Yablo's paradox and Rosser's theorem

Taishi Kurahashi

Kobe University
Research Fellow of the Japan Society for the Promotion of Science (DC2)

February 23, 2013 Sendai Logic School 2013

	Σ_1 -sound (ω -consistent)	consistent
Liar paradox	Gödel (1931)	Rosser (1936)
Yablo's paradox	Priest (1997)	?

	Σ_1 -sound (ω -consistent)	consistent
Liar paradox	Gödel (1931)	Rosser (1936)
Yablo's paradox	Priest (1997)	?

Key words

- Gödel and Rosser's incompleteness theorems
- Yablo's paradox
- Standard proof predicates
- Binumerations

Contents

- Gödel's theorems and Rosser's theorem
- Yablo's paradox
- Rosser's theorem based on Yablo's paradox

- Gödel's theorems and Rosser's theorem
- Yablo's paradox
- Rosser's theorem based on Yablo's paradox

Gödel's theorems and Rosser's theorem

Gödel's theorems

T: primitive recursive theory of arithmetic extending PA

Gödel's theorems

T: primitive recursive theory of arithmetic extending PA

Gödel's incompleteness theorems (1931)

- **1** If T is Σ_1 -sound, then T is incomplete.
- $oldsymbol{\circ}$ If T is consistent, then T cannot prove own consistency.

T is Σ_1 -sound

$$\Leftrightarrow \forall \varphi (T \vdash \varphi \Rightarrow \mathbb{N} \models \varphi).$$

Gödel's theorems

T: primitive recursive theory of arithmetic extending PA

Gödel's incompleteness theorems (1931)

- **1** If T is Σ_1 -sound, then T is incomplete.
- $oldsymbol{0}$ If T is consistent, then T cannot prove own consistency.

T is Σ_1 -sound

$$\Leftrightarrow \forall \varphi (T \vdash \varphi \Rightarrow \mathbb{N} \models \varphi).$$

Key points

- Provability predicates
- An analogy with Liar paradox

 $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ .

Gödel's theorems and Rosser's theorem

Constructions of provability predicates

 $\ulcorner \varphi \urcorner \text{: The numeral of the G\"{o}del number of a formula } \varphi.$

PR: class of formulas corresponding to the class of primitive recursive relations.

Gödel's theorems and Rosser's theorem

Constructions of provability predicates

 $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ .

PR: class of formulas corresponding to the class of primitive recursive relations.

Note: $\Delta_0 \subseteq \mathsf{PR} \subseteq \Delta_1$

 $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ .

PR: class of formulas corresponding to the class of primitive recursive relations.

Note: $\Delta_0 \subseteq PR \subseteq \Delta_1$

Definition

A formula $\operatorname{Prf}(x,y)$ is a standard proof predicate (s.p.p.) of T

 $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ .

PR: class of formulas corresponding to the class of primitive recursive relations.

Note: $\Delta_0 \subseteq PR \subseteq \Delta_1$

Definition

A formula $\operatorname{Prf}(x,y)$ is a standard proof predicate (s.p.p.) of T

 \Leftrightarrow Prf(x,y) is a PR formula which represents some proof relation of T, and satisfies the derivability conditions,

 $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ .

PR: class of formulas corresponding to the class of primitive recursive relations.

Note: $\Delta_0 \subseteq PR \subseteq \Delta_1$

Definition

A formula Prf(x, y) is a standard proof predicate (s.p.p.) of T

 \Leftrightarrow Prf(x,y) is a PR formula which represents some proof relation of T, and satisfies the derivability conditions,

i.e., Prf(x, y) satisfies the following conditions:

- Prf(x, y) is a PR formula;
- $T \vdash \varphi \Rightarrow \exists p \in \mathbb{N} \text{ s.t. PA} \vdash \mathsf{Prf}(\lceil \varphi \rceil, \bar{p});$
- $T \nvdash \varphi \Rightarrow \forall p \in \mathbb{N} \text{ s.t. PA} \vdash \neg \mathsf{Prf}(\lceil \varphi \rceil, \bar{p});$
- The formalized modus ponens, the formalized Σ_1 -completeness.

