Normal modal logics and provability predicates

Taishi Kurahashi (National Institute of Technology, Kisarazu College)

Second Workshop on Mathematical Logic and its Applications Kanazawa ${\rm March} \ 7, \ 2018$

Outline

- Provability predicates
- Arithmetical interpretations and provability logics
- Our results

Outline

- Provability predicates
- Arithmetical interpretations and provability logics
- Our results

Provability predicates

- \mathcal{L}_A : the language of first-order arithmetic
- \overline{n} : the numeral for $n \in \omega$
- $\lceil \varphi \rceil$: the numeral for the Gödel number of φ

Provability predicates

- \mathcal{L}_A : the language of first-order arithmetic
- \overline{n} : the numeral for $n \in \omega$
- $\lceil \varphi \rceil$: the numeral for the Gödel number of φ

In the usual proof of Gödel's incompleteness theorems, a provability predicate plays an important role.

Provability predicates

A formula Pr(x) is a provability predicate of PA

 $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$,

 $PA \vdash Pr(\overline{n}) \iff n \text{ is the G\"{o}del number of some theorem of } PA.$

Gödel-Feferman's standard construction of provability predicates of PA is as follows.

Numerations

A formula $\tau(v)$ is a numeration of PA

 $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$,

 $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$

Gödel-Feferman's standard construction of provability predicates of PA is as follows.

Numerations

A formula $\tau(v)$ is a numeration of PA

 $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$,

 $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$

• Let $\tau(v)$ be a numeration of PA.

Gödel-Feferman's standard construction of provability predicates of PA is as follows.

Numerations

A formula $\tau(v)$ is a numeration of PA

 $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$,

 $\mathsf{PA} \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of PA.}$

- Let $\tau(v)$ be a numeration of PA.
- The relation "x is the Gödel number of an \mathcal{L}_A -formula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A .

Gödel-Feferman's standard construction of provability predicates of PA is as follows.

Numerations

A formula $\tau(v)$ is a numeration of PA

 $\stackrel{\text{def.}}{\iff}$ for any $n \in \omega$,

 $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$

- Let $\tau(v)$ be a numeration of PA.
- The relation "x is the Gödel number of an \mathcal{L}_A -formula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A .
- The resulting \mathcal{L}_A -formula is denoted by $Pr_{\tau}(x)$.

Gödel-Feferman's standard construction of provability predicates of PA is as follows.

Numerations

A formula $\tau(v)$ is a numeration of PA

 $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any $n \in \omega$,

 $PA \vdash \tau(\overline{n}) \iff n \text{ is the G\"{o}del number of an axiom of } PA.$

- Let $\tau(v)$ be a numeration of PA.
- The relation "x is the Gödel number of an \mathcal{L}_A -formula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A .
- The resulting \mathcal{L}_A -formula is denoted by $Pr_{\tau}(x)$.
- If $\tau(v)$ is Σ_{n+1} , then $\Pr_{\tau}(x)$ is also Σ_{n+1} .

Properties of standard provability predicates

Theorem (Hilbert-Bernays-Löb-Feferman)

Let $\tau(v)$ be any numeration of PA.

- \bullet $\text{Pr}_{\tau}(x)$ is a provability predicate of PA.
- $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)).$
- $\mathsf{PA} \vdash \varphi \to \mathsf{Pr}_{\tau}(\lceil \varphi \rceil)$ for any Σ_1 sentence φ .

Properties of standard provability predicates

Theorem (Hilbert-Bernays-Löb-Feferman)

Let $\tau(v)$ be any numeration of PA.

- $Pr_{\tau}(x)$ is a provability predicate of PA.
- $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)).$
- PA $\vdash \varphi \to \Pr_{\tau}(\ulcorner \varphi \urcorner)$ for any Σ_1 sentence φ .

Theorem

Let $\tau(v)$ be any Σ_1 numeration of PA.

- $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \urcorner).$
- (Gödel's second incompleteness theorem) $\mathsf{PA} \nvdash \mathsf{Con}_\tau,$
 - where Con_{τ} is the consistency statement $\neg \mathsf{Pr}_{\tau}(\lceil \overline{0} = \overline{1} \rceil)$ of $\tau(v)$.
- (Löb's theorem) $PA \vdash \Pr_{\tau}(\lceil \Pr_{\tau}(\lceil \varphi \rceil) \to \varphi \rceil) \to \Pr_{\tau}(\lceil \varphi \rceil).$

There are many nonstandard provability predicates.

- Rosser's provability predicate
 - $\Pr^R(x) \equiv \exists y (\Prf(x, y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$ where $\Prf(x, y)$ is a Δ_1 proof predicate.

There are many nonstandard provability predicates.

