Rosser-type Henkin sentences and local reflection principles

Taishi Kurahashi

Kobe University
JSPS Research Fellow (PD)

CTFM 2014
Tokyo Institute of Technology
February 19, 2014

Contents

- Rosser-type Henkin sentences
- Rosser-type local reflection principles

- Rosser-type Henkin sentences
- Rosser-type local reflection principles

We fix a theory \boldsymbol{T} which is

- consistent;
- 2 recursively axiomatized;
- 3 an extension of Peano arithmetic PA.

We fix a theory T which is

- consistent;
- recursively axiomatized;
- an extension of Peano arithmetic PA.
 - In the proof of Gödel's incompleteness theorems, Gödel constructed a sentence asserting its own T-unprovability.

We fix a theory T which is

- consistent;
- recursively axiomatized;
- 3 an extension of Peano arithmetic PA.
 - In the proof of Gödel's incompleteness theorems, Gödel constructed a sentence asserting its own T-unprovability.
 - Then such a sentence is neither provable nor refutable in T.

We fix a theory T which is

- consistent;
- recursively axiomatized;
- an extension of Peano arithmetic PA.
 - In the proof of Gödel's incompleteness theorems, Gödel constructed a sentence asserting its own T-unprovability.
 - ullet Then such a sentence is neither provable nor refutable in T.

In 1952, Henkin raised the following problem:

We fix a theory T which is

- consistent;
- recursively axiomatized;
- 3 an extension of Peano arithmetic PA.
 - In the proof of Gödel's incompleteness theorems, Gödel constructed a sentence asserting its own T-unprovability.
 - Then such a sentence is neither provable nor refutable in T.

In 1952, Henkin raised the following problem:

Henkin's problem

Is every sentence asserting its own T-provability provable in T?

Rosser-type Henkin sentences

O • O O O O O

Henkin sentences

type local reflection principles

Provability predicates

Definition

A Σ_1 formula $\Pr_T(x)$ is a provability predicate of T

Definition

A Σ_1 formula $\Pr_T(x)$ is a provability predicate of T

 $\overset{\text{def.}}{\Leftrightarrow} \text{ for any formula } \varphi \text{, } T \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \rceil).$

Definition

A Σ_1 formula $\Pr_T(x)$ is a provability predicate of T

 $\overset{\text{def.}}{\Leftrightarrow} \text{ for any formula } \varphi \text{, } T \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \rceil).$

Definition

A provability predicate $\Pr_T(x)$ is standard

Definition

A Σ_1 formula $\Pr_T(x)$ is a provability predicate of T

 $\overset{\text{def.}}{\Leftrightarrow} \text{ for any formula } \varphi \text{, } T \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \rceil).$

Definition

A provability predicate $\Pr_T(x)$ is standard $\stackrel{\text{def.}}{\Leftrightarrow}$ for any φ and ψ ,

Definition

A Σ_1 formula $\Pr_T(x)$ is a provability predicate of T

 $\overset{\mathrm{def.}}{\Leftrightarrow} \text{ for any formula } \varphi \text{, } T \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_T(\ulcorner \varphi \urcorner).$

Definition

A provability predicate $\Pr_T(x)$ is standard def.

$$\overset{\mathrm{def.}}{\Leftrightarrow}$$
 for any $arphi$ and ψ ,

• PA
$$\vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil));$$

Definition

A Σ_1 formula $\Pr_T(x)$ is a provability predicate of T

 $\overset{\text{def.}}{\Leftrightarrow} \text{ for any formula } \varphi, \ T \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \rceil).$

Definition

A provability predicate $\Pr_T(x)$ is standard $\stackrel{\text{def.}}{\Leftrightarrow}$ for any φ and ψ ,

• PA
$$\vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil));$$

•
$$\varphi$$
 is $\Sigma_1 \Rightarrow \mathsf{PA} \vdash \varphi \to \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Definition

A Σ_1 formula $\mathsf{Pr}_T(x)$ is a provability predicate of T

 $\overset{\text{def.}}{\Leftrightarrow}$ for any formula φ , $T \vdash \varphi \Leftrightarrow \mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Definition

A provability predicate $Pr_T(x)$ is standard $\stackrel{\text{def.}}{\Leftrightarrow}$ for any φ and ψ ,

•
$$\mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_T(\lceil \varphi \rceil) \to \mathsf{Pr}_T(\lceil \psi \rceil));$$

•
$$\varphi$$
 is $\Sigma_1 \Rightarrow \mathsf{PA} \vdash \varphi \to \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Fix a standard provability predicate $Pr_T(x)$ of T.

