On partial disjunction properties of theories containing PA Taishi Kurahashi (倉橋 太志) National Institute of Technology, Kisarazu College (木更津工業高等専門学校) Workshop "Logic and Philosophy of Mathematics" Waseda University July 15, 2017 #### Introduction #### Definition A theory T has the disjunction property (DP) $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any sentences φ, ψ , $T \vdash \varphi \lor \psi \Rightarrow T \vdash \varphi \text{ or } T \vdash \psi.$ # Gödel, 1932 Intuitionistic propositional logic has DP. # Gentzen, 1934-35 Intuitionistic predicate logic has DP. # Kleene, 1945 Heyting arithmetic HA has DP. DP seems to reflect their constructivity. #### Introduction In classical logic, DP plays a different role. #### Fact Let T be a consistent theory in classical logic. Then T has $DP \iff T$ is complete. # Proof. Let φ, ψ be any sentences. (\Rightarrow) : $T \vdash \varphi \lor \neg \varphi$ by the law of excluded middle. Then $T \vdash \varphi$ or $T \vdash \neg \varphi$ by DP. (\Leftarrow) : If $T \vdash \varphi \lor \psi$, then $T \nvdash \neg \varphi \land \neg \psi$ by consistency. Then $T \nvdash \neg \varphi$ or $T \nvdash \neg \psi$. By completeness, $T \vdash \varphi$ or $T \vdash \psi$. #### Introduction # The first incompleteness theorem (Gödel, 1931; Rosser 1936) If T is a recursively enumerable consistent extension of PA, then T is incomplete. # The first incompleteness theorem (rephrased) If T is a recursively enumerable consistent extension of PA, then T does not have DP. In this talk, we present our results contained in the following papers. - Kikuchi, M. and Kurahashi, T.: Generalizations of Gödel's incompleteness theorems for Σ_n -definable theories of arithmetic. Submitted. - Wurahashi, T.: On partial disjunction properties of theories containing Peano arithmetic. Submitted. # Contents - The first incompleteness theorem and DP - ② DP and related properties - Unprovability of formalized DP - The first incompleteness theorem and DP - ② DP and related properties - $\ \Sigma_n$ -definable theories - Unprovability of formalized DP $\mathcal{L}_A = \{0, 1, +, \times\}$: the language of first-order arithmetic. We consider only \mathcal{L}_A -formulas. # Axioms of **PA** (Peano Arithmetic) - $\forall x (0 \neq x+1)$ - $\bullet \ \forall x \forall y (x+1=y+1 \to x=y)$ - $\bullet \ \forall x(x+0=x)$ - $\bullet \ \forall x \forall y (x + (y+1) = (x+y) + 1)$ - $\bullet \ \forall x(x \times 0 = 0)$ - $\forall x \forall y (x \times (y+1) = (x \times y) + x)$ - For every formula φ , $\forall y_0 \cdots \forall y_{k-1} ((\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))) \rightarrow \forall x \varphi(x))$ In this talk, T always denotes an \mathcal{L}_A -theory containing PA. # Some classes of formulas # Definition Let φ be a formula. - φ is Σ_0 or $\Pi_0 \stackrel{\text{def.}}{\iff}$ every quantifier contained in φ is of the form $\forall x \leq t$ or $\exists x \leq t$ for some term t. - φ is $\Sigma_{n+1} \stackrel{\text{def}}{\iff} \varphi$ is of the form $\exists x_0 \cdots \exists x_{k-1} \psi$ for some Π_n formula ψ . - φ is $\Pi_{n+1} \stackrel{\text{def.