Rosser's provability predicate

$$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$

where $\Prf(x,y)$ is a Δ_1 proof predicate.

Mostowski's provability predicate

$$\operatorname{Pr}^{M}(x) \equiv \exists y (\operatorname{Prf}(x, y) \land \neg \operatorname{Prf}(\lceil \overline{0} = \overline{1}\rceil, y))$$

There are many nonstandard provability predicates.

Rosser's provability predicate

$$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$

where $\Prf(x,y)$ is a Δ_1 proof predicate.

• Mostowski's provability predicate

$$\mathrm{Pr}^{M}(x) \equiv \exists y (\mathrm{Prf}(x,y) \wedge \neg \mathrm{Prf}(\ulcorner \overline{0} = \overline{1} \urcorner, y))$$

- Shavrukov's provability predicate $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_u}(x) \wedge \mathsf{Con}_{I\Sigma_u})$
-

There are many nonstandard provability predicates.

• Rosser's provability predicate

$$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$

where $\Prf(x,y)$ is a Δ_1 proof predicate.

- Mostowski's provability predicate $\Pr^M(x) \equiv \exists y (\Pr(x, y) \land \neg \Pr(\overline{0} = \overline{1}, y))$
- Shavrukov's provability predicate $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_{u}}(x) \wedge \mathsf{Con}_{I\Sigma_{u}})$
- **.** . . .

Problem

What are the PA-provable principles of each provability predicate?

There are many nonstandard provability predicates.

• Rosser's provability predicate

$$\Pr^R(x) \equiv \exists y (\Prf(x,y) \land \forall z \leq y \neg \Prf(\dot{\neg} x, z)),$$

where $\Prf(x,y)$ is a Δ_1 proof predicate.

- Mostowski's provability predicate $\Pr^{M}(x) \equiv \exists y (\Pr(x, y) \land \neg \Pr(\overline{0} = \overline{1}, y))$
- Shavrukov's provability predicate $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_n}(x) \land \mathsf{Con}_{I\Sigma_n})$
- o . . .

Problem

What are the PA-provable principles of each provability predicate?

This problem is investigated in the framework of modal logic.

Outline

- Provability predicates
- Arithmetical interpretations and provability logics
- Our results

Modal logics

Axioms and Rules of the modal logic K

Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$.

Rules Modus ponens $\frac{\varphi,\ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \varphi}$, and Substitution.

Modal logics

Axioms and Rules of the modal logic K

Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$.

Rules Modus ponens $\frac{\varphi,\ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \varphi}$, and Substitution.

Normal modal logics

A modal logic L is normal

 $\stackrel{\text{def.}}{\Longleftrightarrow} L$ includes K and is closed under three rules of K.

Modal logics

Axioms and Rules of the modal logic K

Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$.

Rules Modus ponens $\frac{\varphi,\ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \varphi}$, and Substitution.

Normal modal logics

A modal logic L is normal

 $\overset{\text{def.}}{\Longleftrightarrow}$ L includes K and is closed under three rules of K.

For each modal formula A, L+A denotes the smallest normal modal logic including L and A.

•
$$\mathsf{KT} = \mathsf{K} + \Box p \to p$$

•
$$KD = K + \neg \Box \bot$$

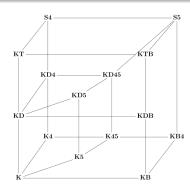
•
$$K4 = K + \square p \rightarrow \square \square p$$

•
$$K5 = K + \Diamond p \rightarrow \Box \Diamond p$$

•
$$KB = K + p \rightarrow \Box \Diamond p$$

•
$$\mathsf{GL} = \mathsf{K} + \Box(\Box p \to p) \to \Box p$$

o . . .



Let Pr(x) be a provability predicate of PA.

Let Pr(x) be a provability predicate of PA.

Arithmetical interpretations

A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on $\Pr(x)$

 $\stackrel{\text{def.}}{\Longleftrightarrow} f$ satisfies the following conditions:

•
$$f(\bot) \equiv \overline{0} = \overline{1}$$
;

•
$$f(A \rightarrow B) \equiv f(A) \rightarrow f(B)$$
;

• ...

•
$$f(\Box A) \equiv \Pr(\lceil f(A) \rceil)$$
.

Let Pr(x) be a provability predicate of PA.

Arithmetical interpretations

A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on $\Pr(x)$

 $\stackrel{\text{def.}}{\Longleftrightarrow} f$ satisfies the following conditions:

- $f(\perp) \equiv \overline{0} = \overline{1}$;
- $f(A \rightarrow B) \equiv f(A) \rightarrow f(B)$;
- ...
- $f(\Box A) \equiv \Pr(\lceil f(A) \rceil)$.