Definition

A sentence φ is a Henkin sentence of T

Definition

A sentence φ is a Henkin sentence of $T \overset{\text{def.}}{\Leftrightarrow} T \vdash \varphi \leftrightarrow \Pr_T(\lceil \varphi \rceil)$.

Definition

A sentence φ is a Henkin sentence of $T \overset{\text{def.}}{\Leftrightarrow} T \vdash \varphi \leftrightarrow \Pr_T(\lceil \varphi \rceil)$.

Henkin's problem can be restated as follows.

Definition

A sentence φ is a Henkin sentence of $T \overset{\text{def.}}{\Leftrightarrow} T \vdash \varphi \leftrightarrow \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Henkin's problem can be restated as follows.

Henkin's problem

Is every Henkin sentence of T provable in T?

Definition

A sentence φ is a Henkin sentence of $T \Leftrightarrow T \vdash \varphi \leftrightarrow \Pr_T(\lceil \varphi \rceil)$.

Henkin's problem can be restated as follows.

Henkin's problem

Is every Henkin sentence of T provable in T?

In 1955, Löb answered to this problem by proving the following well-known theorem.

Definition

A sentence φ is a Henkin sentence of $T \overset{\text{def.}}{\Leftrightarrow} T \vdash \varphi \leftrightarrow \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Henkin's problem can be restated as follows.

Henkin's problem

Is every Henkin sentence of T provable in T?

In 1955, Löb answered to this problem by proving the following well-known theorem.

Löb's theorem (1955)

For any φ , $T \vdash \Pr_T(\lceil \varphi \rceil) \to \varphi \Rightarrow T \vdash \varphi$.

Definition

A sentence φ is a Henkin sentence of $T \Leftrightarrow T \vdash \varphi \leftrightarrow \Pr_T(\lceil \varphi \rceil)$.

Henkin's problem can be restated as follows.

Henkin's problem

Is every Henkin sentence of T provable in T?

In 1955, Löb answered to this problem by proving the following well-known theorem.

Löb's theorem (1955)

For any φ , $T \vdash \Pr_T(\lceil \varphi \rceil) \to \varphi \Rightarrow T \vdash \varphi$.

Thus every Henkin sentence of T is provable in T.

 In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.

- In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.
- His predicate was rather artificial.

- In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.
- His predicate was rather artificial.
- Rosser provability predicates are more natural non-standard provability predicates having refutable Henkin sentences.

- In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.
- His predicate was rather artificial.
- Rosser provability predicates are more natural non-standard provability predicates having refutable Henkin sentences.

Let $\operatorname{Prf}_T(x,y)$ be a Δ_1 formula s.t. $\exists y \operatorname{Prf}_T(x,y) \leftrightarrow \operatorname{Pr}_T(x)$.

- In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.
- His predicate was rather artificial.
- Rosser provability predicates are more natural non-standard provability predicates having refutable Henkin sentences.

Let $\operatorname{Prf}_T(x,y)$ be a Δ_1 formula s.t. $\exists y \operatorname{Prf}_T(x,y) \leftrightarrow \operatorname{Pr}_T(x)$.

Definition

A Rosser provability predicate $\Pr_T^R(x)$ of T is defined as $\exists y (\Pr_T(x,y) \land \forall z \leq y \neg \Pr_T(\neg x,z)).$

- In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.
- His predicate was rather artificial.
- Rosser provability predicates are more natural non-standard provability predicates having refutable Henkin sentences.

Let $\operatorname{Prf}_T(x,y)$ be a Δ_1 formula s.t. $\exists y \operatorname{Prf}_T(x,y) \leftrightarrow \operatorname{Pr}_T(x)$.

Definition

A Rosser provability predicate $\Pr_T^R(x)$ of T is defined as $\exists y (\Pr_T(x,y) \land \forall z \leq y \neg \Pr_T(\neg x,z)).$

Definition

A sentence φ is a Rosser-type Henkin sentence of $\Pr_T^R(x)$

- In 1953, Kreisel defined a non-standard provability predicate having a refutable Henkin sentence.
- His predicate was rather artificial.
- Rosser provability predicates are more natural non-standard provability predicates having refutable Henkin sentences.

