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Provability predicates

o L4: the language of first-order arithmetic
e n: the numeral for n € w

e "p": the numeral for the G6del number of ¢
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Provability predicates

o L4: the language of first-order arithmetic

e n: the numeral for n € w

e "p": the numeral for the G6del number of ¢

In the usual proof of Gdédel’s incompleteness theorems, a provability
predicate plays an important role.

Provability predicates

A formula Pr(z) is a provability predicate of PA

def,
s for any n € w,

PAF Pr(7) <= n is the Goédel number of some theorem of PA.
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Standard construction of provability predicates

Godel-Feferman’s standard construction of provability predicates of PA
is as follows.

A formula 7(v) is a numeration of PA

g} for any n € w,
PAF 7(7) <= n is the G6del number of an axiom of PA.
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Standard construction of provability predicates

Godel-Feferman’s standard construction of provability predicates of PA

is as follows.

Nume ns

A formula 7(v) is a numeration of PA

g} for any n € w,
PAF 7(7) <= n is the G6del number of an axiom of PA.

o Let 7(v) be a numeration of PA.
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Standard construction of provability predicates

Godel-Feferman’s standard construction of provability predicates of PA
is as follows.

Numerations

A formula 7(v) is a numeration of PA

g} for any n € w,
PAF 7(7) <= n is the G6del number of an axiom of PA.

o Let 7(v) be a numeration of PA.

o The relation “z is the Goédel number of an £ 4-fomula provable in
the theory defined by 7(v)” is naturally expressed in the language
L4.
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Standard construction of provability predicates

Godel-Feferman’s standard construction of provability predicates of PA
is as follows.

Numerations

A formula 7(v) is a numeration of PA

g} for any n € w,
PAF 7(7) <= n is the G6del number of an axiom of PA.

o Let 7(v) be a numeration of PA.

o The relation “z is the Goédel number of an £ 4-fomula provable in
the theory defined by 7(v)” is naturally expressed in the language
L4.

o The resulting £ 4-formula is denoted by Pr.(z).
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Standard construction of provability predicates

Godel-Feferman’s standard construction of provability predicates of PA
is as follows.

Numerations

A formula 7(v) is a numeration of PA

g} for any n € w,
PAF 7(7) <= n is the G6del number of an axiom of PA.

Let 7(v) be a numeration of PA.

o The relation “z is the Goédel number of an £ 4-fomula provable in
the theory defined by 7(v)” is naturally expressed in the language
L4.

The resulting £ 4-formula is denoted by Pr,(z).

If 7(v) is ¥n+1, then Pr(z) is also 3, 41.
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Properties of standard provability predicates

Theorem (Hilbert-Bernays-Lob-Feferman)

Let 7(v) be any numeration of PA.
o Prr(z) is a provability predicate of PA.
@ PAEPr ("o = ¢™) = (Pre(T¢") — Pr-(T¢7)).
o PAF ¢ — Pr ("¢ for any 3; sentence .
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Properties of standard provability predicates

Theorem (Hilbert-Bern Lob-Feferman)

Let 7(v) be any numeration of PA.
o Prr(z) is a provability predicate of PA.
o PAEPr ("o = ¢7) = (Prr(Te™) — Pre("¢7)).
o PAF ¢ — Pr ("¢ for any 3; sentence .

Theorem

| A

Let 7(v) be any ¥; numeration of PA.
@ PAE Pr ("™ = Prr("Pr-(TpM)7).
o (Godel’s second incompleteness theorem)
PA ¥ Con,
where Con- is the consistency statement —Pr ("0 =1") of 7(v).
o (Lob’s theorem)
PAE Pr-("Pr-(T¢™") = ) = Pr-(T7).
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Nonstandard provability predicates

There are many nonstandard provability predicates.

o Rosser’s provability predicate
Pri(z) = Jy(Prf(z,y) A Vz < y—Prf(-z, 2)),
where Prf(z,y) is a A; proof predicate.




Provability cates
[e]e]e] ]
Provability predicates

Nonstandard provability predicates

There are many nonstandard provability predicates.

o Rosser’s provability predicate
Pri(z) = Jy(Prf(z,y) A Vz < y—Prf(-z, 2)),
where Prf(z,y) is a A; proof predicate.
o Mostowski’s provability predicate
PrM (z) = Jy(Prf(z,y) A =Prf("0 =17, )
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Nonstandard provability predicates

There are many nonstandard provability predicates.

o Rosser’s provability predicate
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PrM (z) = Jy(Prf(z,y) A =Prf("0 =17, )

e Shavrukov’s provability predicate
PI‘S(Z‘) = Hy(Pr]Ey (3?) A COn[Ey)

What are the PA-provable principles of each provability predicate?
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Nonstandard provability predicates

There are many nonstandard provability predicates.

o Rosser’s provability predicate
Pri(z) = Jy(Prf(z,y) A Vz < y—Prf(-z, 2)),
where Prf(z,y) is a A; proof predicate.
o Mostowski’s provability predicate
PrM (z) = Jy(Prf(z,y) A =Prf("0 =17, )

e Shavrukov’s provability predicate
PI‘S(Z‘) = Hy(Pr]Ey (3?) A COn[Ey)

What are the PA-provable principles of each provability predicate?