A formula $\varphi(z)$ is a binumeration of $X\subseteq\mathbb{N}$ if it represents X in PA,

A formula $\varphi(z)$ is a binumeration of $X\subseteq \mathbb{N}$ if it represents X in PA, i.e., for any $n\in \mathbb{N}$,

- $\bullet \ n \in X \Rightarrow \mathsf{PA} \vdash \varphi(\bar{n});$
- $\bullet \ n \notin X \Rightarrow \mathsf{PA} \vdash \neg \varphi(\bar{n}).$

A formula $\varphi(z)$ is a binumeration of $X\subseteq \mathbb{N}$ if it represents X in PA, i.e., for any $n\in \mathbb{N}$,

- $n \in X \Rightarrow \mathsf{PA} \vdash \varphi(\bar{n});$
- $\bullet \ n \notin X \Rightarrow \mathsf{PA} \vdash \neg \varphi(\bar{n}).$

Note: Since T is primitive recursive, there is a PR binumeration of T.

A formula $\varphi(z)$ is a binumeration of $X\subseteq\mathbb{N}$ if it represents X in PA, i.e., for any $n\in\mathbb{N}$,

- $\bullet \ n \in X \Rightarrow \mathsf{PA} \vdash \varphi(\bar{n});$
- $n \notin X \Rightarrow \mathsf{PA} \vdash \neg \varphi(\bar{n}).$

Note: Since T is primitive recursive, there is a PR binumeration of T.

au(z): PR binumeration of T,

• $\operatorname{Prf}_{\tau}(x,y) \equiv$ "y is a proof of x from the set of all sentences satisfying $\tau(z)$ ".

A formula $\varphi(z)$ is a binumeration of $X\subseteq\mathbb{N}$ if it represents X in PA, i.e., for any $n\in\mathbb{N}$,

- $\bullet \ n \in X \Rightarrow \mathsf{PA} \vdash \varphi(\bar{n});$
- $n \notin X \Rightarrow \mathsf{PA} \vdash \neg \varphi(\bar{n}).$

Note: Since T is primitive recursive, there is a PR binumeration of T.

au(z): PR binumeration of T,

- $\operatorname{Prf}_{\tau}(x,y) \equiv "y$ is a proof of x from the set of all sentences satisfying $\tau(z)$ ".
- Then $Prf_{\tau}(x,y)$ is a s.p.p. of T.

A formula $\varphi(z)$ is a binumeration of $X\subseteq\mathbb{N}$ if it represents X in PA, i.e., for any $n\in\mathbb{N}$,

- $\bullet \ n \in X \Rightarrow \mathsf{PA} \vdash \varphi(\bar{n});$
- $n \notin X \Rightarrow \mathsf{PA} \vdash \neg \varphi(\bar{n})$.

Note: Since T is primitive recursive, there is a PR binumeration of T.

au(z): PR binumeration of T,

- $\operatorname{Prf}_{\tau}(x,y) \equiv "y$ is a proof of x from the set of all sentences satisfying $\tau(z)$ ".
- Then $Prf_{\tau}(x,y)$ is a s.p.p. of T.
- Define $Pr_T(x)$ to be the formula $\exists y Prf_{\tau}(x,y)$.

A formula $\varphi(z)$ is a binumeration of $X\subseteq\mathbb{N}$ if it represents X in PA, i.e., for any $n\in\mathbb{N}$,

- $\bullet \ n \in X \Rightarrow \mathsf{PA} \vdash \varphi(\bar{n});$
- $n \notin X \Rightarrow \mathsf{PA} \vdash \neg \varphi(\bar{n})$.

Note: Since T is primitive recursive, there is a PR binumeration of T.

au(z): PR binumeration of T,

- $\operatorname{Prf}_{\tau}(x,y) \equiv "y$ is a proof of x from the set of all sentences satisfying $\tau(z)$ ".
- Then $\operatorname{Prf}_{\tau}(x,y)$ is a s.p.p. of T.
- Define $Pr_T(x)$ to be the formula $\exists y Prf_{\tau}(x,y)$.
- $Pr_T(x)$: A provability predicate of T.

