Heterodox Models of Peano Arithmetic

Taishi Kurahashi National Institiute of Technology, Kisarazu College, Japan

> Makoto Kikuchi Kobe University, Japan

> > 15th CLMPS Helsinki August 5, 2015

Unfortunately, the abstract in the book is not ours.

The correct abstract can be found in the CLMPS web page.

Outline

- Background
- **②** Theorems in models of $PA + Con_{PA}$
- **3** Models having a proof of 0 = 1

- Background
- **2** Theorems in models of $PA + Con_{PA}$
- 3 Models having a proof of 0 = 1

Provability predicates

• In this talk, we assume that Peano Arithmetic PA is sound, that is, $\forall \varphi (PA \vdash \varphi \Rightarrow \mathbb{N} \models \varphi)$.

Provability predicates

- In this talk, we assume that Peano Arithmetic PA is sound, that is, $\forall \varphi (PA \vdash \varphi \Rightarrow \mathbb{N} \models \varphi)$.
- We fix a Σ_1 formula Pr(x) satisfying the following conditions:

Pr(x) is called a provability predicate of PA.

Provability predicates

- In this talk, we assume that Peano Arithmetic PA is sound, that is, $\forall \varphi (PA \vdash \varphi \Rightarrow \mathbb{N} \models \varphi)$.
- We fix a Σ_1 formula $\Pr(x)$ satisfying the following conditions:
- $\bullet \mathsf{PA} \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}(\lceil \varphi \rceil)$
- $② \mathsf{PA} \vdash \mathsf{Pr}(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}(\lceil \varphi \rceil) \to \mathsf{Pr}(\lceil \psi \rceil))$

Pr(x) is called a provability predicate of PA.

• $Con_{PA} :\equiv \neg Pr(\lceil 0 = 1 \rceil).$

 \bullet By the second incompleteness theorem, PA \nvdash Con_{PA} since PA is consistent.

- By the second incompleteness theorem, $PA \nvdash Con_{PA}$ since PA is consistent.
- Then there exists a model M of $PA + \neg Con_{PA}$.

- \bullet By the second incompleteness theorem, PA \nvdash Con_{PA} since PA is consistent.
- Then there exists a model M of $PA + \neg Con_{PA}$.
- Since $M \models \mathsf{Pr}(\lceil 0 = 1 \rceil), \, M$ has a non-standard proof of 0 = 1.

- By the second incompleteness theorem, $PA \nvdash Con_{PA}$ since PA is consistent.
- Then there exists a model M of $PA + \neg Con_{PA}$.
- Since $M \models \Pr(\lceil 0 = 1 \rceil)$, M has a non-standard proof of 0 = 1.

This fact is well-known, but is not well-understood.

- \bullet By the second incompleteness theorem, PA \nvdash Con_{PA} since PA is consistent.
- Then there exists a model M of $PA + \neg Con_{PA}$.
- Since $M \models \mathsf{Pr}(\lceil 0 = 1 \rceil), \, M$ has a non-standard proof of 0 = 1.

This fact is well-known, but is not well-understood.

• We want to know how to obtain such a proof in M.

0

Models having a proof of 0 = 1

- By the second incompleteness theorem, PA \(\nabla \) ConpA since PA is consistent.
- Then there exists a model M of PA $+ \neg Con_{PA}$.
- Since $M \models \Pr(\lceil 0 = 1 \rceil)$, M has a non-standard proof of 0 = 1.

This fact is well-known, but is not well-understood.

- We want to know how to obtain such a proof in M.
- For this purpose, we investigate the provability in models of PA + Conpa.

- Background
- **2** Theorems in models of $PA + Con_{PA}$
- 3 Models having a proof of 0 = 1

Definition

Let $M \models PA$.

$$\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$$

Definition

Let $M \models \mathsf{PA}$.

$$\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$$

1.
$$\mathsf{Thm}(\mathbb{N}) = \{ \varphi \mid \mathsf{PA} \vdash \varphi \}.$$

Definition

Let $M \models \mathsf{PA}$.

$$\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$$

- 1. $\mathsf{Thm}(\mathbb{N}) = \{ \varphi \mid \mathsf{PA} \vdash \varphi \}.$
- 2. $M \subseteq_e N \Rightarrow \mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$.

