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o We fix a ¥; formula Pr(z) satisfying the following conditions:

O PAF @< PAF Pr(Tp))
@ PAEPr("e = ) — (Pr("¢") — Pr("¢7)
Q p:3X1=PAF o —Pr("¢")

Pr(x) is called a provability predicate of PA.
e Conpa := —Pr("0 =17).
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Models having a proof of 0 = 1

o By the second incompleteness theorem, PA /¥ Conpa since PA is
consistent.

o Then there exists a model M of PA + —Conpa.
e Since M = Pr("0 = 17), M has a non-standard proof of 0 = 1.

This fact is well-known, but is not well-understood.
o We want to know how to obtain such a proof in M.

o For this purpose, we investigate the provability in models of
PA + Conp/.\.
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Let M = PA.

Thm(M) :={p | M = Pr("¢")}.

Proposition

1. Thm(N) = {¢ | PA F ¢}.

2. M Cc N = Thm(M) C Thm(N).
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Let M |= PA.

Thm(M) = {o | M = Pr("7)}.
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Definition
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Definition
Let M = PA.

Thm(M) := {o | M |= Pr("e")}

Proposition

. Thm(N) = {¢ | PA F ©}.

. M Ce N = Thm(M) C Thm(N).

. Thm(N) C Thm(M).

. M |= Conpa < Jo s.t. ¢ &€ Thm(M).
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Questions

1. Is there a model M of PA 4 Conpa s.t. Thm(N) C Thm(M)?
2. Moreover, is there a model M s.t. Thm(N) C Thm(M) and
Thm(M) C TA? (Where TA = {¢ | N &= ¢})

\
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Terminology used in this talk

Let M = PA.
@ M is heterodox :< Thm(M) ¢ TA.
@ M is illusory :< Thm(N) C Thm(M).
@ M is insane :<> M |= —Conpa.

It is easy to see the following implications.

M: insane = M: heterodox = M: illusory )
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Proposition

3dM = PA + Conpa s.t. M is illusory.

It is known PA ¥ Conpa — —Pr("—Conpa™).

Then IM |= PA + Conpa s.t. M = Pr("—Conpa™).

Thus M is illusory since —Conpa ¢ Thm(N) and

—Conpa € Thm(M). L]

Moreover,

The cardinality of the set {Thm(M) | M |= PA + Conpa} is 2%°.




£ PA 4 Conpp

Theorems in non-standard mod

If M = PA + Conpa is illusory, then




The d PA + Conpp
[e]e]e] lele)
ndard mod

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and




Theorems in mod £ PA 4 Conpp
[e]e]e] lele)
Theorems in non-standard models

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.




Theorems in models of
[e]e]e] lele)

Theorems in non-standard models

Theorem

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.

Let ¢ be any sentence s.t. ¢ € Thm(M) \ Thm(N).




Theorems in models o
[e]e]e] lele)

Theorems in non-standard models

Theorem

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.

Proof.

Let ¢ be any sentence s.t. ¢ € Thm(M) \ Thm(N).
Let  be a IT; sentence satisfying
PAF 7 < Vy(Prf("p ', y) — 2z < yPrf("n 7, 2)).




Theorems in models o
[e]e]e] lele)

Theorems in non-standard models

Theorem

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.

Proof.

Let ¢ be any sentence s.t. ¢ € Thm(M) \ Thm(N).
Let  be a IT; sentence satisfying

PAF 7 < Vy(Prf("p ', y) — 2z < yPrf("n 7, 2)).
Then N =7 and w € Thm(M) \ Thm(N).




Theorems in models o
[e]e]e] lele)

Theorems in non-standard models

Theorem

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.

Proof.

Let ¢ be any sentence s.t. ¢ € Thm(M) \ Thm(N).
Let  be a IT; sentence satisfying

PAF 7 < Vy(Prf("p ', y) — 2z < yPrf("n 7, 2)).
Then N =7 and w € Thm(M) \ Thm(N).

Let o be a X; sentence Pr("¢™).




Theorems in models o
[e]e]e] lele)

Theorems in non-standard models

Theorem

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.

Proof.

Let ¢ be any sentence s.t. ¢ € Thm(M) \ Thm(N).

Let  be a IT; sentence satisfying

PAF 7 < Vy(Prf("p ', y) — 2z < yPrf("n 7, 2)).