}}{\iff} \varphi$ is of the form $\forall x_0 \cdots \forall x_{k-1} \psi$ for some Σ_n formula ψ . - φ is $\mathcal{B}(\Sigma_n) \stackrel{\text{def.}}{\Longleftrightarrow} \varphi$ is a Boolean combination of Σ_n formulas. In this talk, we assume $n \geq 1$. Also we assume Γ denotes one of Σ_n , Π_n and $\mathcal{B}(\Sigma_n)$. # Definability of sets N: the standard model of arithmetic # Definition Let X be a set of natural numbers. - X is Γ -definable \iff there exists a Γ formula $\varphi(x)$ such that $X = \{n : \mathbb{N} \models \varphi(n)\}.$ - Such a formula $\varphi(x)$ is said to be a Γ definition of X. #### Fact - X is recursively enumerable \iff X is Σ_1 -definable. - X is recursive \iff X is Σ_1 -definable and Π_1 -definable. The first incompleteness theorem and DP #### The first incompleteness theorem # The first incompleteness theorem (Gödel, 1931; Rosser, 1936) If T is Σ_1 -definable and consistent, then there exists a Σ_1 sentence φ such that $T \nvdash \varphi$ and $T \nvdash \neg \varphi$. For each Σ_1 sentence φ , both φ and $\neg \varphi$ are $\mathcal{B}(\Sigma_1)$. # Corollary If T is consistent and Σ_1 -definable, then there are $\mathcal{B}(\Sigma_1)$ sentences φ, ψ such that $T \vdash \varphi \lor \psi$, $T \nvdash \varphi$ and $T \nvdash \psi$. On the other hand, PA enjoys a partial disjunction property. #### Fact For any Σ_1 sentences φ, ψ , $\mathsf{PA} \vdash \varphi \lor \psi \Rightarrow \mathsf{PA} \vdash \varphi \text{ or } \mathsf{PA} \vdash \psi.$ #### Proof. Suppose PA $\vdash \varphi \lor \psi$ for Σ_1 sentences φ, ψ . Notice $\varphi \vee \psi$ is equivalent to a Σ_1 sentence. Since every Σ_1 sentence provable in PA is true, $\mathbb{N} \models \varphi \vee \psi$. Then $\mathbb{N} \models \varphi$ or $\mathbb{N} \models \psi$. Since every true Σ_1 sentence is provable in PA, PA $\vdash \varphi$ or PA $\vdash \psi$. # Partial disjunction properties #### Definition A theory T has the Γ -disjunction property (Γ -DP) $$\overset{\text{def.}}{\Longleftrightarrow} \text{ for any } \Gamma \text{ sentences } \varphi, \, \psi, \\ T \vdash \varphi \lor \psi \Rightarrow T \vdash \varphi \text{ or } T \vdash \psi.$$ # Proposition If $\Gamma \subset \Gamma'$ and T has Γ' -DP, then T has Γ -DP. $$\begin{array}{cccc} \mathcal{B}(\Sigma_n)\text{-}\mathrm{DP} & \Rightarrow & \Sigma_n\text{-}\mathrm{DP} & \Rightarrow & \mathcal{B}(\Sigma_{n-1})\text{-}\mathrm{DP} \\ & & & \nearrow & \\ & & & \Pi_n\text{-}\mathrm{DP} & & \end{array}$$ - PA does not have $\mathcal{B}(\Sigma_1)$ -DP. - PA has Σ_1 -DP. These results can be improved. If T is Σ_1 -definable and consistent, then T does not have Π_1 -DP. # Definition A theory T is Γ -sound $\stackrel{\text{def.