Let $\operatorname{Prf}_T(x,y)$ be a Δ_1 formula s.t. $\exists y \operatorname{Prf}_T(x,y) \leftrightarrow \operatorname{Pr}_T(x)$.

Definition

A Rosser provability predicate $\Pr_T^R(x)$ of T is defined as $\exists y (\Pr_T(x,y) \land \forall z \leq y \neg \Pr_T(\neg x,z)).$

Definition

A sentence φ is a Rosser-type Henkin sentence of $\Pr_T^R(x)$ $\stackrel{\text{def.}}{\Leftrightarrow} T \vdash \varphi \leftrightarrow \Pr_T^R(\ulcorner \varphi \urcorner)$.

$$\bullet \ T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \mathsf{Pr}^R_T(\ulcorner \varphi \urcorner).$$

$$\bullet \ T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \mathsf{Pr}^R_T(\ulcorner \varphi \urcorner).$$

$$\bullet \ T \vdash \neg \varphi \Rightarrow \mathsf{PA} \vdash \neg \mathsf{Pr}^R_T(\ulcorner \varphi \urcorner).$$

$$\bullet \ T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \mathsf{Pr}_T^R(\ulcorner \varphi \urcorner).$$

$$\bullet \ T \vdash \neg \varphi \Rightarrow \mathsf{PA} \vdash \neg \mathsf{Pr}_T^R(\ulcorner \varphi \urcorner).$$

$$T \vdash \varphi$$
 or $T \vdash \neg \varphi$
 $\Rightarrow \varphi$ is a Rosser-type Henkin sentence of $\Pr_T^R(x)$.

For any φ ,

- $\bullet \ T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \mathsf{Pr}_T^R(\ulcorner \varphi \urcorner).$
- $\bullet \ T \vdash \neg \varphi \Rightarrow \mathsf{PA} \vdash \neg \mathsf{Pr}^R_T(\ulcorner \varphi \urcorner).$

$$T \vdash \varphi$$
 or $T \vdash \neg \varphi$
 $\Rightarrow \varphi$ is a Rosser-type Henkin sentence of $\Pr_T^R(x)$.

Question

Is every Rosser-type Henkin sentence of $\Pr_T^R(x)$ either provable or refutable in T?

For any φ ,

- $T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \mathsf{Pr}_T^R(\lceil \varphi \rceil)$.
- $\bullet \ T \vdash \neg \varphi \Rightarrow \mathsf{PA} \vdash \neg \mathsf{Pr}_T^R(\ulcorner \varphi \urcorner).$

$$T \vdash \varphi$$
 or $T \vdash \neg \varphi$
 $\Rightarrow \varphi$ is a Rosser-type Henkin sentence of $\Pr_T^R(x)$.

Question

Is every Rosser-type Henkin sentence of $\Pr_T^R(x)$ either provable or refutable in T?

Answer

Whether $\Pr_T^R(x)$ has an independent Rosser-type Henkin sentence is dependent on the choice of $\Pr_T^R(x)$.

Theorem (K.)

For any Σ_1 sentence φ , T.F.A.E.:

Theorem (K.)

For any Σ_1 sentence φ , T.F.A.E.:

- **1** There is a Σ_1 sentence ψ s.t.
 - ullet PA $\vdash \neg arphi \lor \neg \psi$,
 - $\bullet \ \ \mathsf{PA} \vdash \mathsf{Pr}_T(\ulcorner \varphi \urcorner) \lor \mathsf{Pr}_T(\ulcorner \neg \varphi \urcorner) \to \varphi \lor \psi.$

Theorem (K.)

For any Σ_1 sentence φ , T.F.A.E.:

- **1** There is a Σ_1 sentence ψ s.t.
 - ullet PA $\vdash \neg arphi \lor \neg \psi$,
 - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_T(\ulcorner \varphi \urcorner) \lor \mathsf{Pr}_T(\ulcorner \neg \varphi \urcorner) \to \varphi \lor \psi.$
- ② There is a proof predicate $Prf'_T(x,y)$ s.t.
 - PA $\vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x))$,
 - φ is a Rosser-type Henkin sentence of $\Pr_T'^R(x)$.

Theorem (K.)