Then N =7 and w € Thm(M) \ Thm(N).

Let o be a X; sentence Pr("¢™).

Then N = —o and o € Thm(M) \ Thm(N). L]




Theorems in models o
[e]e]e] lele)

Theorems in non-standard models

Theorem

If M = PA + Conpa is illusory, then
@ Thm(M) \ Thm(N) contains a true II; sentence; and
@ Thm(M) \ Thm(N) contains a false 3, sentence.

Proof.

Let ¢ be any sentence s.t. ¢ € Thm(M) \ Thm(N).

Let  be a IT; sentence satisfying

PAF 7 < Vy(Prf("p ', y) — 2z < yPrf("n 7, 2)).

Then N =7 and w € Thm(M) \ Thm(N).

Let o be a X; sentence Pr("¢™).

Then N = —o and o € Thm(M) \ Thm(N). L]

M: illusory < M: heterodox.
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Completeness

We have shown that for any M = PA + Conpa, Thm(M) # TA.

For any M = PA + Conpa, Thm(M) is not complete.

Let ¢ be a Rosser sentence of PA.

Then

PA +~ Conpa — —|Pr(r<p7) N\ —|Pr("—|<p7).

Thus for any M |= PA + Conpa,

¢, ~p ¢ Thm(M). O
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Maximality

There is no complete theory in {Thm(M) | M = PA 4 Conpa}.
However, this family can have a maximal element w.r.t. C.
In fact,

The family {Thm(M) | M = PA + Conpa} contains 2%° maximal
elements.

‘We obtained the following results concerning maximal elements.
Con%A = COnpA+c°npA

Every M = PA + Con?, is not maximal.

3dM = PA + Conpa + —Con3, s.t. M is not maximal.
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Models increasing their theorems gradually

It is easy to prove the following proposition by using the
arithmetized completeness theorem.

Proposition

3K |= PA 4+ —Conpa, 3IM,N C. K s.t.

@ M and N are non-standard models of PA + Conpa;
@ Thm(M) = Thm(N); and
@ Thm(N) € Thm(NV).

Such a model M increases its theorems gradually.
Next, we consider two special insane models.
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Models proving 0 = 1 suddenly

First, we proved the existence of an insane model which proves
0 = 1 suddenly.

aN |= PA + —Conpa s.t.
VI C. N(I = PA + Conpa = Thm(I) = Thm(N)).

We proved this theorem by using the following theorem by
Krajicek and Pudlak (1989).

Theorem(Krajicek and Pudldk (1989))

VM: non-standard model of PA, Va: non-standard element of M
AN EPAst. Ma~N |aand N = 3y < 22°Prf("0 = 17, ).
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Models which are illusory by nature

Secondly, we proved the existence of an insane model which is
illusory by nature.

M ': PA + —Conpa s.t.
VN C. M(N: non-standard model of PA = Thm(N) C Thm(IV)).
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We give our proof of this theorem.

Proof.

Let T = PA —|— —ICOI‘IpA.

We can take a model M of T' omitting the type
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We give our proof of this theorem.

Proof.

Let T = PA —|— —ICOI‘IpA.

We can take a model M of T' omitting the type

{Vy < —Prf("=Conpp — o, y) | T¥ o} U{x > n | n € w}.

Let N C. M be a non-standard model of PA.

Let a be any non-standard element of N.

Since M omits the type above, there is a formula ¢(x) in the
type s.t. M = —p(a).

Because a is non-standard, M |=a > 7 for all n € w.

Hence there is ¢ s.t. T ¥ ¢ and M = Jy < aPrf("—Conpa — ¥, y).
Since this statement is II;, N |= Jy < aPrf("—Conpa — ¢, y)

and thus N = Pr("—Conpa — 7).

Therefore —=Conpa — 1 € Thm(IN) and PA ¥ —Conpa — .

This means N is illusory. L]
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Problems

Q@ If Thm(M) C Thm(N), then is there an end-extension K of M
s.t. Thm(IN) = Thm(K)?

© Does every non-standard model which is not maximal have a
maximal end-extension?

@ Does every non-standard model M which is not maximal
have an end-extension N s.t. N = PA + Conpa and
Thm(M) C Thm(IN)?
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The results presented in this talk will appear in

Makoto Kikuchi and Taishi Kurahashi, “Illusory models of Peano
arithmetic”, Journal of Symbolic Logic.
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