# Two theorems on provability logics

Taishi Kurahashi National Institute of Technology, Kisarazu College (Japan)

Logic Colloquium 2017 Stockholm University August 17, 2017

# Contents

- Introduction
- 2 The first theorem
- 3 The second theorem

- Introduction
- 2 The first theorem
- 3 The second theorem

#### Numerations

In this talk, T and U always denote  $\mathcal{L}_A$ -theories extending  $I\Sigma_1$ , where  $\mathcal{L}_A$  is the language of first-order arithmetic.

#### Definition

A formula  $\tau(v)$  is a numeration of T

 $:\iff \text{ for any sentence }\varphi\ (\varphi\in T\iff \mathrm{PA}\vdash\tau(\ulcorner\varphi\urcorner)).$ 

#### Fact

If T is recursively enumerable (r.e.), then there exists a  $\Sigma_1$  numeration of T.

For each numeration  $\tau(v)$  of T, we can naturally construct a formula  $\Pr_{\tau}(x)$  saying that

"x is provable from the set of all sentences satisfying  $\tau(v)$ ." The formula  $\Pr_{\tau}(x)$  is said to be a provability predicate of  $\tau(v)$ .

#### Fac1

Let  $\tau(v)$  be any numeration of T.

- If  $T \vdash \varphi$ , then  $PA \vdash Pr_{\tau}(\lceil \varphi \rceil)$ .
- $\bullet \ \operatorname{PA} \vdash \operatorname{Pr}_\tau(\lceil \varphi \to \psi \rceil) \to (\operatorname{Pr}_\tau(\lceil \varphi \rceil) \to \operatorname{Pr}_\tau(\lceil \psi \rceil)).$
- If  $\varphi$  is  $\Sigma_1$ , then  $\mathrm{PA} \vdash \varphi \to \mathrm{Pr}_\tau(\lceil \varphi \rceil)$

Provability Logic is a research area investigating these properties by means of modal logic.

# Provability predicates

For each numeration  $\tau(v)$  of T, we can naturally construct a formula  $\Pr_{\tau}(x)$  saying that

"x is provable from the set of all sentences satisfying  $\tau(v)$ ." The formula  $\Pr_{\tau}(x)$  is said to be a provability predicate of  $\tau(v)$ .

#### Fact

Let  $\tau(v)$  be any numeration of T.

- If  $T \vdash \varphi$ , then  $PA \vdash Pr_{\tau}(\lceil \varphi \rceil)$ .
- $\bullet \ \operatorname{PA} \vdash \operatorname{Pr}_{\tau}(\lceil \varphi \to \psi \rceil) \to (\operatorname{Pr}_{\tau}(\lceil \varphi \rceil) \to \operatorname{Pr}_{\tau}(\lceil \psi \rceil)).$
- If  $\varphi$  is  $\Sigma_1$ , then  $PA \vdash \varphi \to \Pr_{\tau}(\lceil \varphi \rceil)$ .

Provability Logic is a research area investigating these properties by means of modal logic.

# Arithmetical interpretations

# Definition

A mapping f from the set of all propositional variables to the set of  $\mathcal{L}_A$ -sentences is said to be an arithmetical interpretation.

Let  $\tau(v)$  be any numeration of T.

Each arithmetical interpretation f is uniquely extended to the mapping  $f_{\tau}$  from the set of all modal formulas to the set of  $\mathcal{L}_A$ -sentences so that  $f_{\tau}$  satisfies the following conditions:

• 
$$f_{\tau}(\bot)$$
 is  $0 = 1$ .

• 
$$f_{\tau}(A \wedge B)$$
 is  $f_{\tau}(A) \wedge f_{\tau}(B)$ .

. . .

• 
$$f_{\tau}(\Box A)$$
 is  $\Pr_{\tau}(\lceil f_{\tau}(A) \rceil)$ 

#### Definition

A mapping f from the set of all propositional variables to the set of  $\mathcal{L}_A$ -sentences is said to be an arithmetical interpretation.

Let  $\tau(v)$  be any numeration of T.