Provability logics

 $PL(Pr) := \{A : PA \vdash f(A) \text{ for all arithmetical interpretations } f \text{ based on } Pr(x)\}.$

Let Pr(x) be a provability predicate of PA.

Arithmetical interpretations

A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on $\Pr(x)$

 $\stackrel{\text{def.}}{\Longleftrightarrow} f$ satisfies the following conditions:

- $f(\bot) \equiv \overline{0} = \overline{1}$;
- $f(A \to B) \equiv f(A) \to f(B)$;
- · . . .
- $f(\Box A) \equiv \Pr(\lceil f(A) \rceil)$.

Provability logics

 $PL(Pr) := \{A : PA \vdash f(A) \text{ for all arithmetical interpretations } f \text{ based on } Pr(x)\}.$

The set PL(Pr) is said to be the provability logic of Pr(x).

Solovay's arithmetical completeness theorem

- Recall that for each Σ_1 numeration $\tau(v)$ of PA,
 - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)),$
 - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \varphi \urcorner).$

- Recall that for each Σ_1 numeration $\tau(v)$ of PA,
 - $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_{\tau}(\lceil \varphi \rceil) \to \mathsf{Pr}_{\tau}(\lceil \psi \rceil)),$
 - $PA \vdash Pr_{\tau}(\lceil Pr_{\tau}(\lceil \varphi \rceil) \rightarrow \varphi \rceil) \rightarrow Pr_{\tau}(\lceil \varphi \rceil)$.
- \bullet Corresponding modal formulas $\Box(p \to q) \to (\Box p \to \Box q)$ and $\Box(\Box p \to p) \to \Box p$ are axioms of GL.

Solovay's arithmetical completeness theorem

- Recall that for each Σ_1 numeration $\tau(v)$ of PA,
 - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_\tau(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_\tau(\ulcorner \psi \urcorner)),$
 - $\bullet \ \operatorname{PA} \vdash \operatorname{Pr}_\tau(\ulcorner \operatorname{Pr}_\tau(\ulcorner \varphi \urcorner) \to \varphi \urcorner) \to \operatorname{Pr}_\tau(\ulcorner \varphi \urcorner).$
- Corresponding modal formulas $\Box(p \to q) \to (\Box p \to \Box q)$ and $\Box(\Box p \to p) \to \Box p$ are axioms of GL.
- In fact, GL is exactly the provability logic of standard Σ_1 provability predicates.

Arithmetical completeness theorem (Solovay, 1976)

For any Σ_1 numeration $\tau(v)$ of PA, $PL(Pr_{\tau})$ coincides with GL.

Feferman's predicate

On the other hand, there are provability predicates whose provability logics are completely different from GL.

Theorem (Feferman, 1960)

There exists a Π_1 numeration $\tau(v)$ of PA such that PA \vdash Con $_{\tau}$. Consequently, $\mathsf{KD} \subseteq \mathsf{PL}(\mathsf{Pr}_{\tau})$ ($\mathsf{KD} = \mathsf{K} + \neg \Box \bot$).

Feferman's predicate

On the other hand, there are provability predicates whose provability logics are completely different from GL.

Theorem (Feferman, 1960)

There exists a Π_1 numeration $\tau(v)$ of PA such that PA \vdash Con $_{\tau}$.

Consequently, $KD \subseteq PL(Pr_{\tau})$ ($KD = K + \neg \Box \bot$).

Shavrukov found a nonstandard provability predicate whose provability logic is strictly stronger than KD.

Theorem (Shavrukov, 1994)

Let $\Pr^S(x) \equiv \exists y (\Pr_{I\Sigma_y}(x) \wedge \mathsf{Con}_{I\Sigma_y})$.

Then $PL(Pr^S) = KD + \Box p \rightarrow \Box((\Box q \rightarrow q) \lor \Box p)$.

• There may be a lot of normal modal logic which is the provability logic of some provability predicate.

- There may be a lot of normal modal logic which is the provability logic of some provability predicate.
- We are interested in the following general problem.

General Problem

Which normal modal logic is the provability logic PL(Pr) of some provability predicate Pr(x) of PA?

- There may be a lot of normal modal logic which is the provability logic of some provability predicate.
- We are interested in the following general problem.

General Problem

Which normal modal logic is the provability logic PL(Pr) of some provability predicate Pr(x) of PA?

- Kurahashi, T., Arithmetical completeness theorem for modal logic K, Studia Logica, to appear.
- Kurahashi, T., Arithmetical soundness and completeness for Σ_2 numerations, $Studia\ Logica$, to appear.
- Kurahashi, T., Rosser provability and normal modal logics, submitted.