Definition

Let $M \models \mathsf{PA}$.

$$\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$$

- 1. $\mathsf{Thm}(\mathbb{N}) = \{ \varphi \mid \mathsf{PA} \vdash \varphi \}.$
- 2. $M \subseteq_e N \Rightarrow \mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$.
- 3. $\mathsf{Thm}(\mathbb{N}) \subset \mathsf{Thm}(M)$.

Definition

Let $M \models \mathsf{PA}$.

$$\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$$

- 1. $\mathsf{Thm}(\mathbb{N}) = \{ \varphi \mid \mathsf{PA} \vdash \varphi \}.$
- 2. $M \subseteq_e N \Rightarrow \mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$.
- 3. $\mathsf{Thm}(\mathbb{N}) \subset \mathsf{Thm}(M)$.
- 4. $M \models \mathsf{Con}_{\mathsf{PA}} \Leftrightarrow \exists \varphi \text{ s.t. } \varphi \notin \mathsf{Thm}(M).$

Definition

Let $M \models PA$.

$$\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$$

Proposition

- 1. $\mathsf{Thm}(\mathbb{N}) = \{ \varphi \mid \mathsf{PA} \vdash \varphi \}.$
- 2. $M \subseteq_e N \Rightarrow \mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$.
- 3. $\mathsf{Thm}(\mathbb{N}) \subseteq \mathsf{Thm}(M)$.
- 4. $M \models \mathsf{Con}_{\mathsf{PA}} \Leftrightarrow \exists \varphi \text{ s.t. } \varphi \notin \mathsf{Thm}(M).$

Questions

1. Is there a model M of $PA + Con_{PA}$ s.t. $Thm(\mathbb{N}) \subseteq Thm(M)$?

Definition

Let $M \models \mathsf{PA}$.

Theorems in non-standard models

 $\mathsf{Thm}(M) := \{ \varphi \mid M \models \mathsf{Pr}(\lceil \varphi \rceil) \}.$

Proposition

- 1. Thm(\mathbb{N}) = { $\varphi \mid \mathsf{PA} \vdash \varphi$ }.
- 2. $M \subseteq_e N \Rightarrow \mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$.
- 3. $\mathsf{Thm}(\mathbb{N}) \subset \mathsf{Thm}(M)$.
- 4. $M \models \mathsf{Con}_{\mathsf{PA}} \Leftrightarrow \exists \varphi \text{ s.t. } \varphi \notin \mathsf{Thm}(M).$

Questions

- 1. Is there a model M of PA + Con_{PA} s.t. Thm(\mathbb{N}) \subseteq Thm(M)?
- 2. Moreover, is there a model M s.t. $\mathsf{Thm}(\mathbb{N}) \subseteq \mathsf{Thm}(M)$ and $\mathsf{Thm}(M) \subseteq \mathsf{TA}$? (Where $\mathsf{TA} = \{ \varphi \mid \mathbb{N} \models \varphi \}$)

Terminology used in this talk

Definition

Let $M \models \mathsf{PA}$.

Terminology used in this talk

Definition

Let $M \models \mathsf{PA}$.

lacksquare M is heterodox : \Leftrightarrow Thm $(M) \nsubseteq$ TA.

Terminology used in this talk

Definition

Let $M \models \mathsf{PA}$.

- \bullet M is heterodox : \Leftrightarrow Thm $(M) \not\subseteq$ TA.
- ② M is illusory : \Leftrightarrow Thm(\mathbb{N}) \subseteq Thm(M).

Terminology used in this talk

Definition

Let $M \models \mathsf{PA}$.

- **①** M is heterodox :⇔ Thm $(M) \nsubseteq TA$.
- ② M is illusory : $\Leftrightarrow \mathsf{Thm}(\mathbb{N}) \subsetneq \mathsf{Thm}(M)$.
- **3** M is insane $\Leftrightarrow M \models \neg \mathsf{Con}_{\mathsf{PA}}$.

Terminology used in this talk

Definition

Let $M \models \mathsf{PA}$.

- **1** M is heterodox :⇔ Thm(M) \nsubseteq TA.
- **③** M is insane :⇔ $M \models \neg Con_{PA}$.

It is easy to see the following implications.

M: insane $\Rightarrow M$: heterodox $\Rightarrow M$: illusory

Illusory models

Proposition

 $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \text{ is illusory.}$

Proposition

 $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \text{ is illusory.}$

Proof.