Each arithmetical interpretation f is uniquely extended to the mapping  $f_{\tau}$  from the set of all modal formulas to the set of  $\mathcal{L}_A$ -sentences so that  $f_{\tau}$  satisfies the following conditions:

- $f_{\tau}(\perp)$  is 0 = 1.
- $f_{\tau}(A \wedge B)$  is  $f_{\tau}(A) \wedge f_{\tau}(B)$ .
- • •
- $f_{\tau}(\Box A)$  is  $\Pr_{\tau}(\lceil f_{\tau}(A) \rceil)$ .

# Provability logics

# Definition

Let U be any theory and  $\tau(v)$  be any numeration of T.

 $\mathsf{PL}_{\tau}(U) := \{A : U \vdash f_{\tau}(A) \text{ for all arithmetical interpretations } f\}.$  The set  $\mathsf{PL}_{\tau}(U)$  is said to be the provability logic of  $\tau(v)$  relative to U.

# Provability logics

# Definition

Let U be any theory and  $\tau(v)$  be any numeration of T.

 $\mathsf{PL}_{ au}(U) := \{A : U \vdash f_{ au}(A) \text{ for all arithmetical interpretations } f\}.$ 

The set  $\mathsf{PL}_{\tau}(U)$  is said to be the provability logic of  $\tau(v)$  relative to U.

# Provability logics

#### Definition

Let U be any theory and  $\tau(v)$  be any numeration of T.

 $\mathsf{PL}_{ au}(U) := \{A : U \vdash f_{ au}(A) \text{ for all arithmetical interpretations } f\}.$ 

The set  $\mathsf{PL}_{\tau}(U)$  is said to be the provability logic of  $\tau(v)$  relative to U.

#### Definition

The axioms of the modal logic  ${\sf K}$  are as follows:

• all tautologies in the language of propositional modal logic,

$$ullet$$
  $\Box(p o q) o (\Box p o \Box q).$ 

The inference rules of K are modus ponens  $\frac{A, A \to B}{B}$ , necessitation  $\frac{A}{\Box A}$  and substitution.

#### Definition

The modal logic **GL** is obtained by adding the axion  $\Box(\Box p \to p) \to \Box p$  to K.

# Modal logics $\boldsymbol{\mathsf{K}}$ and $\boldsymbol{\mathsf{GL}}$

#### Definition

The axioms of the modal logic  ${\sf K}$  are as follows:

- all tautologies in the language of propositional modal logic,
- ullet  $\Box(p o q) o (\Box p o \Box q).$

The inference rules of K are modus ponens  $\frac{A,\ A \to B}{B},$  necessitation  $\frac{A}{\Box A}$  and substitution.

#### Definition

The modal logic  $\operatorname{GL}$  is obtained by adding the axiom

$$\Box(\Box p \to p) \to \Box p \text{ to } \mathsf{K}.$$

For each set X of modal formulas, let  $\mathsf{GL}X$  be the logic whose axioms are all theorems of  $\mathsf{GL}$  and all elements of X, and whose inference rules are modus ponens and substitution.

#### Definition

For each  $n \in \omega$ , let  $F_n$  be the modal formula  $\square^{n+1} \bot \to \square^n \bot$ .

#### Definition

Let  $\alpha$  be a subset of  $\omega$ , and  $\beta$  be a cofinite subset of  $\omega$ .

- ullet  $\mathsf{GL}_lpha = \mathsf{GL}\{F_n : n \in lpha\}$
- ullet  $\mathsf{GL}_eta^- = \mathsf{GL}\{igee_{n
  otineta}\,
  eg F_n\}$
- $\mathsf{D} = \mathsf{GL}\{\Box(\Box p \lor \Box q) \to (\Box p \lor \Box q)\}$
- $\bullet \ \mathsf{S} = \mathsf{GL}\{\Box p \to p\}$
- $\bullet \ \mathsf{D}_\beta = \mathsf{D} \cap \mathsf{GL}_\beta^-$
- $S_{\beta} = S \cap GL_{\beta}^{-}$

#### Definition

For each set X of modal formulas, let  $\mathsf{GL}X$  be the logic whose axioms are all theorems of  $\mathsf{GL}$  and all elements of X, and whose inference rules are modus ponens and substitution.