}}{\Longleftrightarrow}$ for any Γ sentence φ $(T \vdash \varphi \Rightarrow \mathbb{N} \vdash \varphi)$. # Theorem (Guaspari, 1979) Let T be a Σ_1 -definable consistent theory. T.F.A.E.: - \bullet T is Σ_1 -sound. - \circ T has Σ_1 -DP. #### Problem # Problem What are the interrelationships between the following conditions? - lacksquare T is complete. - \mathbf{O} T has Γ -DP. - \circ T is Σ_n -sound. - **4** T is Σ_n -definable. - The situation for Σ_1 -definable theories has already been clarified. - We investigate theories which are not necessarily Σ_1 -definable. - The first incompleteness theorem and DP - ② DP and related properties - $\ \Sigma_n$ -definable theories - Unprovability of formalized DP Before investigating Σ_n -theories, we show general interrelationships between DP and related properties. T.F.A.E.: - \bullet T has $\mathcal{B}(\Sigma_n)$ -DP. - \bullet For any Σ_n sentence φ , $T \vdash \varphi$ or $T \vdash \neg \varphi$. - **3** For any $\mathcal{B}(\Sigma_n)$ sentence φ , $T \vdash \varphi$ or $T \vdash \neg \varphi$. # Proof. - $(1 \Rightarrow 2)$:By the law of excluded middle. - $(2 \Rightarrow 3)$: Let φ be a $\mathcal{B}(\Sigma_n)$ sentence such that $T \nvdash \varphi$. - φ is logically equivalent to $\psi_0 \wedge \cdots \wedge \psi_{l-1}$ such that each ψ_i is of the form $\gamma_0^i \vee \cdots \vee \gamma_{k_i-1}^i$ where each γ_i^i is Σ_n or Π_n . Then $T \nvdash \psi_i$ for some i < l. $$T ot \vdash \gamma_i^i \text{ for all } j < k_i.$$ $$T \vdash \neg \gamma_i^i$$ by 2. $$T \vdash \neg \psi_i \text{ and } T \vdash \neg \varphi.$$ $(3 \Rightarrow 1)$: Suppose $T \vdash \varphi_0 \lor \varphi_1$ for $\varphi_0, \varphi_1 \in \mathcal{B}(\Sigma_1)$. If $T \nvdash \varphi_0$, then $$T \vdash \neg \varphi_0$$. We obtain $T \vdash \varphi_1$. Thus T has $\mathcal{B}(\Sigma_n)$ -DP. # Proposition If T has Π_n -DP, then T has Σ_n -DP. #### Proof. Suppose $T \vdash \varphi_0 \lor \varphi_1$ for some $\varphi_0, \varphi_1 \in \Sigma_n$. There are Π_{n-1} formulas $\psi_0(x)$ and $\psi_1(x)$ such that $$T \vdash \varphi_i \leftrightarrow \exists x \psi_i(x).$$ Let σ_0 and σ_1 be the following Σ_n sentences: • $$\sigma_0 \equiv \exists x (\psi_0(x) \land \forall y \leq x \neg \psi_1(y)),$$ $$\bullet \ \sigma_1 \equiv \exists x (\psi_1(x) \land \forall y < x \neg \psi_0(y)).$$ Then $T \vdash \neg \sigma_0 \lor \neg \sigma_1$. By Π_n -DP, we have $T \vdash \neg \sigma_0$ or $T \vdash \neg \sigma_1$. Since $T \vdash \varphi_0 \lor \varphi_1 \to \sigma_0 \lor \sigma_1$, we have $T \vdash \sigma_0 \lor \sigma_1$. In the case of $T \vdash \neg \sigma_i$, we have $T \vdash \sigma_{1-i}$. Then $T \vdash \exists x \psi_{1-i}(x)$ and hence $T \vdash \varphi_{1-i}$. T has Σ_n -DP. $$\mathcal{B}(\Sigma_n)$$ -DP $\Rightarrow \Pi_n$ -DP $\Rightarrow \Sigma_n$ -DP $\Rightarrow \mathcal{B}(\Sigma_{n-1})$ # Proposition If T has $\mathcal{B}(\Sigma_{n-1})$ -DP and is Σ_n -sound, then T has Σ_n -DP. # Proposition - There exists a Σ_n -definable Σ_{n-1} -sound theory which has $\mathcal{B}(\Sigma_{n-1})$ -DP but does not have Σ_n -DP. - There exists a Σ_n -definable sound theory which has Σ_n -DP but does not have Π_n -DP. - There exists a sound theory which has Π_n -DP but does not have $\mathcal{B}(\Sigma_n)$ -DP. - There exists a Σ_2 -definable theory which has Π_n -DP but does not have $\mathcal{B}(\Sigma_n)$ -DP. #### Friedman's theorem # Definition A theory T has the (numerical) existence property (EP) $$\stackrel{\text{def.