For any Σ_1 sentence φ , T.F.A.E.:

- There is a Σ_1 sentence ψ s.t.
 - PA $\vdash \neg \varphi \lor \neg \psi$,
 - PA $\vdash \Pr_T(\ulcorner \varphi \urcorner) \lor \Pr_T(\ulcorner \neg \varphi \urcorner) \to \varphi \lor \psi$.
 - ② There is a proof predicate $Prf'_T(x,y)$ s.t.
 - PA $\vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x))$,
 - φ is a Rosser-type Henkin sentence of $\Pr_T^{\prime R}(x)$.

Since every negated Rosser sentence of $\Pr_T^R(x)$ satisfies the condition 1 in the statement, we obtained the following corollary.

Theorem (K.)

For any Σ_1 sentence φ , T.F.A.E.:

- **1** There is a Σ_1 sentence ψ s.t.
 - PA $\vdash \neg \varphi \lor \neg \psi$,
 - PA $\vdash \Pr_T(\lceil \varphi \rceil) \vee \Pr_T(\lceil \neg \varphi \rceil) \rightarrow \varphi \vee \psi$.
 - $oldsymbol{0}$ There is a proof predicate $\mathrm{Prf}_T'(x,y)$ s.t.
 - PA $\vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x))$,
 - φ is a Rosser-type Henkin sentence of $\Pr_T^{R}(x)$.

Since every negated Rosser sentence of $Pr_T^R(x)$ satisfies the condition 1 in the statement, we obtained the following corollary.

Corollary

There is a Rosser provability predicate of T having an independent Rosser-type Henkin sentence.

On the other hand, we obtained the following theorem.

Theorem (K.)

There is a Rosser provability predicate $\Pr^R_T(x)$ of T s.t. for any sentence φ ,

$$T \vdash \mathsf{Pr}^R_T(\ulcorner \varphi \urcorner) \to \varphi \Rightarrow (T \vdash \varphi \text{ or } T \vdash \neg \varphi).$$

On the other hand, we obtained the following theorem.

Theorem (K.)

There is a Rosser provability predicate $\Pr^R_T(x)$ of T s.t. for any sentence φ ,

$$T \vdash \mathsf{Pr}^R_T(\ulcorner \varphi \urcorner) \to \varphi \Rightarrow (T \vdash \varphi \text{ or } T \vdash \neg \varphi).$$

Corollary

There is a Rosser provability predicate of T having no independent Rosser-type Henkin sentence.

- Rosser-type Henkin sentences
- Rosser-type local reflection principles

Rosser-type local reflection principles

Local reflection principles

Definition

Definition

The set $Rfn(T) := \{Pr_T(\lceil \varphi \rceil) \to \varphi : \varphi \text{ is a sentence}\}$ is called the local reflection principle for T.

• Rfn(T) expresses the soundness of T.

Definition

- Rfn(T) expresses the soundness of T.
- ullet By Löb's theorem, $T+{
 m Rfn}(T)$ is a proper extension of T.

Definition

- Rfn(T) expresses the soundness of T.
- By Löb's theorem, T + Rfn(T) is a proper extension of T.
- This means that T cannot capture the soundness of T.

Definition

- Rfn(T) expresses the soundness of T.
- By Löb's theorem, T + Rfn(T) is a proper extension of T.
- ullet This means that T cannot capture the soundness of T.
- This is a generalization of the second incompleteness theorem.

 \bullet Let Con_T^R be the sentence $\neg\mathsf{Pr}_T^R(\ulcorner 0=1\urcorner).$

- Let Con_T^R be the sentence $\neg \mathsf{Pr}_T^R(\ulcorner 0 = 1 \urcorner)$.
- It is known that $\mathsf{PA} \vdash \mathsf{Con}^R_T$.

- Let Con_T^R be the sentence $\neg \mathsf{Pr}_T^R(\ulcorner 0 = 1 \urcorner)$.
- It is known that $PA \vdash Con_T^R$.
- The second incompleteness theorem does not hold for $\Pr_T^R(x)$.

- Let Con_T^R be the sentence $\neg \mathsf{Pr}_T^R(\ulcorner 0 = 1 \urcorner)$.
- It is known that PA ⊢ Con^R_T.
- The second incompleteness theorem does not hold for $\Pr_T^R(x)$.
- Also the local reflection principle based on $\Pr^R_T(x)$ may have different properties from Rfn(T).