It is known $PA \nvdash Con_{PA} \rightarrow \neg Pr(\lceil \neg Con_{PA} \rceil)$.

Proposition

 $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \text{ is illusory.}$

Proof.

It is known $PA \nvdash Con_{PA} \rightarrow \neg Pr(\lceil \neg Con_{PA} \rceil)$.

Then $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \models \mathsf{Pr}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \rceil).$

Proposition

 $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \text{ is illusory.}$

Proof.

It is known $PA \nvdash Con_{PA} \rightarrow \neg Pr(\lceil \neg Con_{PA} \rceil)$.

Then $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \models \mathsf{Pr}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \rceil).$

Thus M is illusory since $\neg\mathsf{Con}_\mathsf{PA} \notin \mathsf{Thm}(\mathbb{N})$ and

 $\neg \mathsf{Con}_\mathsf{PA} \in \mathsf{Thm}(M).$

Proposition

 $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \text{ is illusory.}$

Proof.

It is known PA $\nvdash Con_{PA} \rightarrow \neg Pr(\lceil \neg Con_{PA} \rceil)$.

Then $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} \text{ s.t. } M \models \mathsf{Pr}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \rceil).$

Thus M is illusory since $\neg \mathsf{Con}_{\mathsf{PA}} \notin \mathsf{Thm}(\mathbb{N})$ and $\neg \mathsf{Con}_{\mathsf{PA}} \in \mathsf{Thm}(M)$.

Moreover,

Theorem

The cardinality of the set $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}$ is 2^{\aleph_0} .

Theorem

If $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$ is illusory, then

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

1 Thm $(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \text{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- **2** Thm $(M) \setminus \text{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- **2** $\mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Proof.

Let φ be any sentence s.t. $\varphi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- **2** $\mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Proof.

Let φ be any sentence s.t. $\varphi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let π be a Π_1 sentence satisfying

$$\mathsf{PA} \vdash \pi \leftrightarrow \forall y (\mathsf{Prf}(\lceil \varphi \rceil, y) \to \exists z < y \mathsf{Prf}(\lceil \pi \rceil, z)).$$

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- **2** $\mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Proof.

Let φ be any sentence s.t. $\varphi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let π be a Π_1 sentence satisfying

$$\mathsf{PA} \vdash \pi \leftrightarrow \forall y (\mathsf{Prf}(\ulcorner \varphi \urcorner, y) \to \exists z \leq y \mathsf{Prf}(\ulcorner \pi \urcorner, z)).$$

Then $\mathbb{N} \models \pi$ and $\pi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \text{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- **2** Thm $(M) \setminus \text{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Proof.

Let φ be any sentence s.t. $\varphi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let π be a Π_1 sentence satisfying

$$\mathsf{PA} \vdash \pi \leftrightarrow \forall y (\mathsf{Prf}(\ulcorner \varphi \urcorner, y) \to \exists z \leq y \mathsf{Prf}(\ulcorner \pi \urcorner, z)).$$

Then $\mathbb{N} \models \pi$ and $\pi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let σ be a Σ_1 sentence $\Pr(\lceil \varphi \rceil)$.

Theorem

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \text{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- **2** Thm $(M) \setminus \text{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Proof.

Let φ be any sentence s.t. $\varphi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let π be a Π_1 sentence satisfying

$$\mathsf{PA} \vdash \pi \leftrightarrow \forall y (\mathsf{Prf}(\lceil \varphi \rceil, y) \to \exists z < y \mathsf{Prf}(\lceil \pi \rceil, z)).$$

Then $\mathbb{N} \models \pi$ and $\pi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let σ be a Σ_1 sentence $\Pr(\lceil \varphi \rceil)$.

Then $\mathbb{N} \models \neg \sigma$ and $\sigma \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

If $M \models PA + Con_{PA}$ is illusory, then

- **1** Thm $(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a true Π_1 sentence; and
- ② $\mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$ contains a false Σ_1 sentence.

Proof.

Let φ be any sentence s.t. $\varphi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let π be a Π_1 sentence satisfying

$$\mathsf{PA} \vdash \pi \leftrightarrow \forall y (\mathsf{Prf}(\ulcorner \varphi \urcorner, y) \to \exists z \leq y \mathsf{Prf}(\ulcorner \pi \urcorner, z)).$$

Then $\mathbb{N} \models \pi$ and $\pi \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Let σ be a Σ_1 sentence $\Pr(\lceil \varphi \rceil)$.

