Normal modal logics and provability predicates Taishi Kurahashi (National Institute of Technology, Kisarazu College) Second Workshop on Mathematical Logic and its Applications Kanazawa ${\rm March} \ 7, \ 2018$ # Outline - Provability predicates - Arithmetical interpretations and provability logics - Our results # Outline - Provability predicates - Arithmetical interpretations and provability logics - Our results # Provability predicates - \mathcal{L}_A : the language of first-order arithmetic - \overline{n} : the numeral for $n \in \omega$ - $\lceil \varphi \rceil$: the numeral for the Gödel number of φ #### Provability predicates - \mathcal{L}_A : the language of first-order arithmetic - \overline{n} : the numeral for $n \in \omega$ - $\lceil \varphi \rceil$: the numeral for the Gödel number of φ In the usual proof of Gödel's incompleteness theorems, a provability predicate plays an important role. #### Provability predicates A formula Pr(x) is a provability predicate of PA $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$, $PA \vdash Pr(\overline{n}) \iff n \text{ is the G\"{o}del number of some theorem of } PA.$ Gödel-Feferman's standard construction of provability predicates of PA is as follows. #### Numerations A formula $\tau(v)$ is a numeration of PA $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$, $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$ Gödel-Feferman's standard construction of provability predicates of PA is as follows. #### Numerations A formula $\tau(v)$ is a numeration of PA $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$, $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$ • Let $\tau(v)$ be a numeration of PA. Gödel-Feferman's standard construction of provability predicates of PA is as follows. #### Numerations A formula $\tau(v)$ is a numeration of PA $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$, $\mathsf{PA} \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of PA.}$ - Let $\tau(v)$ be a numeration of PA. - The relation "x is the Gödel number of an \mathcal{L}_A -formula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A . Gödel-Feferman's standard construction of provability predicates of PA is as follows. #### Numerations A formula $\tau(v)$ is a numeration of PA $\stackrel{\text{def.}}{\iff}$ for any $n \in \omega$, $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$ - Let $\tau(v)$ be a numeration of PA. - The relation "x is the Gödel number of an \mathcal{L}_A -formula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A . - The resulting \mathcal{L}_A -formula is denoted by $Pr_{\tau}(x)$. Gödel-Feferman's standard construction of provability predicates of PA is as follows. #### Numerations A formula $\tau(v)$ is a numeration of PA $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$, $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$ - Let $\tau(v)$ be a numeration of PA. - The relation "x is the Gödel number of an \mathcal{L}_A -formula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A . - The resulting \mathcal{L}_A -formula is denoted by $Pr_{\tau}(x)$. - If $\tau(v)$ is Σ_{n+1} , then $\Pr_{\tau}(x)$ is also Σ_{n+1} . # Properties of standard provability predicates # Theorem (Hilbert-Bernays-Löb-Feferman) Let $\tau(v)$ be any numeration of PA. - \bullet $\text{Pr}_{\tau}(x)$ is a provability predicate of PA. - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)).$ - $\mathsf{PA} \vdash \varphi \to \mathsf{Pr}_{\tau}(\lceil \varphi \rceil)$ for any Σ_1 sentence φ . #### Properties of standard provability predicates #### Theorem (Hilbert-Bernays-Löb-Feferman) Let $\tau(v)$ be any numeration of PA. - $Pr_{\tau}(x)$ is a provability predicate of PA. - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)).$ - PA $\vdash \varphi \to \Pr_{\tau}(\ulcorner \varphi \urcorner)$ for any Σ_1 sentence φ . #### Theorem Let $\tau(v)$ be any Σ_1 numeration of PA. - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \urcorner).$ - (Gödel's second incompleteness theorem) $\mathsf{PA} \nvdash \mathsf{Con}_\tau,$ - where Con_{τ} is the consistency statement $\neg \mathsf{Pr}_{\tau}(\lceil \overline{0} = \overline{1} \rceil)$ of $\tau(v)$. - (Löb's theorem) $PA \vdash \Pr_{\tau}(\lceil \Pr_{\tau}(\lceil \varphi \rceil) \to \varphi \rceil) \to \Pr_{\tau}(\lceil \varphi \rceil).