- Let Con_T^R be the sentence $\neg \mathsf{Pr}_T^R(\ulcorner 0 = 1 \urcorner)$.
- It is known that PA ⊢ Con^R_T.
- The second incompleteness theorem does not hold for $\Pr_T^R(x)$.
- \bullet Also the local reflection principle based on $\Pr^R_T(x)$ may have different properties from ${\rm Rfn}(T).$

Definition

The set $\operatorname{Rfn}^R(T) := \{\operatorname{Pr}_T^R(\lceil \varphi \rceil) \to \varphi : \varphi \text{ is a sentence}\}$ is called the Rosser-type local reflection principle for $\operatorname{Pr}_T^R(x)$.

Goryachev's investigations

It is easy to see $T + \mathsf{Rfn}(T) \vdash \mathsf{Rfn}^R(T)$.

It is easy to see $T + \mathsf{Rfn}(T) \vdash \mathsf{Rfn}^R(T)$.

Goryachev's Theorem 1 (1989)

T.F.A.E.:

It is easy to see $T + \mathsf{Rfn}(T) \vdash \mathsf{Rfn}^R(T)$.

Goryachev's Theorem 1 (1989)

T.F.A.E.:

1 $T + \mathsf{Rfn}(T)$ and $T + \mathsf{Rfn}^R(T)$ are equivalent.

It is easy to see $T + \mathsf{Rfn}(T) \vdash \mathsf{Rfn}^R(T)$.

Goryachev's Theorem 1 (1989)

T.F.A.E.:

- lacksquare $T + \mathsf{Rfn}(T)$ and $T + \mathsf{Rfn}^R(T)$ are equivalent.
- $T + \mathsf{Rfn}^R(T) \vdash \mathsf{Con}_T.$

It is easy to see $T + \mathsf{Rfn}(T) \vdash \mathsf{Rfn}^R(T)$.

Goryachev's Theorem 1 (1989)

T.F.A.E.:

- **1** $T + \mathsf{Rfn}(T)$ and $T + \mathsf{Rfn}^R(T)$ are equivalent.
- $2 T + \mathsf{Rfn}^R(T) \vdash \mathsf{Con}_T.$

Goryachev's Theorem 2 (1989)

There is a Rosser provability predicate $Pr_T^R(x)$ of T s.t.

 $T + \mathsf{Rfn}(T)$ and $T + \mathsf{Rfn}^R(T)$ are equivalent.

It is easy to see $T + \mathsf{Rfn}(T) \vdash \mathsf{Rfn}^R(T)$.

Goryachev's Theorem 1 (1989)

T.F.A.E.:

- **1** $T + \mathsf{Rfn}(T)$ and $T + \mathsf{Rfn}^R(T)$ are equivalent.
- $T + \mathsf{Rfn}^R(T) \vdash \mathsf{Con}_T$.

Goryachev's Theorem 2 (1989)

There is a Rosser provability predicate $\Pr_T^R(x)$ of T s.t.

$$T + \mathsf{Rfn}(T)$$
 and $T + \mathsf{Rfn}^R(T)$ are equivalent.

Question

Is there $\Pr_T^R(x)$ s.t. $T + \operatorname{Rfn}_T^R(x)$ is strictly weaker than $T + \operatorname{Rfn}(T)$?

Shavrukov's problem (1991)

Is there $Prf_T(x)$ s.t.

for any distinct sentences $\varphi_0, \ldots, \varphi_{n-1}$,

$$\text{if } T \vdash \bigvee_{i < n-1} \forall y (\mathsf{Prf}_T(\ulcorner \varphi_i \urcorner, y) \to \exists z \leq y \mathsf{Prf}_T(\ulcorner \varphi_{i+1} \urcorner, z)) \text{,}$$

then $T \vdash \varphi_i$ for some i < n?

Shavrukov's problem (1991)

Is there $\operatorname{Prf}_T(x)$ s.t. for any distinct sentences $\varphi_0, \ldots, \varphi_{n-1}$,

 $\begin{array}{l} \text{if } T \vdash \bigvee_{i < n-1} \forall y (\mathsf{Prf}_T(\lceil \varphi_i \rceil, y) \to \exists z \leq y \mathsf{Prf}_T(\lceil \varphi_{i+1} \rceil, z)), \\ \text{then } T \vdash \varphi_i \text{ for some } i < n? \end{array}$

• Shavrukov pointed out that an affirmative answer to his problem gives a Rosser provability predicate $\Pr_T^R(x)$ s.t. $T + \operatorname{Rfn}^R(T)$ is strictly weaker than $T + \operatorname{Rfn}(T)$.

