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o Let L4 ={0,5,+, X,<,=} be the language of first-order
arithmetic.

o In this talk, 7', Tp and T; always denote recursively

enumerable L 4-theories extending 13;.
o Let Th(T') be the set of all £s-sentences provable in T.
o Let Prr(z) be a natural provability predicate of T.

For any formulas ¢ and 1,
Q@ TFp=1I3:FPrr(T¢p")
Q IX: FPrr("p = ¢7) = (Pro("¢") = Pro("¢7))
Q@ IX: FPrp("¢") = Pro("Pre ("))
Q IX: F Prp("Prr(Tp™) = ) = Pro(Te) (Lo6b’s theorem)
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These properties of Prr(z) can be described using modal logic.

Definition (GL)

The axioms and rules of the modal propositional logic GL are as
follows:

A1 All tautologies
A2 O(A— B) - (DA — OB)
A3 OOA —- A) - 0OA

R1 M%B (Modus ponens)
R2 % (Necessitation)

v
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Arithmetical interpretations

To connect arithmetic and modal logic precisely, I introduce the
notion of arithmetical interpretation.

Definition (arithmetical interpretation)

A mapping f from the set of all propositional variables to the set

of L a-sentences is called an arithmetical interpretation.

Each arithmetical interpretation f is uniquely extended to a
mapping fr from the set of all propositional modal formulas to
the set of £s-sentences inductively as follows:

O fr(l)is0=1;
@ fr commutes with each propositional connective;

e fT(DA) iS PI‘T(rfT(A)T).
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Propositional provability logic and Solovay’s theorem

Definition (propositional provability logic)
PL(T) := {A | Vf: arithmetical interpretation, T + fr(A)}
is the propositional provability logic of T.

Proposition (arithmetical soundness)

For any theory 7', GL C PL(T).

Solovay’s arithmetical completeness theorem states that the
converse inclusion holds for many theories.

Arithmetical completeness theorem (Solovay, 1976)

If T is Yi-sound, then PL(T) = GL.




Moreover, Visser listed all the possibilities for PL(T).

Definition

The sequence (Con?)ne. of II; sentences is defined as follows:

e Con? is the sentence 0 = 0;

1

° Con?fr is the sentence Conrcony..

Theorem (Visser, 1984)

o PL(T) = GL <= T + {Con?% | n > 0} is consistent;
e PL(T) = GL +0"L <= n =min{k | T F -Con%}.

O"lLisd---0OL.
——

n



Background

From Solovay’s and Visser’s theorems, we have:

o PL(T) is a primitive recursive set.

e PL(T) depends only on the least n such that 7'+ —Con?%, and
therefore depends very little on the theory T itself.

e Since GL+0" 1L CGL+0"lL <= m >n,

for any theories Ty and T3,
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o By extending the framework of the argument to predicate
logic, the provability logic of 7' may become dependent on the
theory T and have more fine-grained properties regarding the
provability predicate Prr(z) of T'.

o Many works on quantified provability logic were done,
especially in the 1980s.
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The language of quantified modal logic

The language of quantified modal logic

o The language of quantified modal logic is the language of
first-order predicate logic without function and constant
symbols equipped with the unary modal operators [ and ¢.

o The languages of quantified modal logic and first-order
arithmetic have the same variables.




Definition (arithmetical interpretation)

A mapping f from the set of all atomic formulas of quantified
modal logic to the set of £s-formulas satisfying the following
condition is called an arithmetical interpretation: For each

atomic formula P(z1,...,%n),
o f(P(z1,...,zn)) is an La-formula ¢(z1,...,z,) with the same

free variables;

o f(P(y1,-.-,yn)) is ©(y1,...,yn) for any variables yi,...,yn.

Each arithmetical interpretation f is uniquely extended to a
mapping fr from the set of all quantified modal formulas to the
set of La-formulas inductively as follows:

@ fr(L)is0=1;

@ fr commutes with each propositional connective and

quantifier;

@ fr(JA(z1,...,z,)) is the formula Prr (" fr(A(Z1,...,2n))7).
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Quantified provability logic

Definition (quantified provability logic)

QPL(T)

:= {A | A: sentence and Vf: arithmetical interpretation, T + fr(A)}
is the quantified provability logic of T

Proposition (arithmetical soundness)

For any theory T, QGL C QPL(T).

e Does QPL(PA) C QGL hold? (Avron, 1984)
o Is QPL(PA) r.e.? (Boolos, 1979)
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Vardanyan’s theorem

Vardanyan gave a negative answer to these questions.