$ There are many nonstandard provability predicates. - Rosser's provability predicate - $\Pr^R(x) \equiv \exists y (\Prf(x, y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$ where $\Prf(x, y)$ is a Δ_1 proof predicate. There are many nonstandard provability predicates. Rosser's provability predicate $$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$ where $\Prf(x,y)$ is a Δ_1 proof predicate. Mostowski's provability predicate $$\operatorname{Pr}^{M}(x) \equiv \exists y (\operatorname{Prf}(x, y) \land \neg \operatorname{Prf}(\lceil \overline{0} = \overline{1}\rceil, y))$$ There are many nonstandard provability predicates. Rosser's provability predicate $$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$ where $\Prf(x,y)$ is a Δ_1 proof predicate. • Mostowski's provability predicate $$\mathrm{Pr}^{M}(x) \equiv \exists y (\mathrm{Prf}(x,y) \wedge \neg \mathrm{Prf}(\ulcorner \overline{0} = \overline{1} \urcorner, y))$$ - Shavrukov's provability predicate $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_u}(x) \wedge \mathsf{Con}_{I\Sigma_u})$ - There are many nonstandard provability predicates. • Rosser's provability predicate $$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$ where $\Prf(x,y)$ is a Δ_1 proof predicate. - Mostowski's provability predicate $\Pr^M(x) \equiv \exists y (\Pr(x, y) \land \neg \Pr(\overline{0} = \overline{1}, y))$ - Shavrukov's provability predicate $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_{u}}(x) \wedge \mathsf{Con}_{I\Sigma_{u}})$ - **.** . . . #### Problem What are the PA-provable principles of each provability predicate? There are many nonstandard provability predicates. • Rosser's provability predicate $$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$ where $\Prf(x,y)$ is a Δ_1 proof predicate. - Mostowski's provability predicate $\Pr^{M}(x) \equiv \exists y (\Pr(x, y) \land \neg \Pr(\overline{0} = \overline{1}, y))$ - Shavrukov's provability predicate $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_n}(x) \land \mathsf{Con}_{I\Sigma_n})$ - o . . . #### Problem What are the PA-provable principles of each provability predicate? This problem is investigated in the framework of modal logic. # Outline - Provability predicates - Arithmetical interpretations and provability logics - Our results ## Modal logics # Axioms and Rules of the modal logic K Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$. Rules Modus ponens $\frac{\varphi,\ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \varphi}$, and Substitution. #### Modal logics # Axioms and Rules of the modal logic K Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$. Rules Modus ponens $\frac{\varphi,\ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \varphi}$, and Substitution. ### Normal modal logics A modal logic L is normal $\stackrel{\text{def.}}{\Longleftrightarrow} L$ includes K and is closed under three rules of K. #### Modal logics #### Axioms and Rules of the modal logic K Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$. Rules Modus ponens $\frac{\varphi,\ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \varphi}$, and Substitution. ### Normal modal logics A modal logic L is normal $\overset{\text{def.}}{\Longleftrightarrow}$ L includes K and is closed under three rules of K. For each modal formula A, L+A denotes the smallest normal modal logic including L and A. • $$\mathsf{KT} = \mathsf{K} + \Box p \to p$$ • $$KD = K + \neg \Box \bot$$ • $$K4 = K + \square p \rightarrow \square \square p$$ • $$K5 = K + \Diamond p \rightarrow \Box \Diamond p$$ • $$KB = K + p \rightarrow \Box \Diamond p$$ • $$\mathsf{GL} = \mathsf{K} + \Box(\Box p \to p) \to \Box p$$ o . . . Let Pr(x) be a provability predicate of PA. Let Pr(x) be a provability predicate of PA. # Arithmetical interpretations A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on $\Pr(x)$ $\stackrel{\text{def.}}{\Longleftrightarrow} f$ satisfies the following conditions: • $$f(\bot) \equiv \overline{0} = \overline{1}$$; • $$f(A \rightarrow B) \equiv f(A) \rightarrow f(B)$$; • ... • $$f(\Box A) \equiv \Pr(\lceil f(A) \rceil)$$. Let Pr(x) be a provability predicate of PA. # Arithmetical interpretations A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on $\Pr(x)$ $\stackrel{\text{def.