On the second incompleteness theorem and provability predicates

Taishi Kurahashi Kobe University, Japan

Celebrating 90 Years of Gödel's Incompleteness Theorems
Tübingen
July 7, 2021

 \bullet In this talk, T always denotes a consistent r.e. extension of Peano Arithmetic (PA) in the language of arithmetic.

The second incompleteness theorem (G2)

T cannot prove a sentence Con_T asserting the consistency of T.

- This statement of G2 is ambiguous because there are some sentences that seem to assert the consistency of T and are provable in T.
- So a precise statement of G2 requires more information on Con_T .

In this talk, I investigate relationships between several versions of G2 and derivability conditions for provability predicates.

Definition

 $Pr_T(x)$ is a provability predicate of T

 $:\iff$ it is a Σ_1 formula and for any natural number n,

 $\mathbb{N} \models \Pr_T(n) \iff n \text{ is the G\"{o}del number of a theorem of } T.$

Outline

- Several versions of G2
- Oerivability conditions
- My results

- Several versions of G2
 - Gödel (1931)
 - Hilbert and Bernays (1939)
 - 3 Löb (1955)
 - Jeroslow (1973)
 - Montagna (1979)
 - Buchholz (1993)
- ② Derivability conditions
- My results

Gödel's second incompleteness theorem

$$T \nvdash \exists x (\operatorname{Fml}(x) \land \neg \operatorname{Pr}_T(x))$$

- In his famous paper, Gödel proved G2 with only a sketched proof.
- Gödel explained that by formalizing his proof of the first incompleteness theorem, G2 is proved.
- To carry out his idea, it is desirable that the formula $\Pr_T(x)$ enjoys some natural properties as a formalization of the notion of T-provability.
- He wrote that a detailed proof would be presented in a forthcoming work, but such a paper was not published after all.

Hilbert and Bernays (1939)

- The first detailed proof of G2 was presented in the second volume of Grundlagen der Mathematik by Hilbert and Bernays.
- Especially, they proved that if $\Pr_T(x)$ satisfies the following conditions HB1, HB2 and HB3, then $T \nvdash \forall x (\operatorname{Fml}(x) \land \Pr_T(x) \to \neg \Pr_T(\dot{\neg} x))$.

Hilbert-Bernays' derivability conditions

HB1
$$T \vdash \varphi \to \psi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)$$
.

HB2
$$T \vdash \Pr_T(\lceil \neg \varphi(x) \rceil) \to \Pr_T(\lceil \neg \varphi(\dot{x}) \rceil).$$

HB3
$$T \vdash t(x) = 0 \to \Pr_T(\lceil t(\dot{x}) = 0 \rceil)$$
 for every primitive recursive term $t(x)$.

 $\lceil \varphi(\dot{x}) \rceil$ is a primitive recursive term corresponding to a primitive recursive function calculating the Gödel number of $\varphi(\overline{n})$ from n.

- Löb proved that if $\Pr_T(x)$ satisfies the following conditions D1, D2 and D3, then Löb's theorem holds, that is, for any sentence φ , $T \vdash \Pr_T(\ulcorner \varphi \urcorner) \to \varphi \Rightarrow T \vdash \varphi$.
- Then $T \nvdash \neg \Pr_T(\lceil 0 = 1 \rceil)$. This is the most well-known form of G2.

Löb's derivability conditions

D1
$$T \vdash \varphi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil)$$
.

D2
$$T \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)).$$

D3
$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil) \rceil)$$
.

Every $Pr_T(x)$ automatically satisfies D1.

• Jeroslow proved that if $\Pr_T(x)$ satisfies the following condition, then $T \nvdash \forall x (\operatorname{Fml}(x) \land \Pr_T(x) \to \neg \Pr_T(\dot{\neg}x))$.

Jeroslow's condition

 $T \vdash \Pr_T(t) \to \Pr_T(\lceil \Pr_T(t) \rceil)$ for all primitive recursive terms t.

• Jeroslow's argument also shows that if $\Pr_T(x)$ satisfies the following condition $\Sigma_1\mathbf{C}$, then $T \nvdash \forall x (\operatorname{Fml}(x) \land \Pr_T(x) \to \neg \Pr_T(\dot{\neg} x))$.

Provable Σ_1 -completeness

 $\Sigma_1 \mathbf{C}$ If φ is a Σ_1 sentence, then $T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil)$.