QPL(PA) is TI3-complete.




Monta(fna s theorem

QPL(T) may heavily depends on the theory T.

Theorem (Montagna, 1984)

If Ty is finitely axiomatizable, T} ¥ -Conr, and Ty - Conp, — Con2T0,
then QPL(Ty) € QPL(T1).

For 0 < i < j, QPL(IZ;) € QPL(IX;).

Notice that PL(IZ;) = PL(IZ;) = GL.
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Moreover, QPL(T) also depends on ¥; formulas defining T'.

Definition (X definition)

We say a formula 7(v) is a definition of a theory T if for any

natural number n,
N |= 7(n) <= n is the G6del number of some axiom of 7.

A 3, formula defining T is called a >, definition of 7.

Let 7(v) be a X, definition of T
e We can construct a ¥; provability predicate Pr,(z) of T saying

that “z is provable in the theory defined by 7(v)”.

o For each arithmetical interpretation f, the mapping obtained
by extending f by using Pr.(z) is denoted by f-.
That is, f-(OA(z1,...,2s)) is Pr-("f-(A(Z1,...,Zn))7).

e QPL.(T)
:={A | A: sentence and Vf: arithmetical interpretation,T \ f-(A)}
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Theorem (Artemov, 1986)

For any Y;-sound theory 7 and X; definition 7o(v) of T,
there exists a X1 definition 71(v) of T s.t.

QPL,,(T) ¢ QPL,, (7).

Theorem (K., 2013)

Let 0 <2< .
There exists a ¥, definition 7;(v) of some axiomatization of IY; s.t.

for any ¥, definition 7;(v) of IX;,

QPL,, (IZ:) ¢ QPL,, (I;) and QPL, (IS;) ¢ QPL,, (I)).

The situation of the inclusion relation between quantified
provability logics is completely different from that of
propositional case.
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o From Vardanyan’s theorem, no recursively axiomatizable
formal system characterizes QPL,(T).

o Furthermore, the inclusion between quantified provability
logics seems to be rarely established.

o From these circumstances, I investigated the inclusion
relation between quantified provability logics in order to
know more about the dependence of QPL.(T) on T and Pr,(z),
and to better understand past researches.
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Artemov’s Lemma

o

4

o The main tool of my study is Artemov’s Lemma used in the
proof of Vardanyan’s theorem.
o To state Artemov’s Lemma, I prepare some definitions.

o We prepare predicate symbols Pz(z), Ps(z,y), Pa(x,y, 2),

Py (z,y,2), Po(z,y) and Pg(z,y) corresponding to 0, S, +, X, <
and =, respectively.

o For each L-formula ¢, let p* be a logically equivalent
L a-formula where each atomic formula is one of the forms
z=0,Sx) =y, z+y=2z, s xXy=z,z<yand x=y.

o Let ©° be a relational formula obtained from ¢* by replacing
each atomic formula with the corresponding relation symbol
in {Pz, Ps, Pa, Pu, Pr, Pp} adequately.

o Then ¢° is a quantified modal formula.

For example, (S(0) =z)* is Jv(v =0A S(v) = )
and (S(0) = z)° is Jv(Pz(v) A Ps(v,x)).
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Artemov’s Lemma

Artemov’s Lemma

Let D be the modal sentence

A (Vf(PK () — OPk (D)) AVE(~Px () — O-Pg (:z))).
Ke{Z,5,A,M,L,E}

Artemov’s Lemma
There exists an L s-sentence ¢ such that I3, F ¢
and for any arithmetical interpretation f, ¥, definition 7(v) of T’

and L4-sentence o,

I3: F Con, A f-(D) A £ (€°) = (¢ & f-(¢°)).

In the statement of the lemma, the £4-sentence ¢ is a conjunction
of several basic sentences of arithmetic such as Vz3y(S(z) = y) and
Vz(z+0 = z).
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Artemov’s Lemma

Visser and de Jonge’s observation

What is important to me is the following consequence of
Artemov’s Lemma.

Proposition (Visser and de Jonge, 2006)

For any Y; definition 7(v) of T and La-sentence p, TFAE:
Q@ T+ Con, - .
Q@ OTADAE® — ¢° € QPL.(T).
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Proof of Visser and de Jonge’s proposition.