}}{\Longleftrightarrow} f$ satisfies the following conditions: - $f(\perp) \equiv \overline{0} = \overline{1}$; - $f(A \rightarrow B) \equiv f(A) \rightarrow f(B)$; - ... - $f(\Box A) \equiv \Pr(\lceil f(A) \rceil)$. #### Provability logics $PL(Pr) := \{A : PA \vdash f(A) \text{ for all arithmetical interpretations } f \text{ based on } Pr(x)\}.$ Let Pr(x) be a provability predicate of PA. #### Arithmetical interpretations A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on $\Pr(x)$ $\stackrel{\text{def.}}{\Longleftrightarrow} f$ satisfies the following conditions: - $f(\bot) \equiv \overline{0} = \overline{1}$; - $f(A \to B) \equiv f(A) \to f(B)$; - · . . . - $f(\Box A) \equiv \Pr(\lceil f(A) \rceil)$. #### Provability logics $PL(Pr) := \{A : PA \vdash f(A) \text{ for all arithmetical interpretations } f \text{ based on } Pr(x)\}.$ The set PL(Pr) is said to be the provability logic of Pr(x). ## Solovay's arithmetical completeness theorem - Recall that for each Σ_1 numeration $\tau(v)$ of PA, - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)),$ - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner).$ - Recall that for each Σ_1 numeration $\tau(v)$ of PA, - $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_{\tau}(\lceil \varphi \rceil) \to \mathsf{Pr}_{\tau}(\lceil \psi \rceil)),$ - $PA \vdash Pr_{\tau}(\lceil Pr_{\tau}(\lceil \varphi \rceil) \rightarrow \varphi \rceil) \rightarrow Pr_{\tau}(\lceil \varphi \rceil)$. - \bullet Corresponding modal formulas $\Box(p \to q) \to (\Box p \to \Box q)$ and $\Box(\Box p \to p) \to \Box p$ are axioms of GL. #### Solovay's arithmetical completeness theorem - Recall that for each Σ_1 numeration $\tau(v)$ of PA, - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)),$ - $\bullet \ \operatorname{PA} \vdash \operatorname{Pr}_\tau(\ulcorner \operatorname{Pr}_\tau(\ulcorner \varphi \urcorner) \to \varphi \urcorner) \to \operatorname{Pr}_\tau(\ulcorner \varphi \urcorner).$ - Corresponding modal formulas $\Box(p \to q) \to (\Box p \to \Box q)$ and $\Box(\Box p \to p) \to \Box p$ are axioms of GL. - In fact, GL is exactly the provability logic of standard Σ_1 provability predicates. #### Arithmetical completeness theorem (Solovay, 1976) For any Σ_1 numeration $\tau(v)$ of PA, $PL(Pr_{\tau})$ coincides with GL. #### Feferman's predicate On the other hand, there are provability predicates whose provability logics are completely different from GL. ## Theorem (Feferman, 1960) There exists a Π_1 numeration $\tau(v)$ of PA such that PA \vdash Con $_{\tau}$. Consequently, $\mathsf{KD} \subseteq \mathsf{PL}(\mathsf{Pr}_{\tau})$ ($\mathsf{KD} = \mathsf{K} + \neg \Box \bot$). #### Feferman's predicate On the other hand, there are provability predicates whose provability logics are completely different from GL. #### Theorem (Feferman, 1960) There exists a Π_1 numeration $\tau(v)$ of PA such that PA \vdash Con $_{\tau}$. Consequently, $KD \subseteq PL(Pr_{\tau})$ ($KD = K + \neg \Box \bot$). Shavrukov found a nonstandard provability predicate whose provability logic is strictly stronger than KD. #### Theorem (Shavrukov, 1994) Let $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_y}(x) \wedge \mathsf{Con}_{I\Sigma_y})$. Then $PL(Pr^S) = KD + \Box p \rightarrow \Box((\Box q \rightarrow q) \lor \Box p)$. • There may be a lot of normal modal logic which is the provability logic of some provability predicate. - There may be a lot of normal modal logic which is the provability logic of some provability predicate. - We are interested in the following general problem. #### General Problem Which normal modal logic is the provability logic PL(Pr) of some provability predicate Pr(x) of PA? - There may be a lot of normal modal logic which is the provability logic of some provability predicate. - We are interested in the following general problem. #### General Problem Which normal modal logic is the provability logic PL(Pr) of some provability predicate Pr(x) of PA? - Kurahashi, T., Arithmetical completeness theorem for modal logic K, Studia Logica, to appear. - Kurahashi, T., Arithmetical soundness and completeness for Σ_2 numerations, $Studia\ Logica$, to appear. - Kurahashi, T., Rosser provability and normal modal logics, submitted. # Outline - Provability predicates - Arithmetical interpretations and provability