability logics is important.

Corollary

If QPLτ0(T0) ⊆ QPLτ1(T1), then Th(T0 +Conτ0) ⊆ Th(T1 +Conτ1).

Proof.

Suppose QPLτ0(T0) ⊆ QPLτ1(T1).

Let φ be any LA-sentence with T0 +Conτ0 ⊢ φ.
♢⊤ ∧D ∧ ξ◦ → φ◦ ∈ QPLτ0(T0). (by Proposition)

♢⊤ ∧D ∧ ξ◦ → φ◦ ∈ QPLτ1(T1). (by the supposition)

T1 +Conτ1 ⊢ φ. (by Proposition)
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Results

Main theorem 1

Inspired by Visser and de Jonge’s proposition, I investigated

further consequences of inclusions between quantified provability

logics that result from Artemov’s Lemma.

Theorem (K.)

Let τ0(v) and τ1(v) be Σ1 definitions of T0 and T1, respectively.

Suppose QPLτ0(T0) ⊆ QPLτ1(T1).

Then:

1 T1 ⊢ Conn
τ0 ↔ Conn

τ1 for any n ≥ 1;

2 Th(T0) ∩ Σ1 ⊆ Th(T1) ∩ Σ1;

3 for any LA-sentence φ,

T1 ⊢ Prτ0(⌜Conτ0 → φ⌝) ↔ Prτ1(⌜Conτ1 → φ⌝);

4 for any Π1-sentence φ,

T1 ⊢ Prτ1(⌜φ⌝) → Prτ0(⌜φ⌝).
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Main theorem 1

Theorem (K.)

Let τ0(v) and τ1(v) be Σ1 definitions of T0 and T1, respectively.

Suppose Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1).

Then:

1 for any LA-formula φ(x⃗),

T1 ⊢ ∀x⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇x)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇x)⌝)

)
;

2 then for any Π1-formula φ(x⃗),

T1 ⊢ ∀x⃗(Prτ1(⌜φ(⃗̇x)⌝) → Prτ0(⌜φ(⃗̇x)⌝));

3 QPLτ0+Conn
τ0
(T0 +Conn

τ0) ⊆ QPLτ1+Conn
τ1
(T1 +Conn

τ1) for any n ≥ 1.
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Corollaries (1/3)

From this theorem, I obtained several refinements of known

results.

Corollary 1 (A refinement of Montagna’s theorem)

If T1 ⊬ ¬Conτ1 and T0 ⊢ Conτ1 → Con2
τ0 ,

then QPLτ0(T0) ⊈ QPLτ1(T1).

Proof.

Suppose T0 ⊢ Conτ1 → Con2
τ0 and QPLτ0(T0) ⊆ QPLτ1(T1).

Then T1 ⊢ Conτ1 → Con2
τ0 and T1 ⊢ Con2

τ0 ↔ Con2
τ1 .

So T1 ⊢ Conτ1 → Con2
τ1 .

By Löb’s theorem, T1 ⊢ ¬Conτ1 .

Theorem (Montagna, 1984), restated

If T1 is finitely axiomatizable, T1 ⊬ ¬ConT1 and T0 ⊢ ConT1 → Con2
T0
,

then QPL(T0) ⊈ QPL(T1).
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Corollaries (2/3)

Corollary 2 (A refinement of Artemov’s theorem)

For any Σ1-sound theory T and Σ1 definition τ0(v) of T ,

there exists a Σ1 definition τ1(v) of T s.t.

QPLτ0(T ) ⊈ QPLτ1(T ) and QPLτ1(T ) ⊈ QPLτ0(T ).

Proof.

Let τ0(v) be any Σ1 definition of T .

Since T is Σ1-sound, it is known that there exists a Σ1 definition

τ1(v) of T such that T ⊬ Conτ0 → Conτ1 .

By the theorem, QPLτ0(T ) ⊈ QPLτ1(T ) and QPLτ1(T ) ⊈ QPLτ0(T ).

Theorem (Artemov, 1986), restated

For any Σ1-sound theory T and Σ1 definition τ0(v) of T ,

there exists a Σ1 definition τ1(v) of T s.t.

QPLτ0(T ) ⊈ QPLτ1(T ).



Background Artemov’s Lemma Results

Results

Corollaries (3/3)

Corollary 3

Suppose that T0 is consistent, T1 is Σ1-sound

and there exists a Σ1 definition σ0(v) of T0 such that T1 ⊢ Rfnσ0(Σ1).

Then, for any respective Σ1 definitions τ0(v) and τ1(v) of T0 and T1,

QPLτ0(T0) ⊈ QPLτ1(T1) and QPLτ1(T1) ⊈ QPLτ0(T0).