(1 = 2): Suppose T + Con; + ¢.
By Artemov’s Lemma, for any arithmetical interpretation f,

IS, F Conr A £-(D) A £-(69) = (¢ ¢ £+(¢°)):

Then T+ Con, A f-(D) A f-(€°) = fr(¢°).

T £.(OT ADAE® — ¢°).

Hence 0T ADAE° — ¢° € QPL.(T).

(2=1): Suppose OT ADAE® — ¢° € QPL,(T).

Let f be an arithmetical interpretation such that for each

K e{Z,5,A,M,L,E}, f(Px(Z)) is the intended L-formula (for
example, f(Pa(z,y,2)) is z+y = 2).

Then IS F f,(D) A £-(¢°) and IX; F ¢ < £-(°).

Since T+ Con, A f-(D) A f-(£°) = f+(¢°),

T + Con,  ¢. ]
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Artemov’s Lemma

e Visser and de Jonge’s result shows that QPL,(7) has the
complete information about Th(7" + Con,).

o Moreover, the following corollary concerning inclusions
between quantified provability logics is important.

If QPL,, (7o) € QPL,, (11), then Th(7p + Cony,) € Th(T: 4 Con,).

Suppose QPL,, (7o) € QPL,, (T1).
Let ¢ be any L4-sentence with Ty + Con,, F ¢.

OTADAE — ¢° € QPL, (To). (by Proposition)
OTADAE — ¢° € QPL, (Th). (by the supposition)
T1 + Conr, F . (by Proposition)

0

v
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Main theorem 1

Inspired by Visser and de Jonge’s proposition, I investigated
further consequences of inclusions between quantified provability
logics that result from Artemov’s Lemma.

Let 790(v) and 71(v) be X1 definitions of Ty and 71, respectively.
Suppose QPL,,(To) € QPL,, (T1).
Then:

@ 71 F Con7, < Con?, for any n > 1;
e Th(To) M 21 g Th(T1) n 21;
@ for any L s-sentence o,

T) + Prr,("Con,y, — ) < Pr,, ("Con,, — ¢7);

@ for any II;-sentence o,

Ty b Prry (T@7) = Proy (T7).
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Main theorem 1

Let 70(v) and 71(v) be X1 definitions of Ty and 71, respectively.
Suppose Th(PA) C Th(Tp) and QPL, (7o) € QPL,, (T1).
Then:

—
9

@ for any Ls-formula (%)
Ty F V3 (PrTO('_ConTO — (&) ¢ Pry, ("Cony, — w(f)ﬂ)) ;
@ then for any II;-formula ¢(%),

Ty + Y&(Prr, (To(2)7) = Prey (To(2)7));

(3] QPLTOJrCODgO (To + Con7)) C QPLTlJrConyTLl (Th + Con?,) for any n > 1.

v
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Corollaries (1/3)

From this theorem, I obtained several refinements of known

results.

Corollary 1 (A refinement of Montagna’s theorem)

If T\ ¥ —=Con., and Ty I Con,, — Con?,,
then QPL.,.O (To) g QPLT1 (Tl).

Suppose Tp - Con,, — CorﬁO and QPL, (Tp) € QPL,, (T1).

Then 7; - Con,, — Confo and T; - CongO > Conzl.

So 71 - Con,, — Conil.

By Lob’s theorem, T1 - —Con, . L]

Theorem (Montagna, 1984), restated

If Ty is finitely axiomatizable, T} ¥ -Conr, and Ty - Conpy — Con%«o,
then QPL(T()) 1¢_ QPL(Tl)
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Corollaries (2/3)

Corollary 2 (A refinement of Artemov’s theorem)

For any Y;-sound theory 7T and X; definition 7o(v) of T,
there exists a X; definition 71 (v) of T s.t.
QPL,,(T) ¢ QPL,, (T) and QPL,,(T) ¢ QPL,,(T).

v

Let 70(v) be any X, definition of T'.

Since T is Yi-sound, it is known that there exists a ¥; definition
71(v) of T such that T ¥ Con,, — Con,.

By the theorem, QPL, (T) € QPL., (T) and QPL,, (T) € QPL,,(T). D)

Theorem (Artemov, 1986), restated

For any Y;-sound theory 7 and X; definition 7o(v) of T,
there exists a ¥; definition 71 (v) of T s.t.