This problem is investigated in the framework of modal logic.
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Arithmetical interpretations and provability logic

Arithmetical interpretatio

Modal logics

Axioms and Rules of the modal logic K

Axioms Tautologies and O(p — q) — (Op — Og).

_)
Rules Modus ponens w, Necessitation Di, and
®
Substitution.
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Substitution.
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A modal logic L is normal

g} L includes K and is closed under three rules of K.
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Modal logics

Axioms and Rules of the modal logic K

Axioms Tautologies and O(p — q) — (Op — Og).
_)
Rules Modus ponens w, Necessitation Dﬁ’ and

%)
Substitution.

v
Normal modal logics

A modal logic L is normal

g} L includes K and is closed under three rules of K.

For each modal formula A, L + A denotes the smallest normal modal
logic including L and A.
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Arithmetical interpretations and provability logics

o KT=K+0Op—=p

e KD=K+-0OLl

o K4 =K+ Op — O0p

K5 =K+ Op — O0p

e KB=K+p— 0O0p

o GL=K+0O(p —»p) — 0Op
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Let Pr(z) be a provability predicate of PA.
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Arithmetical interpretations and provability logics

A mapping f from modal formulas to £4-sentences is an arithmetical
interpretation based on Pr(z)
g& f satisfies the following conditions:

o f(LY=0=T1;

o f(A— B) = f(A) = f(B);

o f(OA) =Pr("f(A)).
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Arithmetical interpretations and provability logics

Let Pr(z) be a provability predicate of PA.

Arithmetical interpretations

A mapping f from modal formulas to £4-sentences is an arithmetical
interpretation based on Pr(z)
g& f satisfies the following conditions:

o f(LY=0=T1;

o f(A— B) = f(A) = f(B);

o f(BA) =Pr("f(A)-

Provability logics
PL(Pr) := {A: PAE f(A) for all arithmetical interpretations f based on

Pr(z)}.
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Arithmetical interpretations and provability logics

Let Pr(z) be a provability predicate of PA.

Arithmetical interpretations

A mapping f from modal formulas to £4-sentences is an arithmetical

interpretation based on Pr(z)

g& f satisfies the following conditions:

o f(L)Y=0=T;
o f(A— B) = f(A) = f(B);

o f(BA) =Pr("f(A)-

Provability logics

PL(Pr) := {A: PAE f(A) for all arithmetical interpretations f based on
Pr(z)}.

The set PL(Pr) is said to be the provability logic of Pr(z).
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Solovz arithmetical completen theorem

o Recall that for each X; numeration 7(v) of PA,
o PAEPr-(To = ¢7) — (Pr(T9™) — Pro(T47)),
o PAL Pr (TPr (") = ¢7) — Pry ("),
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Solovay’s arithmetical completeness theorem

o Recall that for each X; numeration 7(v) of PA,
o PAFPr . ("Te = ¢7) = (Pr (") = Pro("97)),
o PAF Pr,("Pr (Tp™) = ¢7) — Prp(Tg7).
e Corresponding modal formulas O(p — ¢) — (Op — Og) and
0O(@Op — p) — Op are axioms of GL.
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Solovay’s arithmetical completeness theorem

o Recall that for each X; numeration 7(v) of PA,
o PAFPr . ("Te = ¢7) = (Pr (") = Pro("97)),
o PAF Pr,("Pr (Tp™) = ¢7) — Prp(Tg7).
e Corresponding modal formulas O(p — ¢) — (Op — Og) and
0O(@Op — p) — Op are axioms of GL.

o In fact, GL is exactly the provability logic of standard ¥; provability
predicates.

Arithmetical completeness theorem (Solovay, 1976)

For any X1 numeration 7(v) of PA, PL(Pr;) coincides with GL.
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Feferman’s predicate

On the other hand, there are provability predicates whose provability
logics are completely different from GL.

Theorem (Feferman, 1960)

There exists a II; numeration 7(v) of PA such that PA - Con;.
Consequently, KD C PL(Pr;) (KD = K+ —-0O.1).
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Feferman’s predicate

On the other hand, there are provability predicates whose provability
logics are completely different from GL.

Theorem (Feferman, 1960)

There exists a II; numeration 7(v) of PA such that PA - Con;.
Consequently, KD C PL(Pr;) (KD = K+ —-0O.1).

Shavrukov found a nonstandard provability predicate whose provability
logic is strictly stronger than KD.