Example (A refinement my previous result)

Let 0 < i < j.

For any respective Σ1 definitions τi(v), τj(v) of IΣi and IΣj,

QPLτi (IΣi) ⊈ QPLτj (IΣj) and QPLτj (IΣj) ⊈ QPLτi (IΣi).

Theorem (K., 2013), restated

Let 0 < i < j.

There exists a Σ1 definition τi(v) of some axiomatization of IΣi s.t.

for any Σ1 definition τj(v) of IΣj

QPLτi (IΣi) ⊈ QPLτj (IΣj) and QPLτj (IΣj) ⊈ QPLτi (IΣi).
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Σ1 provability logics

Researches on restricted arithmetical interpretations have also

been done by many authors.

Definition (Σ1 arithmetical interpretation)

An arithmetical interpretation f is called Σ1 if

(Propositional case) for any propositional variable p, f(p) is a

Σ1 sentence;

(Predicate case) for any atomic formula P (x⃗), f(P (x⃗)) is a Σ1

formula.

Definition (Σ1 provability logics)

PLΣ1(T ) := {A | ∀f : Σ1 arithmetical interpretation, T ⊢ fT (A)}

QPLΣ1(T )

:= {A | A is a sentence and ∀f : Σ1 arithmetical interpretation, T ⊢ fT (A)}

QPLΣ1
τ (T )

:= {A | A is a sentence and ∀f : Σ1 arithmetical interpretation, T ⊢ fτ (A)}
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Known results for Σ1 provability logics

In the propositional case, PLΣ1(T ) is recursively axiomatizable.

Theorem (Visser)

If T is Σ1-sound, then PLΣ1(T ) is characterized by a formal system

GLV.

In the predicate case, an analogue of Vardanyan’s theorem holds.

Theorem (Berarducci, 1989)

QPLΣ1(PA) is Π0
2-complete.
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However, there is some benefit to deal with Σ1 arithmetical

interpretations in my study.

In the proof of Artemov’s Lemma, the sentence Conτ ∧ fτ (D)

is used to make the formulas f(PK(x⃗)) and ¬f(PK(x⃗))

equivalent to Σ1 formulas for each K ∈ {Z, S,A,M,L,E}:

fτ (PK(x⃗)) ↔ Prτ (⌜fτ (PK(⃗̇x))⌝)

¬fτ (PK(x⃗)) ↔ Prτ (⌜¬fτ (PK(⃗̇x))⌝).

In the case that f is a Σ1 arithmetical interpretation, the

same result holds without assuming Conτ ∧ fτ (D) by adding

sufficiently many theorems of IΣ1 to the sentence ξ as

conjuncts.

This is guaranteed by the following equivalences:

¬PZ(x) ↔ ∃yPS(y, x);

¬PS(x, y) ↔ ∃z(PS(x, z) ∧ (PL(z, y) ∨ PL(y, z)));

· · ·
¬PE(x, y) ↔ PL(x, y) ∨ PL(y, x).
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Artemov’s Lemma w.r.t. Σ1 arithmetical interpretations

Then I obtained the following version of Artemov’s Lemma with

respect to Σ1 arithmetical interpretations.

Lemma (K.)

There exists an LA-sentence ξ such that IΣ1 ⊢ ξ
and for any Σ1 arithmetical interpretation f , Σ1 definition τ(v) of

T and any LA-sentence φ,

IΣ1 ⊢ fτ (ξ◦) → (φ↔ fτ (φ
◦)).
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Main theorem 2

By using this lemma, I proved the following theorem.

Theorem (K.)

Let τ0(v) and τ1(v) be Σ1 definitions of T0 and T1, respectively.

TFAE:

1 QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1).

2 Th(T0) ⊆ Th(T1) and for any LA-formula φ(x⃗),

T1 ⊢ ∀x⃗(Prτ0(⌜φ(⃗̇x)⌝) ↔ Prτ1(⌜φ(⃗̇x)⌝)).

Corollary

If QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1), then QPLτ0(T0) ⊆ QPLτ1(T1).
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Corollary and Problem

Conlusion

By investigating several conclusions of the inclusion

QPLτ0(T0) ⊆ QPLτ1(T1), I showed that QPLτ (T ) really depends

on T and Prτ (x), and that the inclusion QPLτ0(T0) ⊆ QPLτ1(T1)

rarely hold.

By providing a necessary and sufficient condition for the

inclusion QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1), I found an order in the world

of quantified provability logics.

Problem

Can we characterize the relation QPLτ0(T0) ⊆ QPLτ1(T1)?
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