QPL.,(T) ¢ QPL,, (T).
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Corollaries (3/3)

Suppose that T is consistent, 77 is >;-sound

and there exists a ¥, definition o¢(v) of Ty such that 77 - Rfn,,(21).
Then, for any respective X, definitions 7(v) and 71(v) of Ty and T1,
QPL,,(To) ¢ QPL,, (T1) and QPL., (Ti) ¢ QPL,, (Tp).

v

Example (A refinement my previous result)

Let 0 < i < j.
For any respective X; definitions 7;(v), 7;(v) of IX; and IX;,

QPL., (I;) ¢ QPL,, (IS;) and QPL,, (IS;) ¢ QPL,, (I;).

Theorem (K., 2013), restated

Let 0 < i < j.
There exists a ¥; definition 7;(v) of some axiomatization of IX; s.t.
for any ¥; definition 7;(v) of IX;

QPL., (IZ;) ¢ QPL,, (I%;) and QPL,, (I;) ¢ QPL,, (I;).
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Y1 provability logics

Researches on restricted arithmetical interpretations have also
been done by many authors.

Definition (X arithmetical interpretation)

An arithmetical interpretation f is called ¥; if

o (Propositional case) for any propositional variable p, f(p) is a
Y1 sentence;

o (Predicate case) for any atomic formula P(Z), f(P(Z)) is a X1
formula.

Definition (X; provability logics)

o PL¥ (T) := {A|Vf: 3 arithmetical interpretation, T - fr(A)}
o QPL™(T)

i= {A| A is a sentence and Vf : ¥, arithmetical interpretation, T - fr(A)}
o QPL;(T)

:= {A | A is a sentence and Vf : 3| arithmetical interpretation, T - f-(A)}
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Known results for 3; provability logics

In the propositional case, PL*1 (T) is recursively axiomatizable.

If T is ¥;1-sound, then PL¥(T) is characterized by a formal system
GLV.

In the predicate case, an analogue of Vardanyan’s theorem holds.

Theorem (Berarducci, 1989)

QPL¥ (PA) is II13-complete.
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However, there is some benefit to deal with ¥; arithmetical
interpretations in my study.

o In the proof of Artemov’s Lemma, the sentence Con, A f-(D)
is used to make the formulas f(Px (%)) and —f(Px(Z))
equivalent to X; formulas for each K € {Z, S, A, M, L, E}:

fr(P (&)  Pre("f-(Px (£))7)

~fr(Px (&) ¢+ Prr("=fr(Pr(&))7).

o In the case that f is a ¥; arithmetical interpretation, the
same result holds without assuming Con. A f-(D) by adding
sufficiently many theorems of I3, to the sentence ¢ as
conjuncts.

e This is guaranteed by the following equivalences:

=Pz (z) <> JyPs(y, z);

—Ps(x,y) ¢ 32(Ps(z,2) A (Pr(z,y) V PL(y, 2)));

=Pg(z,y) < PL(z,y) V PL(y, ®).
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Artemov’s Lemma w.r.t. 31 arithmetical interpretations

Then I obtained the following version of Artemov’s Lemma with
respect to ¥; arithmetical interpretations.

There exists an La-sentence ¢ such that I3; F £
and for any Y; arithmetical interpretation f, ¥; definition 7(v) of

T and any L4-sentence o,

I3 F f-(8°) = (0 < f+(¢7))
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Main theorem 2

By using this lemma, I proved the following theorem.

Let 79(v) and 71(v) be X1 definitions of Ty and 71, respectively.
TFAE:

@ QPLT) (To) € QPLT (Th).
@ Th(Tp) C Th(T1) and for any Ls-formula ¢(Z),

Ty F VZ(Prry (To(&)7) ¢ Prr, (To(2)7).

If QPLZ! (Ty) € QPLZE!(T1), then QPL, (o) € QPL,, (T1).
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Corollary and Problem

o By investigating several conclusions of the inclusion
QPL.,(To) € QPL., (T1), I showed that QPL_(7") really depends
on T and Pr;(z), and that the inclusion QPL. (7o) C QPL. (71)
rarely hold.

o By providing a necessary and sufficient condition for the
inclusion QPLEO1 (To) C QPLEI1 (Th), I found an order in the world
of quantified provability logics.

Can we characterize the relation QPL, (7o) C QPL,, (11)?
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