Shavrukov's problem (1991)

Is there $Prf_T(x)$ s.t.

for any distinct sentences $\varphi_0,\ldots,\varphi_{n-1}$,

$$\text{if } T \vdash \bigvee_{i < n-1} \forall y (\mathsf{Prf}_T(\ulcorner \varphi_i \urcorner, y) \to \exists z \leq y \mathsf{Prf}_T(\ulcorner \varphi_{i+1} \urcorner, z)) \text{,}$$

then $T \vdash \varphi_i$ for some i < n?

• Shavrukov pointed out that an affirmative answer to his problem gives a Rosser provability predicate $\Pr_T^R(x)$ s.t. $T + \operatorname{Rfn}^R(T)$ is strictly weaker than $T + \operatorname{Rfn}(T)$.

Theorem (K.)

Shavrukov's problem is solved affirmatively.

Shavrukov's problem (1991)

Is there $Prf_T(x)$ s.t.

for any distinct sentences $arphi_0,\dots,arphi_{n-1}$,

$$\text{if } T \vdash \bigvee_{i < n-1} \forall y (\mathsf{Prf}_T(\ulcorner \varphi_i \urcorner, y) \to \exists z \leq y \mathsf{Prf}_T(\ulcorner \varphi_{i+1} \urcorner, z)),$$

then $T \vdash \varphi_i$ for some i < n?

• Shavrukov pointed out that an affirmative answer to his problem gives a Rosser provability predicate $\Pr_T^R(x)$ s.t. $T + \operatorname{Rfn}^R(T)$ is strictly weaker than $T + \operatorname{Rfn}(T)$.

Theorem (K.)

Shavrukov's problem is solved affirmatively.

Whether T + Rfn(T) and $T + Rfn^R(T)$ are equivalent is dependent on the choice of $Pr_T^R(x)$.

Partial local reflection principles

Definition

Definition

 Γ : a class of formulas.

 $\bullet \ \mathsf{Rfn}_{\Gamma}(T) := \{ \mathsf{Pr}_{T}(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence} \}.$

Definition

- $\bullet \ \mathsf{Rfn}_{\Gamma}(T) := \{\mathsf{Pr}_T(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $\bullet \ \mathsf{Rfn}^R_\Gamma(T) := \{\mathsf{Pr}^R_T(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$

Definition

- $\bullet \ \mathsf{Rfn}_{\Gamma}(T) := \{\mathsf{Pr}_T(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $\bullet \ \mathsf{Rfn}^R_\Gamma(T) := \{\mathsf{Pr}^R_T(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $\bullet \ T + \mathsf{Rfn}_{\Pi_1}(T) \nvdash \mathsf{Rfn}_{\Sigma_1}(T).$

Definition

- $\bullet \ \mathsf{Rfn}_{\Gamma}(T) := \{ \mathsf{Pr}_{T}(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence} \}.$
- $\bullet \ \mathsf{Rfn}_{\Gamma}^R(T) := \{\mathsf{Pr}_T^R(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- ullet $T + \mathsf{Rfn}_{\Pi_1}(T) \nvdash \mathsf{Rfn}_{\Sigma_1}(T).$
- For n>1,
 - $T+\mathsf{Rfn}_{\Sigma_n}(T)$ and $T+\mathsf{Rfn}_{\Pi_n}(T)$ are mutually distinct.

Definition

 Γ : a class of formulas.

- $\mathsf{Rfn}_{\Gamma}(T) := \{\mathsf{Pr}_{T}(\lceil \varphi \rceil) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $\bullet \ \mathsf{Rfn}_{\Gamma}^R(T) := \{\mathsf{Pr}_T^R(\ulcorner \varphi \urcorner) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $T + \mathsf{Rfn}_{\Pi_1}(T) \nvdash \mathsf{Rfn}_{\Sigma_1}(T)$.
- For n>1,

$$T + \mathsf{Rfn}_{\Sigma_n}(T)$$
 and $T + \mathsf{Rfn}_{\Pi_n}(T)$ are mutually distinct.

The same results hold for $Rfn_{\Gamma}^{R}(T)$.

Definition

 Γ : a class of formulas.