Then $\mathbb{N} \models \neg \sigma$ and $\sigma \in \mathsf{Thm}(M) \setminus \mathsf{Thm}(\mathbb{N})$.

Corollary

M: illusory $\Leftrightarrow M$: heterodox.

We have shown that for any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M) \neq \mathsf{TA}$.

We have shown that for any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M) \neq \mathsf{TA}$.

Proposition

Theorems in non-standard models

For any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M)$ is not complete.

We have shown that for any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M) \neq \mathsf{TA}$.

Proposition

For any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M)$ is not complete.

Proof.

Let φ be a Rosser sentence of PA.

We have shown that for any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M) \neq \mathsf{TA}$.

Proposition

For any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M)$ is not complete.

Proof.

Let φ be a Rosser sentence of PA.

Then

$$\mathsf{PA} \vdash \mathsf{Con}_{\mathsf{PA}} \to \neg \mathsf{Pr}(\lceil \varphi \rceil) \land \neg \mathsf{Pr}(\lceil \neg \varphi \rceil).$$

We have shown that for any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M) \neq \mathsf{TA}$.

Proposition

For any $M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$, $\mathsf{Thm}(M)$ is not complete.

Proof.

Let φ be a Rosser sentence of PA.

Then

$$\mathsf{PA} \vdash \mathsf{Con}_{\mathsf{PA}} \to \neg \mathsf{Pr}(\lceil \varphi \rceil) \land \neg \mathsf{Pr}(\lceil \neg \varphi \rceil).$$

Thus for any $M \models PA + Con_{PA}$,

$$\varphi, \neg \varphi \notin \mathsf{Thm}(M).$$

Theorems in non-standard models

Maximality

There is no complete theory in $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}.$

There is no complete theory in $\{Thm(M) \mid M \models PA + Con_{PA}\}$. However, this family can have a maximal element w.r.t. \subseteq .

There is no complete theory in $\{Thm(M) \mid M \models PA + Con_{PA}\}$. However, this family can have a maximal element w.r.t. \subseteq . In fact,

Theorem

The family $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}$ contains 2^{\aleph_0} maximal elements.

There is no complete theory in $\{Thm(M) \mid M \models PA + Con_{PA}\}$. However, this family can have a maximal element w.r.t. \subseteq . In fact,

Theorem

The family $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}$ contains 2^{\aleph_0} maximal elements.

We obtained the following results concerning maximal elements.

There is no complete theory in $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}.$ However, this family can have a maximal element w.r.t. ⊂. In fact,

Theorem

The family $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}\$ contains 2^{\aleph_0} maximal elements.

We obtained the following results concerning maximal elements.

 $\mathsf{Con}^2_{\mathsf{PA}} :\equiv \mathsf{Con}_{\mathsf{PA}+\mathsf{Con}_{\mathsf{PA}}}$

There is no complete theory in $\{Thm(M) \mid M \models PA + Con_{PA}\}$. However, this family can have a maximal element w.r.t. \subseteq . In fact,

Theorem

The family $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}$ contains 2^{\aleph_0} maximal elements.

We obtained the following results concerning maximal elements. $\mathsf{Con}^2_{\mathsf{PA}} :\equiv \mathsf{Con}_{\mathsf{PA}+\mathsf{Con}_{\mathsf{PA}}}$

Proposition

Every $M \models PA + Con_{PA}^2$ is not maximal.

There is no complete theory in $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}$. However, this family can have a maximal element w.r.t. \subseteq . In fact,

Theorem

The family $\{\mathsf{Thm}(M) \mid M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}\}$ contains 2^{\aleph_0} maximal elements.

We obtained the following results concerning maximal elements. $\mathsf{Con}^2_{\mathsf{PA}} :\equiv \mathsf{Con}_{\mathsf{PA}+\mathsf{Con}_{\mathsf{PA}}}$

Proposition

Every $M \models PA + Con_{PA}^2$ is not maximal.