Theorem (Shavrukov, 1994)

Let Pro(z) = Jy(Prrs, (z) A Conys,)).
Then PL(Pr%) = KD + Op — 0O((0g — q) V Op).
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o There may be a lot of normal modal logic which is the provability
logic of some provability predicate.
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o There may be a lot of normal modal logic which is the provability
logic of some provability predicate.

o We are interested in the following general problem.

General Problem

Which normal modal logic is the provability logic PL(Pr) of some
provability predicate Pr(z) of PA?
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Arithmetical interpretations and provability logics

o There may be a lot of normal modal logic which is the provability
logic of some provability predicate.

o We are interested in the following general problem.

General Problem

Which normal modal logic is the provability logic PL(Pr) of some

provability predicate Pr(z) of PA?

o Kurahashi, T., Arithmetical completeness theorem for modal logic
K, Studia Logica, to appear.

o Kurahashi, T., Arithmetical soundness and completeness for X
numerations, Studia Logica, to appear.

o Kurahashi, T., Rosser provability and normal modal logics,
submitted.
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Our results

Several normal modal logics cannot be of the form PL(Pr).

Proposition (K., 201x)

Let L be a normal modal logic satisfying one of the following conditions.
Then L # PL(Pr) for all provability predicates Pr(z) of PA.
QO KTCL.
© K4C L and GL ¢ L.
@ K5 C L.
Q@ KBCL.
”
s 85
/ y/4
/ 2
KT ké}g

KB4
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Theorem 1

There exists a numeration of PA whose provability logic is minimum.

Theorem 1 (K., 201x)

There exists a Y2 numeration 7(v) of PA such that PL(Pr;) = K.
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Sacchetti (2001) introduced the logics K+ O(0O"p — p) — Up (n > 2).
e For n>2, K+ 0O@O"p — p) — Up C GL.

o He conjectured that these logics are provability logics of some
nonstandard provability predicates.



Our results
[e]e] Yololele}

Theorem 2

e Sacchetti (2001) introduced the logics K+ O(0O"p — p) — Up (n > 2).
e For n>2, K+ 0O@O"p — p) — Up C GL.

o He conjectured that these logics are provability logics of some
nonstandard provability predicates.

We gave a proof of this conjecture.

Theorem 2 (K., 201x)

For each n > 2, there exists a ¥2 numeration 7(v) of PA such that
PL(Pr;) = K+ O(O"p — p) — Op.

Therefore there are infinitely many provability logics.
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Our results

KB4

o How about KD?

o We paid attention to Rosser’s provability predicates PrR(m) because

PA always proves the consistency statements Con’® defined by using
Prit(z).
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Rosser’s provability predicates

However, provability logics of Rosser’s provability predicates are
sometimes not normal.

Theorem (Guaspari and Solovay, 1979)

There exists a Rosser provability predicate PrR(av) such that
PAK PrE(Tp — 7)) = (PrE(Tp") — Prf("4™)) for some ¢ and 1.
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Rosser’s provability predicates

However, provability logics of Rosser’s provability predicates are
sometimes not normal.

Theorem (Guaspari and Solovay, 1979)

There exists a Rosser provability predicate PrR(a;) such that
PAK PrE(Tp — 7)) = (PrE(Tp") — Prf("4™)) for some ¢ and 1.

On the other hand, there exists a Rosser provability predicate whose
provability logic is normal.

Theorem (Arai, 1990)

There exists a Rosser provability predicate PrR(m) such that
PA - Pr(Tp = 47) = (PrE(T¢T) — PrE(Ty7)) for any ¢ and .

Then KD C PL(Pr®) for Arai’s predicate Prf(z).
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Theorems 3 and 4

We proved that there exists Pr(z) whose provability logic coincides
with KD.

Theorem 3 (K., 201x)

There exists a Rosser provability predicate Prf*(z) such that
PL(Prf) = KD.
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Theorems 3 and 4

We proved that there exists Pr(z) whose provability logic coincides
with KD.

Theorem 3 (K., 201x)

There exists a Rosser provability predicate Prf*(z) such that
PL(Prf) = KD.

Moreover, there exists a Rosser provability predicate whose provability
logic is strictly stronger than KD.

Theorem 4 (K., 201x)

There exists a Rosser provability predicate PrR(x) such that
KD + O-p — O-0Op C PL(Prf?).
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Open Problems

Are there any others logics L such that K C L € GL and L = PL(Pr) for
some Pr(z)?
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Open Problem 3
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Open Problems

Open Problem 1

Are there any others logics L such that K C L € GL and L = PL(Pr) for
some Pr(z)?

Open Problem 2

Is there a numeration 7(v) of PA such that PL(Pr.) = KD?

Open Problem 3

Is there a Rosser provability predicate Pr(z) such that
PL(Prf) = KD + O-p — O-Op?

General Problem

| A\

Which (normal) modal logic is in the set
{PL(Pr) : Pr(z) is a provability predicate of PA}?




	Provability predicates
	Provability predicates

	Arithmetical interpretations and provability logics
	Arithmetical interpretations and provability logics

	Our results
	Our results