### Definition

For each  $n \in \omega$ , let  $F_n$  be the modal formula  $\Box^{n+1} \bot \to \Box^n \bot$ .

#### Definition

Let  $\alpha$  be a subset of  $\omega$ , and  $\beta$  be a cofinite subset of  $\omega$ .

$$ullet$$
  $\mathsf{GL}_lpha = \mathsf{GL}\{F_n: n \in lpha\}$ 

$$ullet$$
  $\mathsf{GL}_eta^- = \mathsf{GL}\{igee_{n
otinetaeta}\,
eg F_n]$ 

$$\bullet \ \mathsf{D} = \mathsf{GL} \{ \Box (\Box p \vee \Box q) \to (\Box p \vee \Box q) \}$$

• 
$$S = GL\{\Box p \rightarrow p\}$$

$$\bullet$$
  $\mathsf{D}_{eta} = \mathsf{D} \cap \mathsf{GL}_{eta}^{\mathsf{T}}$ 

• 
$$S_{\beta} = S \cap GL_{\beta}^{-}$$

#### Definition

For each set X of modal formulas, let  $\mathsf{GL}X$  be the logic whose axioms are all theorems of  $\mathsf{GL}$  and all elements of X, and whose inference rules are modus ponens and substitution.

#### Definition

For each  $n \in \omega$ , let  $F_n$  be the modal formula  $\square^{n+1} \bot \to \square^n \bot$ .

#### Definition

Let  $\alpha$  be a subset of  $\omega$ , and  $\beta$  be a cofinite subset of  $\omega$ .

$$\bullet \ \mathsf{GL}_{\alpha} = \mathsf{GL}\{F_n : n \in \alpha\}$$

$$\bullet \; \mathsf{GL}_\beta^- = \mathsf{GL}\{\bigvee\nolimits_{n \notin \beta} \neg F_n\}$$

$$\bullet \ \mathsf{D} = \mathsf{GL}\{\Box(\Box p \vee \Box q) \to (\Box p \vee \Box q)\}$$

• 
$$S = GL\{\Box p \rightarrow p\}$$

• 
$$D_{\beta} = D \cap GL_{\beta}^-$$

$$\bullet$$
  $S_{\beta} = S \cap GL_{\beta}^{-}$ 

# Arithmetical completeness theorems (Solovay, 1976)

Let  $\tau(v)$  be any  $\Sigma_1$  numeration of T.

- If T is  $\Sigma_1$ -sound, then  $\mathsf{PL}_{\tau}(T) = \mathsf{GL}$ .
- If T is sound, then  $PL_{\tau}(TA) = S$ ,

where  $\mathsf{TA} = \{ \varphi : \mathbb{N} \models \varphi \}$ .

# Theorem (Artemov - Visser - Japaridze - Beklemishev, 1980–1989)

Let  $\tau(v)$  be any  $\Sigma_1$  numeration of T.

Then  $\mathsf{PL}_{\tau}(U)$  is one of  $\mathsf{GL}_{\alpha}$ ,  $\mathsf{D}_{\beta}$ ,  $\mathsf{S}_{\beta}$  and  $\mathsf{GL}_{\beta}^{-}$ .

# Arithmetical completeness theorems (Solovay, 1976)

Let  $\tau(v)$  be any  $\Sigma_1$  numeration of T.

- If T is  $\Sigma_1$ -sound, then  $\mathsf{PL}_{\tau}(T) = \mathsf{GL}$ .
- If T is sound, then  $PL_{\tau}(TA) = S$ ,

where  $\mathsf{TA} = \{ \varphi : \mathbb{N} \models \varphi \}$ .

# Theorem (Artemov - Visser - Japaridze - Beklemishev, 1980–1989)

Let  $\tau(v)$  be any  $\Sigma_1$  numeration of T.