Theorem

 $\exists M \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}} + \neg \mathsf{Con}_{\mathsf{PA}}^2 \text{ s.t. } M \text{ is not maximal.}$

- Background
- **2** Theorems in models of $PA + Con_{PA}$
- **3** Models having a proof of 0 = 1

Models increasing their theorems gradually

It is easy to prove the following proposition by using the arithmetized completeness theorem.

Proposition

$$\exists K \models \mathsf{PA} + \neg \mathsf{Con}_{\mathsf{PA}}, \quad \exists M, N \subseteq_e K \text{ s.t.}$$

- **1** M and N are non-standard models of $PA + Con_{PA}$;
- ② $\mathsf{Thm}(M) = \mathsf{Thm}(\mathbb{N});$ and
- lacksquare Thm(\mathbb{N}) \subsetneq Thm(N).

Models increasing their theorems gradually

It is easy to prove the following proposition by using the arithmetized completeness theorem.

Proposition

$$\exists K \models \mathsf{PA} + \neg \mathsf{Con}_{\mathsf{PA}}, \quad \exists M, N \subseteq_e K \text{ s.t.}$$

- **1** M and N are non-standard models of $PA + Con_{PA}$;
- ② $\mathsf{Thm}(M) = \mathsf{Thm}(\mathbb{N});$ and
- **3** Thm(\mathbb{N}) \subseteq Thm(N).

Such a model M increases its theorems gradually.

Models increasing their theorems gradually

It is easy to prove the following proposition by using the arithmetized completeness theorem.

Proposition

$$\exists K \models \mathsf{PA} + \neg \mathsf{Con}_{\mathsf{PA}}, \quad \exists M, N \subseteq_e K \text{ s.t.}$$

- **1** M and N are non-standard models of $PA + Con_{PA}$;
- 2 Thm $(M) = \text{Thm}(\mathbb{N})$; and
- **3** Thm(\mathbb{N}) \subseteq Thm(N).

Such a model M increases its theorems gradually.

Next, we consider two special insane models.

Models having a proof of $0\,=\,1$

Models proving $\mathbf{0} = \mathbf{1}$ suddenly

First, we proved the existence of an insane model which proves 0 = 1 suddenly.

Models proving 0 = 1 suddenly

First, we proved the existence of an insane model which proves 0 = 1 suddenly.

Theorem

$$\exists N \models \mathsf{PA} + \neg \mathsf{Con}_{\mathsf{PA}} \text{ s.t.}$$

$$orall I \subseteq_e N(I \models \mathsf{PA} + \mathsf{Con}_\mathsf{PA} \Rightarrow \mathsf{Thm}(I) = \mathsf{Thm}(\mathbb{N})).$$

Models proving 0 = 1 suddenly

First, we proved the existence of an insane model which proves 0 = 1 suddenly.

Theorem

$$\exists N \models \mathsf{PA} + \neg \mathsf{Con}_{\mathsf{PA}} \text{ s.t.}$$

$$\forall I \subseteq_e N(I \models \mathsf{PA} + \mathsf{Con}_\mathsf{PA} \Rightarrow \mathsf{Thm}(I) = \mathsf{Thm}(\mathbb{N})).$$

We proved this theorem by using the following theorem by Krajíček and Pudlák (1989).

Theorem(Krajíček and Pudlák (1989))

 $\forall M$: non-standard model of PA, $\forall a$: non-standard element of M $\exists N \models \mathsf{PA} \text{ s.t. } M \upharpoonright a \simeq N \upharpoonright a \text{ and } N \models \exists y < 2^{2^a} \mathsf{Prf}(\lceil 0 = 1 \rceil, y).$

Models having a proof of 0=1

Models which are illusory by nature

Secondly, we proved the existence of an insane model which is illusory by nature.

Models which are illusory by nature

Secondly, we proved the existence of an insane model which is illusory by nature.

Theorem

$$\exists M \models \mathsf{PA} + \neg \mathsf{Con}_{\mathsf{PA}} \text{ s.t.}$$

 $\forall N \subseteq_e M(N: \text{ non-standard model of PA} \Rightarrow \mathsf{Thm}(\mathbb{N}) \subsetneq \mathsf{Thm}(N)).$

Models having a proof of 0 = 1

We give our proof of this theorem.

Proof.

Let $T = PA + \neg Con_{PA}$.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

$$\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$$

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula $\varphi(x)$ in the type s.t. $M \models \neg \varphi(a)$.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula $\varphi(x)$ in the type s.t. $M \models \neg \varphi(a)$.