Outline

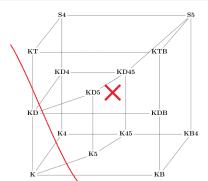
- Provability predicates
- Arithmetical interpretations and provability logics
- Our results

Several normal modal logics cannot be of the form PL(Pr).

Proposition (K., 201x)

Let L be a normal modal logic satisfying one of the following conditions. Then $L \neq PL(Pr)$ for all provability predicates Pr(x) of PA.

- \bullet KT $\subseteq L$.
- \bullet K4 $\subseteq L$ and GL $\nsubseteq L$.
- lacksquare K5 $\subseteq L$.
- \bullet KB $\subseteq L$.



There exists a numeration of ${\sf PA}$ whose provability logic is minimum.

Theorem 1 (K., 201x)

There exists a Σ_2 numeration $\tau(v)$ of PA such that $\mathsf{PL}(\mathsf{Pr}_{\tau}) = \mathsf{K}$.

• Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p$ $(n \ge 2)$.

- Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p$ $(n \ge 2)$.
- For $n \ge 2$, $K + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$.

- Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p$ $(n \ge 2)$.
- For $n \ge 2$, $K + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$.
- He conjectured that these logics are provability logics of some nonstandard provability predicates.

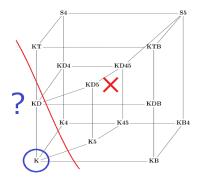
- Sacchetti (2001) introduced the logics $K + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$.
- For $n \ge 2$, $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$.
- He conjectured that these logics are provability logics of some nonstandard provability predicates.

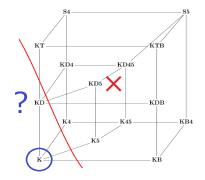
We gave a proof of this conjecture.

Theorem 2 (K., 201x)

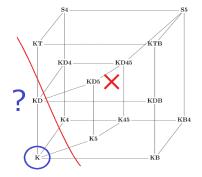
For each $n \geq 2$, there exists a Σ_2 numeration $\tau(v)$ of PA such that $\mathsf{PL}(\mathsf{Pr}_{\tau}) = \mathsf{K} + \Box(\Box^n p \to p) \to \Box p$.

Therefore there are infinitely many provability logics.





• How about KD?



- How about KD?
- We paid attention to Rosser's provability predicates $\Pr^R(x)$ because PA always proves the consistency statements Con^R defined by using $\Pr^R(x)$.

Rosser's provability predicates

However, provability logics of Rosser's provability predicates are sometimes not normal.

Theorem (Guaspari and Solovay, 1979)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \nvdash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for some φ and ψ .

Rosser's provability predicates

However, provability logics of Rosser's provability predicates are sometimes not normal.

Theorem (Guaspari and Solovay, 1979)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \nvdash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for some φ and ψ .

On the other hand, there exists a Rosser provability predicate whose provability logic is normal.

Theorem (Arai, 1990)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \vdash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for any φ and ψ .

Then $KD \subseteq PL(Pr^R)$ for Arai's predicate $Pr^R(x)$.

Theorems 3 and 4

We proved that there exists $\Pr^R(x)$ whose provability logic coincides with KD.

Theorem 3 (K., 201x)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PL}(\Pr^R) = \operatorname{KD}$

Theorems 3 and 4

We proved that there exists $\Pr^R(x)$ whose provability logic coincides with KD.

Theorem 3 (K., 201x)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $PL(\Pr^R) = KD$.

Moreover, there exists a Rosser provability predicate whose provability logic is strictly stronger than KD.

Theorem 4 (K., 201x)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\mathsf{KD} + \Box \neg p \to \Box \neg \Box p \subseteq \mathsf{PL}(\mathsf{Pr}^R)$.

Open Problem 1

Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$?

Open Problem 1

Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$?

Open Problem 2

Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$?

Open Problem 1

Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$?

Open Problem 2

Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$?

Open Problem 3

Is there a Rosser provability predicate $\Pr^R(x)$ such that $PL(\Pr^R) = \mathsf{KD} + \Box \neg p \to \Box \neg \Box p$?

Open Problem 1

Are there any others logics L such that $K \subsetneq L \subsetneq \mathsf{GL}$ and $L = \mathsf{PL}(\mathsf{Pr})$ for some $\mathsf{Pr}(x)$?

Open Problem 2

Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$?

Open Problem 3

Is there a Rosser provability predicate $\Pr^R(x)$ such that $PL(\Pr^R) = \mathsf{KD} + \Box \neg p \to \Box \neg \Box p$?

General Problem

Which (normal) modal logic is in the set $\{PL(Pr) : Pr(x) \text{ is a provability predicate of PA}\}$?