Then  $\mathsf{PL}_{\tau}(U)$  is one of  $\mathsf{GL}_{\alpha}$ ,  $\mathsf{D}_{\beta}$ ,  $\mathsf{S}_{\beta}$  and  $\mathsf{GL}_{\beta}^{-}$ .

## The main question of our research

# Question

For each fixed recursively axiomatized consistent extension U of PA, which modal logic can be of the form  $\mathsf{PL}_{\tau}(U)$  for some numeration  $\tau(v)$ ?

We investigated this question in the following two particular cases.

- $\bullet$   $\tau(v)$  is  $\Sigma_1$  (Theorem 1)
- ②  $\tau(v)$  is a numeration of U which is not necessarily  $\Sigma_1$  (Theorem 2).

# The main question of our research

# Question

For each fixed recursively axiomatized consistent extension U of PA, which modal logic can be of the form  $\mathsf{PL}_{\tau}(U)$  for some numeration  $\tau(v)$ ?

We investigated this question in the following two particular cases.

- $\bullet$   $\tau(v)$  is  $\Sigma_1$  (Theorem 1).
- ②  $\tau(v)$  is a numeration of U which is not necessarily  $\Sigma_1$  (Theorem 2).

- Introduction
- 2 The first theorem
- 3 The second theorem

# First, we restrict our considerations to $\Sigma_1$ numerations $\tau(v)$ .

We paid attention to a theorem due to Jeroslow.

#### Theorem (Jeroslow, 1971)

For any r.e. consistent extension U of PA, there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension T of  $I\Sigma_1$  s.t.  $U = T + \mathsf{Con}_{\tau}$ 

#### Corollary

For any r.e. consistent extension U of PA, there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension T of  $I\Sigma_1$  s.t.

 $\mathsf{PL}_{\tau}(U) = \mathsf{GL}_{\alpha} \text{ where } \alpha = \{0\}.$ 

First, we restrict our considerations to  $\Sigma_1$  numerations  $\tau(v)$ . We paid attention to a theorem due to Jeroslow.

# Theorem (Jeroslow, 1971)

For any r.e. consistent extension U of PA, there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension T of  $I\Sigma_1$  s.t.  $U = T + \mathsf{Con}_{\tau}$ .

#### Corollary

For any r.e. consistent extension U of PA, there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension T of  $I\Sigma_1$  s.t.

First, we restrict our considerations to  $\Sigma_1$  numerations  $\tau(v)$ . We paid attention to a theorem due to Jeroslow.

# Theorem (Jeroslow, 1971)

For any r.e. consistent extension U of PA, there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension T of  $I\Sigma_1$  s.t.  $U = T + \mathsf{Con}_{\tau}$ .

# Corollary

For any r.e. consistent extension U of PA, there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension T of  $I\Sigma_1$  s.t.

 $\mathsf{PL}_{\tau}(U) = \mathsf{GL}_{\alpha} \text{ where } \alpha = \{0\}.$ 

#### Theorem 1

Let U be any r.e. consistent extension of PA.

If L is one of the logics  $GL_{\alpha}$ ,  $D_{\beta}$ ,  $S_{\beta}$  and  $GL_{\beta}^{-}$  where  $\alpha \subset \omega$  is r.e. and  $\beta \subset \omega$  is cofinite.

Then there exists a  $\Sigma_1$  numeration  $\tau(v)$  of some extension of  $I\Sigma_1$ 

s.t.  $\mathsf{PL}_{\tau}(U) = \mathsf{L}$ .

Kurahashi, T., Provability logics relative to a fixed extension of Peano Arithmetic, submitted.

This theorem says that when we consider only  $\Sigma_1$  numerations all possible logics can be of the form  $\mathsf{PL}_{\tau}(U)$ .

### The first theorem

#### Theorem 1

Let U be any r.e. consistent extension of PA.

If L is one of the logics  $\mathsf{GL}_{\alpha}$ ,  $\mathsf{D}_{\beta}$ ,  $\mathsf{S}_{\beta}$  and  $\mathsf{GL}_{\beta}^{-}$  where  $\alpha \subset \omega$  is r.e. and  $\beta \subset \omega$  is cofinite.

