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Numerations

In this talk, T' and U always denote L a-theories extending 13,
where L4 is the language of first-order arithmetic.

Definition

A formula 7(v) is a numeration of T
: <= for any sentence ¢ (p €T <= PAF 7("¢")).

If T is recursively enumerable (r.e.), then there exists a 3,
numeration of T'.
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Provability predicates

For each numeration 7(v) of T,
we can naturally construct a formula Pr,(xz) saying that

“z is provable from the set of all sentences satisfying 7(v).”
The formula Pr,(x) is said to be a provability predicate of 7(v).
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Provability predicates

For each numeration 7(v) of T,
we can naturally construct a formula Pr,(xz) saying that

“z is provable from the set of all sentences satisfying 7(v).”
The formula Pr,(x) is said to be a provability predicate of 7(v).

Let 7(v) be any numeration of 7.
o If T+ ¢, then PA  Pr.("¢").
o PAFPr ("p = ¢7) —» (Pr-("¢") — Pr.("¢7)).
o If ¢ is X1, then PAF ¢ — Pr.("¢7).

Provability Logic is a research area investigating these properties
by means of modal logic.
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Arithmetical interpretations

A mapping f from the set of all propositional variables to the set
of L a-sentences is said to be an arithmetical interpretation.
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Arithmetical interpretations

Definit

A mapping f from the set of all propositional variables to the set
of L a-sentences is said to be an arithmetical interpretation.

Let 7(v) be any numeration of 7.
Each arithmetical interpretation f is uniquely extended to the
mapping fr from the set of all modal formulas to the set of
L a-sentences so that f, satisfies the following conditions:
o fr(L)is 0 =1.
o fr(AANAB)is f-(A) A f-(B).
@ oo

o f+(OA) is Pr.("f-(A)7).
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Let U be any theory and 7(v) be any numeration of T.
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Provability logics

Let U be any theory and 7(v) be any numeration of T.
PL,(U) := {A:U + f.(A) for all arithmetical interpretations f}.
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Provability logics

Definition

Let U be any theory and 7(v) be any numeration of T.

PL,(U) := {A:U + f.(A) for all arithmetical interpretations f}.
The set PL,(U) is said to be the provability logic of 7(v) relative
to U.
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Modal logics K and GL

Definition

The axioms of the modal logic K are as follows:

e all tautologies in the language of propositional modal logic,

o O(p = q) = (Op — Og).
The inference rules of K are modus ponens A’AT_)B,

A
necessitation —- and substitution.

0A
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Modal logics K and GL

Definition

The axioms of the modal logic K are as follows:
o all tautologies in the language of propositional modal logic,
o O(p — q) = (Op — Ug).

A, A—~ B

The inference rules of K are modus ponens B ,

A
necessitation —- and substitution.

0A

Definition

| A\

The modal logic GL is obtained by adding the axiom
O(Op — p) — UOp to K.

A
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Definition

For each set X of modal formulas, let GLX be the logic whose
axioms are all theorems of GL and all elements of X, and whose
inference rules are modus ponens and substitution.
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Definition

For each set X of modal formulas, let GLX be the logic whose
axioms are all theorems of GL and all elements of X, and whose
inference rules are modus ponens and substitution.

Definition

For each n € w, let F,, be the modal formula Ot L = [@P L,




Introduction
[e]e]e]ele] lele]
Provability logics

Definition

For each set X of modal formulas, let GLX be the logic whose
axioms are all theorems of GL and all elements of X, and whose
inference rules are modus ponens and substitution.

Definition

For each n € w, let F,, be the modal formula Ot L = [@P L,

Definition

Let a be a subset of w, and 8 be a cofinite subset of w.
o GLo =GL{F, : n € a}
o GL; =GL{V, 45 ~Fn}
o D =GL{O(Op Vv Uq) — (OpVOq)}
e S =GL{Op — p}
e Dg=DNGL,
e Sg=5SNGL,
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Major achievements of provability logics

Arithmetical completeness theorems (Solovay, 1976)

Let 7(v) be any ¥; numeration of T'.
o If T is ¥;-sound, then PL.(T) = GL.
o If T is sound, then PL,.(TA) =S,
where TA = {p : N E ¢}.
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Major achievements of provability logics

Arithmetical completeness theorems (Solovay, 1976)
Let 7(v) be any ¥; numeration of T'.

o If T is ¥;-sound, then PL.(T) = GL.

o If T is sound, then PL,.(TA) =S,
where TA = {p : N E ¢}.

Theorem (Artemov - Visser - Japaridze - Beklemishev, 1980-1989)

Let 7(v) be any 3; numeration of T'.
Then PL;(U) is one of GLa, Dg, Sg and GL;.
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The main question of our research

Question

For each fixed recursively axiomatized consistent extension U of
PA, which modal logic can be of the form PL,(U) for some
numeration 7(v)?
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The main question of our research

Question

For each fixed recursively axiomatized consistent extension U of
PA, which modal logic can be of the form PL,(U) for some
numeration 7(v)?

We investigated this question in the following two particular
cases.
Q@ 7(v) is X1 (Theorem 1).

@ 7(v) is a numeration of U which is not necessarily 3,
(Theorem 2).
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First, we restrict our considerations to ¥; numerations 7(v).
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The first theorem

Jeroslow’s theorem

First, we restrict our considerations to ¥; numerations 7(v).
We paid attention to a theorem due to Jeroslow.