- $\mathsf{Rfn}_{\Gamma}(T) := \{\mathsf{Pr}_{T}(\lceil \varphi \rceil) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $\mathsf{Rfn}^R_\Gamma(T) := \{\mathsf{Pr}^R_T(\lceil \varphi \rceil) \to \varphi : \varphi \text{ is a } \Gamma \text{ sentence}\}.$
- $T + \mathsf{Rfn}_{\Pi_1}(T) \nvdash \mathsf{Rfn}_{\Sigma_1}(T)$.
- For n>1,

$$T+\mathsf{Rfn}_{\Sigma_n}(T)$$
 and $T+\mathsf{Rfn}_{\Pi_n}(T)$ are mutually distinct.

The same results hold for $Rfn_{\Gamma}^{R}(T)$.

Theorem (K.)

- $T + \mathsf{Rfn}_{\Pi_1}^R(T) \nvdash \mathsf{Rfn}_{\Sigma_1}^R(T)$.
- For n > 1.

$$T + \mathsf{Rfn}_{\Sigma_n}^R(T)$$
 and $T + \mathsf{Rfn}_{\Pi_n}^R(T)$ are mutually distinct.

However, the situation for Σ_1 and Π_1 local reflection principles is different.

However, the situation for Σ_1 and Π_1 local reflection principles is different.

ullet $T+\mathsf{Rfn}_{\Pi_1}(T)$ is equivalent to $T+\mathsf{Con}_T.$

However, the situation for Σ_1 and Π_1 local reflection principles is different.

- $T + \mathsf{Rfn}_{\Pi_1}(T)$ is equivalent to $T + \mathsf{Con}_T$.
- Since $T + \mathsf{Rfn}_{\Sigma_1}(T) \vdash \mathsf{Con}_T$,
 - $T + \mathsf{Rfn}_{\Sigma_1}(T)$ always contains $\mathsf{Rfn}_{\Pi_1}(T)$.

However, the situation for Σ_1 and Π_1 local reflection principles is different.

- $T + \mathsf{Rfn}_{\Pi_1}(T)$ is equivalent to $T + \mathsf{Con}_T$.
- Since $T + \mathsf{Rfn}_{\Sigma_1}(T) \vdash \mathsf{Con}_T$, $T + \mathsf{Rfn}_{\Sigma_1}(T)$ always contains $\mathsf{Rfn}_{\Pi_1}(T)$.

Theorem (K.)

Whether $T+\mathrm{Rfn}_{\Sigma_1}^R(T)$ contains $\mathrm{Rfn}_{\Pi_1}^R(T)$ is dependent on the choice of $\mathrm{Pr}_T^R(x)$.

However, the situation for Σ_1 and Π_1 local reflection principles is different.

- $T + \mathsf{Rfn}_{\Pi_1}(T)$ is equivalent to $T + \mathsf{Con}_T$.
- Since $T + \mathsf{Rfn}_{\Sigma_1}(T) \vdash \mathsf{Con}_T$, $T + \mathsf{Rfn}_{\Sigma_1}(T)$ always contains $\mathsf{Rfn}_{\Pi_1}(T)$.

Theorem (K.)

Whether $T + \mathsf{Rfn}_{\Sigma_1}^R(T)$ contains $\mathsf{Rfn}_{\Pi_1}^R(T)$ is dependent on the choice of $\mathsf{Pr}_T^R(x)$.

Theorem (K.)

There is a Rosser provability predicate $\Pr^R_T(x)$ of T s.t. for any $\Gamma \in \{\Sigma_n, \Pi_n : n \geq 1\}$, $T + \mathsf{Rfn}_\Gamma(T)$ and $T + \mathsf{Rfn}_\Gamma^R(T)$ are equivalent.

Open problems

Problem

For
$$\Gamma\in\{\Sigma_n,\Pi_n:n\geq 1\}$$
, is $T+\mathsf{Rfn}^R(T)$ a Γ -conservative extension of $T+\mathsf{Rfn}^R_\Gamma(T)$?

Problem

- Is $T + \mathsf{Rfn}_{\Pi_1}^R(T)$ finitely axiomatizable over T?
- For $\Gamma \in \{\Sigma_n, \Pi_{n+1} : n \ge 1\}$, is $T + \mathsf{Rfn}_n^R(T)$ not finitely axiomatizable over T?