Then there exists a  $\Sigma_1$  numeration au(v) of some extension of  $I\Sigma_1$ 

s.t.  $\mathsf{PL}_{\tau}(U) = \mathsf{L}$ .

Kurahashi, T., Provability logics relative to a fixed extension of Peano Arithmetic, submitted.

This theorem says that when we consider only  $\Sigma_1$  numerations, all possible logics can be of the form  $\mathsf{PL}_{\tau}(U)$ .

# Remark 1

Theorem 1 is proved by applying Jeroslow's method. For example, we found a  $\Sigma_1$  numeration  $\tau(v)$  of some T s.t.  $U = T + \mathsf{RFN}_{\Sigma_1}(\tau)$ , and then  $\mathsf{PL}_{\tau}(U) = \mathsf{D}$ .

#### Remark :

We found a  $\Sigma_1$  numeration  $\tau(v)$  of  $I\Sigma_1$  s.t.  $\mathsf{PL}_{\tau}(\mathsf{PA}) = \mathsf{S}_{\beta}$  for each cofinite  $\beta$ .

This can be compared with Kreisel and Lévy's theorem stating that  $PA = I\Sigma_1 + RFN(\sigma)$  for a natural  $\Sigma_1$  numeration  $\sigma(v)$  of  $I\Sigma_1$ . Then  $PL_{\sigma}(PA) = S$ .

### Remark 1

Theorem 1 is proved by applying Jeroslow's method. For example, we found a  $\Sigma_1$  numeration  $\tau(v)$  of some T s.t.  $U = T + \mathsf{RFN}_{\Sigma_1}(\tau)$ , and then  $\mathsf{PL}_{\tau}(U) = \mathsf{D}$ .

#### Remark 2

We found a  $\Sigma_1$  numeration  $\tau(v)$  of  $I\Sigma_1$  s.t.  $\mathsf{PL}_{\tau}(\mathsf{PA}) = \mathsf{S}_{\beta}$  for each cofinite  $\beta$ .

This can be compared with Kreisel and Lévy's theorem stating that  $PA = I\Sigma_1 + RFN(\sigma)$  for a natural  $\Sigma_1$  numeration  $\sigma(v)$  of  $I\Sigma_1$ . Then  $PL_{\sigma}(PA) = S$ .

- Introduction
- 2 The first theorem
- 3 The second theorem

# We restrict our considerations to numerations $\tau(v)$ of U.

- Sacchetti introduced the logics  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$  and proved that the fixed-point theorem holds for these logics.
- There is no  $\Sigma_1$  numeration  $\tau(v)$  of U s.t.  $\mathsf{PL}_{\tau}(U)$  is  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p$  for  $n \geq 2$ .

# Question (Sacchetti. 2001)

Is there a nonstandard provability predicate of PA whose provability logic is  $K + \square(\square^n p \to p) \to \square p$  for  $n \ge 2$ ?

We restrict our considerations to numerations  $\tau(v)$  of U.

- Sacchetti introduced the logics  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$  and proved that the fixed-point theorem holds for these logics.
- There is no  $\Sigma_1$  numeration  $\tau(v)$  of U s.t.  $\mathsf{PL}_{\tau}(U)$  is  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p$  for  $n \geq 2$ .

# Question (Sacchetti, 2001)

Is there a nonstandard provability predicate of PA whose provability logic is  $K + \Box(\Box^n p \to p) \to \Box p$  for  $n \ge 2$ ?

# Sacchetti's logics

We restrict our considerations to numerations  $\tau(v)$  of U.

- Sacchetti introduced the logics  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$  and proved that the fixed-point theorem holds for these logics.
- There is no  $\Sigma_1$  numeration  $\tau(v)$  of U s.t.  $\mathsf{PL}_{\tau}(U)$  is  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p$  for  $n \geq 2$ .

# Question (Sacchetti, 2001)

Is there a nonstandard provability predicate of PA whose provability logic is  $K + \Box(\Box^n p \to p) \to \Box p$  for  $n \geq 2$ ?