Montagna (1979)

- Montagna proved that if $\Pr_T(x)$ satisfies the following two conditions, then Löb's theorem holds.
- In this case, $T \nvdash \exists x (\operatorname{Fml}(x) \land \neg \operatorname{Pr}_T(x))$.

Montagna's conditions

- $T \vdash \forall x ("x \text{ is a logical axiom"} \rightarrow \Pr_T(x)).$
- $T \vdash \forall x \forall y (\operatorname{Fml}(x) \land \operatorname{Fml}(y) \to (\operatorname{Pr}_T(x \dot{\to} y) \to (\operatorname{Pr}_T(x) \to \operatorname{Pr}_T(y)))$.

(===)

- In Buchholz's lecture note, it is proved that if $\Pr_T(x)$ satisfies the following condition, then it also satisfies D2 and $\Sigma_1 C$.
- Then $T \nvdash \neg \Pr_T(\lceil 0 = 1 \rceil)$.

Buchholz's condition

For all
$$m \geq 1$$
,
$$T \vdash \bigwedge_{0 < i < m} \varphi_i(x) \to \varphi_m(x)$$
$$\Rightarrow T \vdash \bigwedge_{0 < i < m} \Pr_T(\lceil \varphi_i(\dot{x}) \rceil) \to \Pr_T(\lceil \varphi_m(\dot{x}) \rceil).$$

 $\Pr_T(x)$ satisfies Buchholz's condition iff $\Pr_T(x)$ satisfies both $\mathbf{D1}^{\mathbf{U}}$ and $\mathbf{D2}^{\mathbf{U}}$.

D1^U
$$T \vdash \varphi(x) \Rightarrow T \vdash \Pr_T(\lceil \varphi(\dot{x}) \rceil).$$

D2^U $T \vdash \Pr_T(\lceil \varphi(\dot{x}) \rightarrow \psi(\dot{x}) \rceil)$
 $\rightarrow (\Pr_T(\lceil \varphi(\dot{x}) \rceil) \rightarrow \Pr_T(\lceil \psi(\dot{x}) \rceil)).$

These different versions of G2 have different consequences.

Different consistency statements

- $\operatorname{Con}_T^H := \forall x (\operatorname{Fml}(x) \wedge \operatorname{Pr}_T(x) \to \neg \operatorname{Pr}_T(\dot{\neg} x))$
- $\bullet \operatorname{Con}_T^L :\equiv \neg \operatorname{Pr}_T(\lceil 0 = 1 \rceil)$
- $\operatorname{Con}_T^G :\equiv \exists x (\operatorname{Fml}(x) \land \neg \operatorname{Pr}_T(x))$

Different consequences

Gödel $T \nvdash \operatorname{Con}_T^G$

Hilbert-Bernays $T \nvdash \operatorname{Con}_T^H$

Löb $T \nvdash \operatorname{Con}_T^L$

Jeroslow $T \nvdash \operatorname{Con}_T^H$

Montagna $T \nvdash \operatorname{Con}_T^G$

Buchholz $T \nvdash \operatorname{Con}_T^L$

- PA $\vdash \operatorname{Con}_T^H \to \operatorname{Con}_T^L$ and PA $\vdash \operatorname{Con}_T^L \to \operatorname{Con}_T^G$.
- I wanted to clarify the situation.

- A brief history
- Oerivability conditions
- My results

Local derivability conditions

Local derivbility conditions

D1
$$T \vdash \varphi \Rightarrow T \vdash \Pr_T(\lceil \varphi \rceil)$$
.

D2
$$T \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)).$$

D3
$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil)\rceil).$$

**$$\Gamma$$
C** If φ is a Γ sentence, then $T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil)$.

$$\mathbf{B_2} \ T \vdash \varphi \to \psi \Rightarrow T \vdash \mathrm{Pr}_T(\lceil \varphi \rceil) \to \mathrm{Pr}_T(\lceil \psi \rceil).$$

PC
$$T \vdash \Pr_{\emptyset}(\lceil \varphi \rceil) \to \Pr_{T}(\lceil \varphi \rceil)$$
.

 $Pr_{\emptyset}(x)$ is a provability predicate of pure predicate calculus.

