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The correct abstract can be found in the CLMPS web page.
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Provability predicates

In this talk, we assume that Peano Arithmetic PA is sound,

that is, ∀ϕ(PA ` ϕ ⇒ N |= ϕ).

We fix a Σ1 formula Pr(x) satisfying the following conditions:

.

......

...1 PA ` ϕ ⇔ PA ` Pr(pϕq)

...2 PA ` Pr(pϕ → ψq) → (Pr(pϕq) → Pr(pψq))

...3 ϕ : Σ1 ⇒ PA ` ϕ → Pr(pϕq)

Pr(x) is called a provability predicate of PA.

ConPA :≡ ¬Pr(p0 = 1q).
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By the second incompleteness theorem, PA 0 ConPA since PA is

consistent.

Then there exists a model M of PA + ¬ConPA.

Since M |= Pr(p0 = 1q), M has a non-standard proof of 0 = 1.

This fact is well-known, but is not well-understood.

We want to know how to obtain such a proof in M .

For this purpose, we investigate the provability in models of

PA + ConPA.
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Theorems in non-standard models

.
Definition
..
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Let M |= PA.

Thm(M) := {ϕ | M |= Pr(pϕq)}.

.
Proposition
..

......

1. Thm(N) = {ϕ | PA ` ϕ}.
2. M ⊆e N ⇒ Thm(M) ⊆ Thm(N).

3. Thm(N) ⊆ Thm(M).

4. M |= ConPA ⇔ ∃ϕ s.t. ϕ /∈ Thm(M).

.
Questions
..

......

1. Is there a model M of PA + ConPA s.t. Thm(N) ( Thm(M)?

2. Moreover, is there a model M s.t. Thm(N) ( Thm(M) and

Thm(M) ⊆ TA? (Where TA = {ϕ | N |= ϕ})
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Let M |= PA.

...1 M is heterodox :⇔ Thm(M) * TA.

...2 M is illusory :⇔ Thm(N) ( Thm(M).

...3 M is insane :⇔ M |= ¬ConPA.

It is easy to see the following implications.

.

...... M : insane ⇒ M : heterodox ⇒ M : illusory
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.
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It is known PA 0 ConPA → ¬Pr(p¬ConPAq).
Then ∃M |= PA + ConPA s.t. M |= Pr(p¬ConPAq).
Thus M is illusory since ¬ConPA /∈ Thm(N) and

¬ConPA ∈ Thm(M).

Moreover,

.
Theorem
..

......The cardinality of the set {Thm(M) | M |= PA + ConPA} is 2ℵ0 .
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If M |= PA + ConPA is illusory, then

...1 Thm(M) \ Thm(N) contains a true Π1 sentence; and

...2 Thm(M) \ Thm(N) contains a false Σ1 sentence.

.
Proof.
..

......

Let ϕ be any sentence s.t. ϕ ∈ Thm(M) \ Thm(N).
Let π be a Π1 sentence satisfying

PA ` π ↔ ∀y(Prf(pϕq, y) → ∃z ≤ yPrf(pπq, z)).
Then N |= π and π ∈ Thm(M) \ Thm(N).
Let σ be a Σ1 sentence Pr(pϕq).
Then N |= ¬σ and σ ∈ Thm(M) \ Thm(N).

.
Corollary
..
......M : illusory ⇔ M : heterodox.
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...3 Thm(N) ( Thm(N).

Such a model M increases its theorems gradually.

Next, we consider two special insane models.
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We proved this theorem by using the following theorem by

Kraj́ıček and Pudlák (1989).
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Theorem(Kraj́ıček and Pudlák (1989))
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∀M : non-standard model of PA, ∀a: non-standard element of M

∃N |= PA s.t. M � a ' N � a and N |= ∃y < 22a

Prf(p0 = 1q, y).
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{∀y ≤ x¬Prf(p¬ConPA → ϕq, y) | T 0 ϕ} ∪ {x ≥ n̄ | n ∈ ω}.
Let N ⊆e M be a non-standard model of PA.

Let a be any non-standard element of N .

Since M omits the type above, there is a formula ϕ(x) in the

type s.t. M |= ¬ϕ(a).
Because a is non-standard, M |= a ≥ n̄ for all n ∈ ω.

Hence there is ψ s.t. T 0 ψ and M |= ∃y ≤ aPrf(p¬ConPA → ψq, y).
Since this statement is Π1, N |= ∃y ≤ aPrf(p¬ConPA → ψq, y)
and thus N |= Pr(p¬ConPA → ψq).
Therefore ¬ConPA → ψ ∈ Thm(N) and PA 0 ¬ConPA → ψ.

This means N is illusory.
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Let T = PA + ¬ConPA.

We can take a model M of T omitting the type

{∀y ≤ x¬Prf(p¬ConPA → ϕq, y) | T 0 ϕ} ∪ {x ≥ n̄ | n ∈ ω}.
Let N ⊆e M be a non-standard model of PA.

Let a be any non-standard element of N .

Since M omits the type above, there is a formula ϕ(x) in the

type s.t. M |= ¬ϕ(a).
Because a is non-standard, M |= a ≥ n̄ for all n ∈ ω.
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Problems
..

......

...1 If Thm(M) ⊆ Thm(N), then is there an end-extension K of M

s.t. Thm(N) = Thm(K)?

...2 Does every non-standard model which is not maximal have a

maximal end-extension?

...3 Does every non-standard model M which is not maximal

have an end-extension N s.t. N |= PA + ConPA and

Thm(M) ( Thm(N)?

The results presented in this talk will appear in

.

......

Makoto Kikuchi and Taishi Kurahashi, “Illusory models of Peano

arithmetic”, Journal of Symbolic Logic.
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