# Sacchetti's logics

We restrict our considerations to numerations  $\tau(v)$  of U.

- Sacchetti introduced the logics  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$  and proved that the fixed-point theorem holds for these logics.
- There is no  $\Sigma_1$  numeration  $\tau(v)$  of U s.t.  $\mathsf{PL}_{\tau}(U)$  is  $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p$  for  $n \geq 2$ .

# Question (Sacchetti, 2001)

Is there a nonstandard provability predicate of PA whose provability logic is  $K + \Box(\Box^n p \to p) \to \Box p$  for  $n \ge 2$ ?

#### The second theorem

We settled Sacchetti's question affirmatively.

#### Theorem 2

Let U be any recursively axiomatized consistent extension of PA. If L is one of the logics K and  $K + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$ . Then there exists a  $\Sigma_2$  numeration  $\tau(v)$  of U s.t.  $\mathsf{PL}_{\tau}(U) = \mathsf{L}$ .

- Kurahashi, T., Arithmetical completeness theorem for modal logic K, Studia Logica, to appear.
- Kurahashi, T., Arithmetical soundness and completeness by  $\Sigma_2$  numerations, submitted.

# An open problem

# Proposition

For every numeration  $\tau(v)$  of U,  $\mathsf{PL}_{\tau}(U)$  is a normal modal logic, that is,  $\mathsf{PL}_{\tau}(U)$  contains  $\mathsf{K}$  and closed under the inference rules of  $\mathsf{K}$ .

#### Open Problem

Which normal modal logic can be of the form  $\mathsf{PL}_{\tau}(U)$  for some numeration  $\tau(v)$  of U? How about  $\mathsf{KD} = \mathsf{K} + \neg \Box \bot$ ?

#### Proposition

There is no numeration  $\tau(v)$  of U whose provability logic  $\mathsf{PL}_{\tau}(U)$  is one of the following normal modal logics:

• 
$$T = K + \Box p \rightarrow p$$
 (well known)

• 
$$B = K + p \rightarrow \Box \Diamond p$$

• 
$$K4 = K + \Box p \rightarrow \Box \Box p$$
 (well known)

• 
$$K5 = K + \Diamond n \rightarrow \Box \Diamond n$$

# An open problem

# Proposition

For every numeration  $\tau(v)$  of U,  $\mathsf{PL}_{\tau}(U)$  is a normal modal logic, that is,  $\mathsf{PL}_{\tau}(U)$  contains K and closed under the inference rules of K.

# Open Problem

Which normal modal logic can be of the form  $\mathsf{PL}_{\tau}(U)$  for some numeration  $\tau(v)$  of U? How about  $\mathsf{KD} = \mathsf{K} + \neg \Box \bot$ ?

• 
$$T = K + \Box p \rightarrow p \text{ (well known)}$$

• B = K + 
$$p \rightarrow \Box \Diamond p$$

• 
$$K4 = K + \Box p \rightarrow \Box \Box p$$
 (well known)

• 
$$K5 = K + \Diamond p \rightarrow \Box \Diamond p$$

# An open problem

# Proposition

For every numeration  $\tau(v)$  of U,  $\mathsf{PL}_{\tau}(U)$  is a normal modal logic, that is,  $\mathsf{PL}_{\tau}(U)$  contains  $\mathsf{K}$  and closed under the inference rules of  $\mathsf{K}$ .

# Open Problem

Which normal modal logic can be of the form  $\mathsf{PL}_{\tau}(U)$  for some numeration  $\tau(v)$  of U? How about  $\mathsf{KD} = \mathsf{K} + \neg \Box \bot$ ?

# Proposition

There is no numeration  $\tau(v)$  of U whose provability logic  $\mathsf{PL}_{\tau}(U)$  is one of the following normal modal logics:

• 
$$T = K + \Box p \rightarrow p \text{ (well known)}$$

• 
$$B = K + p \rightarrow \Box \Diamond p$$

• 
$$K4 = K + \Box p \rightarrow \Box \Box p$$
 (well known)

• K5 = K + 
$$\Diamond p \rightarrow \Box \Diamond p$$