Theorem (Jeroslow, 1971)

For any r.e. consistent extension U of PA, there exists a 3,
numeration 7(v) of some extension T of I3; s.t. U = T + Con,.
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The first theorem

Jeroslow’s theorem

First, we restrict our considerations to ¥; numerations 7(v).
We paid attention to a theorem due to Jeroslow.

Theorem (Jeroslow, 1971)

For any r.e. consistent extension U of PA, there exists a 3,
numeration 7(v) of some extension T of I3; s.t. U = T + Con,.

Corollary

| A\

For any r.e. consistent extension U of PA, there exists a 3,
numeration 7(v) of some extension T of IX; s.t.
PL,(U) = GLo where o = {0}.
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The first theorem

Theorem 1

Let U be any r.e. consistent extension of PA.

If L is one of the logics GLa, Dg, Sg and GL;

where a C w is r.e. and 8 C w is cofinite.

Then there exists a ¥; numeration 7(v) of some extension of I3,
s.t. PL-(U) = L.

Kurahashi, T., Provability logics relative to a fixed extension of

Peano Arithmetic, submitted.
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The first theorem

Theorem 1

Let U be any r.e. consistent extension of PA.

If L is one of the logics GLa, Dg, Sg and GL;

where a C w is r.e. and 8 C w is cofinite.

Then there exists a ¥; numeration 7(v) of some extension of I3,
s.t. PL-(U) = L.

Kurahashi, T., Provability logics relative to a fixed extension of

Peano Arithmetic, submitted.

This theorem says that when we consider only 3; numerations,
all possible logics can be of the form PL,(U).
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The first theorem

Remarks on Theorem 1

Theorem 1 is proved by applying Jeroslow’s method.
For example, we found a ¥; numeration 7(v) of some T
s.t. U = T 4+ RFNyx, (7), and then PL,.(U) = D.
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Remarks on Theorem 1

Remark 1
Theorem 1 is proved by applying Jeroslow’s method.

For example, we found a ¥; numeration 7(v) of some T
s.t. U = T 4+ RFNyx, (7), and then PL,.(U) = D.

Remark 2

We found a ¥; numeration 7(v) of I3; s.t. PL(PA) = Sg for
each cofinite 3.

| A

This can be compared with Kreisel and Lévy’s theorem stating
that PA = I¥; + RFN(o) for a natural 3; numeration o(v) of
IY,. Then PL,(PA) =S.
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Sacchetti’s logics

We restrict our considerations to numerations 7(v) of U.
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Sacchetti’s logics

We restrict our considerations to numerations 7(v) of U.

e Sacchetti introduced the logics K+ O(0O"p — p) — Up (n > 2)
and proved that the fixed-point theorem holds for these
logics.
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Sacchetti’s logics

We restrict our considerations to numerations 7(v) of U.

e Sacchetti introduced the logics K+ O(0O"p — p) — Up (n > 2)
and proved that the fixed-point theorem holds for these
logics.

o There is no ¥; numeration 7(v) of U s.t. PL-(U) is
K+ 0O(O"p — p) — Op for n > 2.
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The second theorem

Sacchetti’s logics

We restrict our considerations to numerations 7(v) of U.

e Sacchetti introduced the logics K+ O(0O"p — p) — Up (n > 2)
and proved that the fixed-point theorem holds for these
logics.

o There is no ¥; numeration 7(v) of U s.t. PL-(U) is
K+ 0O(O"p — p) — Op for n > 2.

Question (Sacchetti, 2001)

Is there a nonstandard provability predicate of PA whose
provability logic is K+ O(O0"p — p) — Op for n > 27
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The second theorem

We settled Sacchetti’s question affirmatively.

Theorem 2

Let U be any recursively axiomatized consistent extension of PA.
If L is one of the logics K and K+ O(0"p — p) — Op (n > 2).
Then there exists a 33 numeration 7(v) of U s.t. PL.(U) = L.

o Kurahashi, T., Arithmetical completeness theorem for modal
logic K, Studia Logica, to appear.

o Kurahashi, T., Arithmetical soundness and completeness by

32 numerations, submitted.
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An open problem

For every numeration 7(v) of U, PL-(U) is a normal modal logic,
that is, PL-(U) contains K and closed under the inference rules of
K.
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An open problem

Proposition

For every numeration 7(v) of U, PL-(U) is a normal modal logic,
that is, PL-(U) contains K and closed under the inference rules of

| .x
A\

Open Problem

Which normal modal logic can be of the form PL.(U) for some
numeration 7(v) of U? How about KD = K + =017
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An open problem

Proposition

For every numeration 7(v) of U, PL-(U) is a normal modal logic,
that is, PL-(U) contains K and closed under the inference rules of

Open Problem

|x

Which normal modal logic can be of the form PL.(U) for some
numeration 7(v) of U? How about KD = K+ =017

| \

Proposition

There is no numeration 7(v) of U whose provability logic PL.(U)
is one of the following normal modal logics:

o T =K+ Op — p (well known)
eB=K4+p— O0p

o K4 = K+ Op — OOp (well known)
o KE§ =K+ Op — O0p

A\
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