Uniform derivability conditions

Uniform derivbility conditions

$$\begin{array}{ll} \mathbf{D1^{U}} & T \vdash \varphi(x) \Rightarrow T \vdash \Pr_{T}(\lceil \varphi(\dot{x}) \rceil). \\ \mathbf{D2^{U}} & T \vdash \Pr_{T}(\lceil \varphi(\dot{x}) \rightarrow \psi(\dot{x}) \rceil) \\ & \rightarrow (\Pr_{T}(\lceil \varphi(\dot{x}) \rceil) \rightarrow \Pr_{T}(\lceil \psi(\dot{x}) \rceil)). \\ \mathbf{D3^{U}} & T \vdash \Pr_{T}(\lceil \varphi(\dot{x}) \rceil) \rightarrow \Pr_{T}(\lceil \Pr_{T}(\lceil \varphi(\dot{x}) \rceil) \rceil). \\ \mathbf{\Gamma C^{U}} & \mathbf{If} \ \varphi(x) \ \mathbf{is} \ \mathbf{a} \ \Gamma \ \mathbf{formula, \ then} \ T \vdash \varphi(x) \rightarrow \Pr_{T}(\lceil \varphi(\dot{x}) \rceil). \\ \mathbf{B_{2}^{U}} & T \vdash \varphi(x) \rightarrow \psi(x) \\ & \Rightarrow T \vdash \Pr_{T}(\lceil \varphi(\dot{x}) \rceil) \rightarrow \Pr_{T}(\lceil \psi(\dot{x}) \rceil). \\ \mathbf{PC^{U}} & T \vdash \Pr_{\emptyset}(\lceil \varphi(\dot{x}) \rceil) \rightarrow \Pr_{T}(\lceil \varphi(\dot{x}) \rceil). \\ \mathbf{CB} & T \vdash \Pr_{T}(\lceil \forall x \ \varphi(x) \rceil) \rightarrow \forall x \Pr_{T}(\lceil \varphi(\dot{x}) \rceil). \end{array}$$

Global derivability conditions

Global derivbility conditions

$$\begin{array}{ccc} \mathbf{D2^G} & T \vdash \forall x \forall y (\mathrm{Fml}(x) \land \mathrm{Fml}(y) \\ & \rightarrow (\mathrm{Pr}_T(x \dot{\rightarrow} y) \rightarrow (\mathrm{Pr}_T(x) \rightarrow \mathrm{Pr}_T(y)))). \\ \mathbf{\Gamma C^G} & T \vdash \forall x (\mathsf{True}_{\Gamma}(x) \rightarrow \mathrm{Pr}_T(x)). \\ \mathbf{PC^G} & T \vdash \forall x (\mathrm{Fml}(x) \rightarrow (\mathrm{Pr}_{\emptyset}(x) \rightarrow \mathrm{Pr}_T(x))). \end{array}$$

 $\mathsf{True}_{\Gamma}(x)$ is a formula saying that "x is a true Γ sentence".

Remark

Global \Rightarrow Uniform \Rightarrow Local.

Known results

```
Hilbert-Bernays \mathbf{B_2}, \mathbf{CB}, \mathbf{\Delta_0C^U} \Rightarrow T \nvdash \mathbf{Con}_T^H

\mathbf{L\ddot{o}b} \ \mathbf{D2}, \mathbf{D3} \Rightarrow T \nvdash \mathbf{Con}_T^L

\mathbf{Jeroslow} \ \mathbf{\Sigma_1C} \Rightarrow T \nvdash \mathbf{Con}_T^H

\mathbf{Montagna} \ \mathbf{D2^G}, \mathbf{PC^G} \Rightarrow T \nvdash \mathbf{Con}_T^G

\mathbf{Buchholz} \ \mathbf{D1^U}, \mathbf{D2^U} \Rightarrow \mathbf{\Sigma_1C^U}
```

Implications between prominent sets of conditions

Hilbert and Bernays (1939)

Löb (1955)

Jeroslow (1973)

Montagna (1979)

Buchholz (1993)

- A brief history
- Oerivability conditions
- My results

New sufficient conditions

I found two sets of sufficient conditions for the unprovability of Con_T^H .