logics - Our results Several normal modal logics cannot be of the form PL(Pr). # Proposition (K., 201x) Let L be a normal modal logic satisfying one of the following conditions. Then $L \neq PL(Pr)$ for all provability predicates Pr(x) of PA. - \bullet KT $\subseteq L$. - \bullet K4 $\subseteq L$ and GL $\nsubseteq L$. - lacksquare K5 $\subseteq L$. - \bullet KB $\subseteq L$. There exists a numeration of ${\sf PA}$ whose provability logic is minimum. # Theorem 1 (K., 201x) There exists a Σ_2 numeration $\tau(v)$ of PA such that $\mathsf{PL}(\mathsf{Pr}_{\tau}) = \mathsf{K}$. • Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p$ $(n \ge 2)$. - Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p$ $(n \ge 2)$. - For $n \ge 2$, $K + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$. - Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p$ $(n \ge 2)$. - For $n \ge 2$, $K + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$. - He conjectured that these logics are provability logics of some nonstandard provability predicates. - Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$. - For $n \ge 2$, $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$. - He conjectured that these logics are provability logics of some nonstandard provability predicates. We gave a proof of this conjecture. ### Theorem 2 (K., 201x) For each $n \geq 2$, there exists a Σ_2 numeration $\tau(v)$ of PA such that $\mathsf{PL}(\mathsf{Pr}_{\tau}) = \mathsf{K} + \Box(\Box^n p \to p) \to \Box p$. Therefore there are infinitely many provability logics. • How about KD? - How about KD? - We paid attention to Rosser's provability predicates $\Pr^R(x)$ because PA always proves the consistency statements Con^R defined by using $\Pr^R(x)$. ### Rosser's provability predicates However, provability logics of Rosser's provability predicates are sometimes not normal. ### Theorem (Guaspari and Solovay, 1979) There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \nvdash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for some φ and ψ . ### Rosser's provability predicates However, provability logics of Rosser's provability predicates are sometimes not normal. ### Theorem (Guaspari and Solovay, 1979) There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \nvdash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for some φ and ψ . On the other hand, there exists a Rosser provability predicate whose provability logic is normal. ### Theorem (Arai, 1990) There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \vdash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for any φ and ψ . Then $KD \subseteq PL(Pr^R)$ for Arai's predicate $Pr^R(x)$. #### Theorems 3 and 4 We proved that there exists $\Pr^R(x)$ whose provability logic coincides with KD. ### Theorem 3 (K., 201x) There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PL}(\Pr^R) = \operatorname{KD}$ ### Theorems 3 and 4 We proved that there exists $\Pr^R(x)$ whose provability logic coincides with KD. ### Theorem 3 (K., 201x) There exists a Rosser provability predicate $\Pr^R(x)$ such that $PL(\Pr^R) = KD$. Moreover, there exists a Rosser provability predicate whose provability logic is strictly stronger than KD. ### Theorem 4 (K., 201x) There exists a Rosser provability predicate $\Pr^R(x)$ such that $\mathsf{KD} + \Box \neg p \to \Box \neg \Box p \subseteq \mathsf{PL}(\mathsf{Pr}^R)$. ## Open Problem 1 Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$? # Open Problem 1 Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$? ### Open Problem 2 Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$? ### Open Problem 1 Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$? ### Open Problem 2 Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$? ### Open Problem 3 Is there a Rosser provability predicate $\Pr^R(x)$ such that $PL(\Pr^R) = \mathsf{KD} + \Box \neg p \to \Box \neg \Box p$? #### Open Problem 1 Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$? ### Open Problem 2 Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$? # Open Problem 3 Is there a Rosser provability predicate $\Pr^R(x)$ such that $PL(\Pr^R) = \mathsf{KD} + \Box \neg p \to \Box \neg \Box p$? #### General Problem Which (normal) modal logic is in the set $\{PL(Pr) : Pr(x) \text{ is a provability predicate of PA}\}$?