}}{\Longleftrightarrow}$$ for any formula $\varphi(x)$, $$T \vdash \exists x \varphi(x) \Rightarrow T \vdash \varphi(k) \text{ for some } k.$$ # Theorem (Kleene, 1945) Heyting arithmetic HA has EP. # Theorem (Friedman, 1975) Let T be a Σ_1 -definable consistent intuitionistic number theory containing HA. T.F.A.E.: - T has EP. - 2 T has DP. # Partial existence properties # Definition A theory T has the Γ -existence property (Γ -EP) $$\stackrel{\text{def.}}{\Longleftrightarrow}$$ for any Γ formula $\varphi(x)$, $$T \vdash \exists x \varphi(x) \Rightarrow T \vdash \varphi(k)$$ for some k . # Proposition $T \text{ has } \Gamma\text{-EP} \Rightarrow T \text{ has } \Gamma\text{-DP}.$ # Proof. Suppose $T \vdash \varphi \lor \psi$ for $\varphi, \psi \in \Gamma$. Let $\sigma(x)$ be a Γ formula equivalent to $(x = 0 \land \varphi) \lor (x \neq 0 \land \psi)$. Then $T \vdash \varphi \lor \psi \to \exists x \sigma(x)$ and thus $T \vdash \exists x \sigma(x)$. By Γ -EP, $T \vdash \sigma(k)$ for some k. If k = 0, then $T \vdash \varphi$. If $k \neq 0$, then $T \vdash \psi$. # Γ -completeness #### Definition A theory T is Γ -complete (Γ -compl.) $$\stackrel{\text{def.}}{\Longleftrightarrow}$$ for any Γ sentence φ ($\mathbb{N} \models \varphi \Rightarrow T \vdash \varphi$). #### Fact Every extension of PA is Σ_1 -complete. # Proposition (Kikuchi and Kurahashi, 201?) If T is consistent, then T.F.A.E.: - \bullet T is Σ_{n+1} -complete. - ② T is Σ_n -sound and for any Σ_n sentence φ , $T \vdash \varphi$ or $T \vdash \neg \varphi$. - **3** T is Σ_n -sound and has $\mathcal{B}(\Sigma_n)$ -DP. # Theorem If T is consistent, then T.F.A.E.: - \bullet T has Σ_n -EP. - \circ T has Π_{n-1} -EP. - § T is Σ_n -sound and T has Σ_n -DP. - \bullet T is Σ_n -sound and T is Σ_n -complete. # Corollary If T is Σ_{n+1} -complete and consistent, then T has Σ_n -EP. # Implications for consistent theories # Implications for Σ_n -sound theories - The first incompleteness theorem and DP - ② DP and related properties - $\ \ \Sigma_n$ -definable theories - Unprovability of formalized DP #### Σ_1 -definable theories We have already mentioned that the following theorems hold for Σ_1 -definable theories. # The first incompleteness theorem (Gödel, 1931; Rosser, 1936) If T is Σ_1 -definable and consistent, then there exists a Σ_1 sentence φ such that $T \nvdash \varphi$ and $T \nvdash \neg \varphi$. # Theorem (Macintyre and Simmons, 1975) If T is Σ_1 -definable and consistent, then T does not have Π_1 -DP. # Theorem (Guaspari, 1979) Let T be a Σ_1 -definable consistent theory. T.F.A.E.: - \bullet T is Σ_1 -sound. - \circ T has Σ_1 -DP. Can we generalize these results? #### Question First, we generalize Gödel-Rosser incompleteness theorem. However the following statement is false. If T is Σ_2 -definable and