Theorem

- $\mathbf{B_2}, \mathbf{D3} \Rightarrow T \nvdash \mathbf{Con}_T^H$
- $\mathbf{PC} \Rightarrow T \nvdash \mathrm{Con}_T^H$

$$\mathbf{B_2} \ T \vdash \varphi \to \psi \Rightarrow T \vdash \mathrm{Pr}_T(\lceil \varphi \rceil) \to \mathrm{Pr}_T(\lceil \psi \rceil).$$

D3
$$T \vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil) \rceil).$$

$$\mathbf{PC} \ T \vdash \Pr_{\emptyset}(\lceil \varphi \rceil) \to \Pr_{T}(\lceil \varphi \rceil).$$

$$\operatorname{Con}_T^H \equiv \forall x (\operatorname{Fml}(x) \wedge \operatorname{Pr}_T(x) \to \neg \operatorname{Pr}_T(\dot{\neg} x))$$

New sufficient conditions

An improvement of Buchholz's result

Buchholz's result is stated precisely as follows:

Theorem (Buchholz)

$$\mathbf{D1}^{\mathrm{U}}, \mathbf{D2}^{\mathrm{U}} \Rightarrow \mathbf{\Sigma_1}\mathbf{C}^{\mathrm{U}}$$

I proved that only the m=2 case of Buchholz's conditions is sufficient for $\Sigma_1\mathbf{C}^\mathbf{U}$.

Theorem

$$\mathbf{B_2^U}\Rightarrow \boldsymbol{\Sigma_1}\mathbf{C^U}$$

$$\mathbf{B_2^U} \ T \vdash \varphi(x) \to \psi(x)$$

$$\Rightarrow T \vdash \Pr_T(\lceil \varphi(\dot{x}) \rceil) \to \Pr_T(\lceil \psi(\dot{x}) \rceil).$$

Corollary

$$\mathbf{B_2^U} \Rightarrow T \nvdash \mathbf{Con}_T^H$$

An improvement of Buchholz's result

- I am also interested in non-implications between sets of condtions.
- For example, I pay attention to Rosser's provability predicate:

$$\Pr_T(x) \equiv \exists y (\Pr_T(x, y) \land \forall z < y \neg \Pr_T(\dot{\neg} x, z)).$$

ullet This is because PA proves Con_T^L of Rosser's provability predicates.

Theorem (Arai, 1990)

- There exists a Rosser provability predicate of T satisfying $\mathbf{D2}^{\mathbf{G}}$.
- There exists a Rosser provability predicate of T satisfying $\mathbf{D3}^{\mathbf{G}}$.
- $\bullet \ \ \mathsf{Therefore} \ \ \mathsf{each} \ \ \mathsf{of} \ \ \mathsf{D2}^{\mathbf{G}} \ \ \mathsf{and} \ \ \mathsf{D3}^{\mathbf{G}} \ \ \mathsf{is} \ \ \mathsf{not} \ \ \mathsf{sufficient} \ \ \mathsf{for} \ \ T \nvdash \mathsf{Con}^L_T.$

I extended Arai's results and showed that some sets of conditions are not sufficient for $T \nvdash \operatorname{Con}_T^L$.

Theorem A

This is an improvement of Arai's first result.

Theorem A

There exists a Rosser provability predicate $Pr_T(x)$ of T satisfying $D2^G$,

 $\Delta_0 \mathbf{C}^{\mathbf{G}}$ and $\mathrm{PA} \vdash \mathrm{Con}_T^H$. That is,

• PA
$$\vdash \forall x \forall y (\Pr_T(x \rightarrow y) \rightarrow (\Pr_T(x) \rightarrow \Pr_T(y)))$$
.

• PA
$$\vdash \forall x(\mathsf{True}_{\Delta_0}(x) \to \mathsf{Pr}_T(x))$$
.

• PA
$$\vdash \forall x (\operatorname{Fml}(x) \land \operatorname{Pr}_T(x) \to \neg \operatorname{Pr}_T(\dot{\neg}(x))$$
.

•
$$\{\mathbf{D2}, \mathbf{D3}\} \Rightarrow T \nvdash \mathrm{Con}_T^L$$

(Löb)

•
$$\{\mathbf{D2^G}, \boldsymbol{\Delta_0 C^G}\} \not\Rightarrow T \nvdash \mathrm{Con}_T^L$$

(From Theorem A)

Theorem B

There exists a Rosser provability predicate satisfying Hilbert–Bernays' derivability conditions.

Theorem B

There exists a Rosser provability predicate $Pr_T(x)$ of T satisfying CB, D2 and $\Delta_0 C^G$. That is,

•
$$T \vdash \Pr_T(\lceil \forall x \varphi(x) \rceil) \to \forall x \Pr_T(\lceil \varphi(\dot{x}) \rceil)$$
.

•
$$T \vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil)).$$

• PA
$$\vdash \forall x(\mathsf{True}_{\Delta_0}(x) \to \mathsf{Pr}_T(x))$$
.