Because a is non-standard, $M \models a \geq \bar{n}$ for all $n \in \omega$.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula $\varphi(x)$ in the type s.t. $M \models \neg \varphi(a)$.

Because a is non-standard, $M \models a \geq \bar{n}$ for all $n \in \omega$.

Hence there is ψ s.t. $T \nvdash \psi$ and $M \models \exists y \leq a \mathsf{Prf}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil, y)$.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\lceil \neg \mathsf{Con}_\mathsf{PA} \to \varphi \rceil, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula $\varphi(x)$ in the type s.t. $M \models \neg \varphi(a)$.

Because a is non-standard, $M \models a \geq \bar{n}$ for all $n \in \omega$.

Hence there is ψ s.t. $T \nvdash \psi$ and $M \models \exists y \leq a \mathsf{Prf}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil, y)$.

Since this statement is Π_1 , $N \models \exists y \leq a \mathsf{Prf}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil, y)$ and thus $N \models \mathsf{Pr}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil)$.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{\forall y \leq x \neg \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_\mathsf{PA} \to \varphi \urcorner, y) \mid T \nvdash \varphi\} \cup \{x \geq \bar{n} \mid n \in \omega\}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula $\varphi(x)$ in the type s.t. $M \models \neg \varphi(a)$.

Because a is non-standard, $M \models a \geq \bar{n}$ for all $n \in \omega$.

Hence there is ψ s.t. $T \nvdash \psi$ and $M \models \exists y \leq a \mathsf{Prf}(\ulcorner \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \urcorner, y)$.

Since this statement is Π_1 , $N \models \exists y \leq a \mathsf{Prf}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil, y)$

and thus $N \models \Pr(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil)$.

Therefore $\neg \mathsf{Con}_{\mathsf{PA}} \to \psi \in \mathsf{Thm}(N)$ and $\mathsf{PA} \nvdash \neg \mathsf{Con}_{\mathsf{PA}} \to \psi$.

Proof.

Let $T = PA + \neg Con_{PA}$.

We can take a model M of T omitting the type

 $\{ \forall y \leq x \neg \mathsf{Prf}(\neg \mathsf{Con}_{\mathsf{PA}} \to \varphi \neg, y) \mid T \nvdash \varphi \} \cup \{ x \geq \bar{n} \mid n \in \omega \}.$

Let $N \subseteq_e M$ be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula $\varphi(x)$ in the type s.t. $M \models \neg \varphi(a)$.

Because a is non-standard, $M \models a \geq \bar{n}$ for all $n \in \omega$.

Hence there is ψ s.t. $T \nvdash \psi$ and $M \models \exists y \leq a \mathsf{Prf}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil, y)$.

Since this statement is Π_1 , $N \models \exists y \leq a \mathsf{Prf}(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil, y)$ and thus $N \models \Pr(\lceil \neg \mathsf{Con}_{\mathsf{PA}} \to \psi \rceil)$.

Therefore $\neg \mathsf{Con}_{\mathsf{PA}} \to \psi \in \mathsf{Thm}(N)$ and $\mathsf{PA} \nvdash \neg \mathsf{Con}_{\mathsf{PA}} \to \psi$.

This means N is illusory.

Problems

Problems

- If $\mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$, then is there an end-extension K of M s.t. $\mathsf{Thm}(N) = \mathsf{Thm}(K)$?
- ② Does every non-standard model which is not maximal have a maximal end-extension?
- ② Does every non-standard model M which is not maximal have an end-extension N s.t. $N \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$ and $\mathsf{Thm}(M) \subsetneq \mathsf{Thm}(N)$?

Problems

Problems

- If $\mathsf{Thm}(M) \subseteq \mathsf{Thm}(N)$, then is there an end-extension K of M s.t. $\mathsf{Thm}(N) = \mathsf{Thm}(K)$?
- ② Does every non-standard model which is not maximal have a maximal end-extension?
- ② Does every non-standard model M which is not maximal have an end-extension N s.t. $N \models \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$ and $\mathsf{Thm}(M) \subsetneq \mathsf{Thm}(N)$?

The results presented in this talk will appear in

Makoto Kikuchi and Taishi Kurahashi, "Illusory models of Peano arithmetic", Journal of Symbolic Logic.