consistent, then T is incomplete. Because #### Fact There exists a complete consistent theory that is Σ_2 -definable. We can generalize the Gödel-Rosser theorem as follows. # Proposition T is consistent \iff T is Σ_0 -sound. # The first incompleteness theorem (rephrased) If T is Σ_1 -definable and Σ_0 -sound, then there exists a Σ_1 sentence φ such that $T \nvdash \varphi$ and $T \nvdash \neg \varphi$. # Theorem (Kikuchi and Kurahashi, 201?) If T is Σ_n -definable and Σ_{n-1} -sound, then there exists a Σ_n sentence φ such that $T \nvdash \varphi$ and $T \nvdash \neg \varphi$. # Corollary If T is Σ_n -definable and Σ_{n-1} -sound, then T does not have $\mathcal{B}(\Sigma_n)$ -DP. # A generalization of Macintyre and Simmons' theorem Moreover, the following strengthening of a generalization of the Gödel-Rosser theorem holds, that is a generalization of Macintyre and Simmons' theorem. # Theorem If T is Σ_n -definable and Σ_{n-1} -sound, then T does not have Π_n -DP. # Guaspari's and Friedman's theorems We proved a generalized version of Guaspari's theorem, that is also a counterpart to Friedman's theorem. #### Theorem If T is Σ_n -definable, Σ_{n-1} -sound and has Σ_n -DP, then T has Σ_n -EP. # Corollary If T is Σ_n -definable and Σ_n -complete, T.F.A.E.: - \bullet T is Σ_n -sound. - \circ T has Σ_n -EP. - \bullet T has Σ_n -DP. This is best possible. # Proposition There exists a Σ_{n+1} -definable Σ_{n-1} -sound theory which has DP but does not have Σ_n -EP. - The first incompleteness theorem and DP - ② DP and related properties - $\ \Sigma_n$ -definable theories - Unprovability of formalized DP # Myhill's theorem Myhill proved the following unprovability result. # Theorem (Myhill, 1973) Let T be a Σ_1 -definable consistent intuitionistic number theory containing HA. If T has DP, then $T \nvdash$ "T has DP". We investigate Myhill's theorem in our framework. - For each Σ_n-definition σ(x) of T, we can construct a Σ_n formula Prf_σ(x, y) saying that "y is a proof of x in the theory defined by σ" - Let $\Pr_{\sigma}(x)$ be the Σ_1 formula $\exists y \Pr_{\sigma}(x,y)$. $$\mathrm{DP}_\sigma \equiv \forall x \forall y (\mathrm{Sent}(x) \wedge \mathrm{Sent}(y) \wedge \mathrm{Pr}_\sigma(x \vee y) \to \mathrm{Pr}_\sigma(x) \vee \mathrm{Pr}_\sigma(y))$$ $$\mathrm{DP}_{\sigma}(\Sigma_n) \equiv \forall x \forall y (\Sigma_n(x) \land \Sigma_n(y) \land \mathrm{Pr}_{\sigma}(x \lor y) \to \mathrm{Pr}_{\sigma}(x) \lor \mathrm{Pr}_{\sigma}(y)) \mid$$ #### Theorem Let T be a Σ_n -definable Σ_n -complete theory. T.F.A.E.: - \bullet T has Σ_n -DP. - \bullet $T \nvdash \mathrm{DP}_{\sigma}$ for all Σ_n definitions $\sigma(x)$ of T. # Corollary Let T be a Σ_n -definable theory. If T has Σ_n -EP, then $T \not\vdash \mathrm{DP}_{\sigma}(\Sigma_n)$ for all Σ_n definitions $\sigma(x)$ of T. The assumption of Σ_n -completeness in the statement of Theorem cannot be removed. # Proposition There exists a Σ_2 -definable theory having DP such that $T \vdash \mathrm{DP}_{\sigma}$ for some Σ_2 definition $\sigma(x)$ of T. Thank you!