•
$$\{CB, B_2, \Delta_0 C^U\} \Rightarrow T \nvdash Con_T^H$$

(Hilbert-Bernays)

•
$$\{CB, D2, \Delta_0 C^G\} \not\Rightarrow T \nvdash Con_T^L$$

(From Theorem B)

$$\bullet \ \{D1^U,D2^U\} \Rightarrow \Sigma_1C^U$$

(Buchholz)

•
$$\{D1^U, D2\} \not\Rightarrow \Sigma_1C$$

(From Theorem B)

This is an improvement of Arai's second result.

Theorem C

There exists a Rosser provability predicate $Pr_T(x)$ of T satisfying CB, B₂, $D3^{G}$ and $\Delta_{0}C^{G}$. That is.

•
$$T \vdash \Pr_T(\lceil \forall x \varphi(x) \rceil) \to \forall x \Pr_T(\lceil \varphi(\dot{x}) \rceil)$$
.

•
$$T \vdash \varphi \to \psi \Rightarrow T \vdash \Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \psi \urcorner)$$
.

• PA
$$\vdash \forall x (\Pr_T(x) \to \Pr_T(\lceil \Pr_T(\dot{x}) \rceil))$$
.

•
$$\operatorname{PA} \vdash \forall x(\operatorname{True}_{\Delta_0}(x) \to \operatorname{Pr}_T(x))$$
.

•
$$\{\mathbf{D2}, \mathbf{D3}\} \Rightarrow T \nvdash \mathrm{Con}_T^L$$

(Löb)

•
$$\{\mathbf{B_2}, \mathbf{D3^G}\} \not\Rightarrow T \nvdash \mathbf{Con}_T^L$$

(From Therem C)

 Moreover, I also contructed some (artificial) provability predicates satisfying some conditions but not satisfying others.

For example,

Theorem

There exists a provability predicate $\Pr_T(x)$ of T which satisfies $\Sigma_1\mathbf{C}^\mathbf{G}$, but does not satisfy any of $\mathbf{D}\mathbf{1}^\mathbf{U}$ and \mathbf{PC} .

 I present some non-implications in these that relate to the previous figure.

Theorem

 $\{B_2,D3\}$, $\{\Sigma_1C\}$, $\{PC\}$ and $\{B_2,CB,\Delta_0C^U\}$ are pairwise incomparable.

$\mathsf{Theorem}$

Each of $\{B_2, D3\}$, $\{\Sigma_1C\}$, $\{PC\}$ and $\{B_2, CB, \Delta_0C^U\}$ is not sufficient for $T \nvdash \mathrm{Con}_T^L$.

$\mathsf{Theorem}$

 $\{D2,D3\} \text{ does not imply any of } \{\Sigma_1C\}\text{, } \{PC\} \text{ and } \{B_2,CB,\Delta_0C^U\}\text{.}$

Theorem

 $\{\mathbf{D1^U}, \mathbf{D2^G}, \mathbf{\Sigma_1C^G}\}$ is not sufficient for $T \nvdash \mathbf{Con}_T^G$.

This shows that both of Hilbert–Bernays' conditions and Löb's conditions do not accomplish Gödel's original statement of G2.

- G2 is a collection of theorems that claims the unprovability of Con_T .
- I constructed several artificial provability predicates, and it is not easy to specify the range of provability predicates to be treated in G2.
- Thus, the problem of what is an exact statement of G2 is still unclear.
- Is there any general principle behind these different versions of G2?

References

- W. Buchholz, Mathematische Logik II, http://www.mathematik. uni-muenchen.de/~buchholz/articles/Logik II.ps (1993).
- R. G. Jeroslow, Redundancies in the Hilbert-Bernays derivability conditions for Gödel's second incompleteness theorem, *JSL*, vol.38 (1973), no.3, pp.359–367.
- T. Kurahashi, A note on derivability conditions, *JSL*, vol.85, no.3, pp.1224–1253, 2020.
- T. Kurahashi, Rosser provability and the second incompleteness theorem, to appear in Symposium on Advances in Mathematical Logic 2018 proceedings.
- M. H. Löb, Solution of a problem of Leon Henkin, JSL, vol.20 (1955), no.2, pp.115-118.
- F. Montagna, On the formulas of Peano arithmetic which are provably closed under modus ponens, *Bollettino dell'Unione Matematica Italiana*, vol.16 (1979), no.B5, pp.196–211.