Gödel's theorems and Rosser's theorem

An analogy with Liar paradox

Gödel constructed a sentence π asserting that " π is not provable in T ".

Gödel constructed a sentence π asserting that " π is not provable in T".

The Fixed Point Lemma

 $\forall \varphi(x)$: formula, $\exists \psi$: sentence s.t.

 $\mathsf{PA} \vdash \psi \leftrightarrow \varphi(\ulcorner \psi \urcorner).$

Gödel constructed a sentence π asserting that " π is not provable in T".

The Fixed Point Lemma

 $\forall \varphi(x)$: formula, $\exists \psi$: sentence s.t.

 $\mathsf{PA} \vdash \psi \leftrightarrow \varphi(\ulcorner \psi \urcorner).$

Definition (Gödel sentences)

• There exists a sentence π s.t. $PA \vdash \pi \leftrightarrow \neg Pr_T(\lceil \pi \rceil)$.

Gödel constructed a sentence π asserting that " π is not provable in T".

The Fixed Point Lemma

 $\forall \varphi(x)$: formula, $\exists \psi$: sentence s.t.

 $\mathsf{PA} \vdash \psi \leftrightarrow \varphi(\ulcorner \psi \urcorner).$

Definition (Gödel sentences)

- There exists a sentence π s.t. $PA \vdash \pi \leftrightarrow \neg Pr_T(\lceil \pi \rceil)$.
- \bullet π is called a Gödel sentence of T.

Gödel constructed a sentence π asserting that " π is not provable in T".

The Fixed Point Lemma

 $\forall \varphi(x)$: formula, $\exists \psi$: sentence s.t.

 $\mathsf{PA} \vdash \psi \leftrightarrow \varphi(\ulcorner \psi \urcorner).$

Definition (Gödel sentences)

- There exists a sentence π s.t. PA $\vdash \pi \leftrightarrow \neg Pr_T(\lceil \pi \rceil)$.
- π is called a Gödel sentence of T.

Liar paradox

Let A be a proposition asserting that "A is false".

Then we cannot determine the truth of A.

The first incompleteness theorem

 π : Gödel sentence of T

- T: consistent $\Rightarrow T \nvdash \pi$,
- T: Σ_1 -sound $\Rightarrow T \nvdash \neg \pi$.

The first incompleteness theorem

 π : Gödel sentence of T

- \bullet T: consistent $\Rightarrow T \nvdash \pi$,
- T: Σ_1 -sound $\Rightarrow T \nvdash \neg \pi$.

$$\mathsf{Con}_T \equiv \neg \mathsf{Pr}_T(\lceil 0 = 1 \rceil).$$

The first incompleteness theorem

 π : Gödel sentence of T

- T: consistent $\Rightarrow T \nvdash \pi$,
- T: Σ_1 -sound $\Rightarrow T \nvdash \neg \pi$.

$$\mathsf{Con}_T \equiv \neg \mathsf{Pr}_T(\lceil 0 = 1 \rceil).$$

The second incompleteness theorem

 π : Gödel sentence of T

- PA $\vdash \pi \leftrightarrow \mathsf{Con}_T$,
- T: consistent $\Rightarrow T \nvdash \mathsf{Con}_T$.

The first incompleteness theorem

 π : Gödel sentence of T

- T: consistent $\Rightarrow T \nvdash \pi$,
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \pi$.

$$\mathsf{Con}_T \equiv \neg \mathsf{Pr}_T(\lceil 0 = 1 \rceil).$$

The second incompleteness theorem

 π : Gödel sentence of T

- PA $\vdash \pi \leftrightarrow \mathsf{Con}_T$,
- T: consistent $\Rightarrow T \nvdash \mathsf{Con}_T$.

Remark

Gödel's theorems hold for any s.p.p. of T.

Gödel's theorems and Rosser's theorem

Rosser's first incompleteness theorem

Rosser provability predicate

- lacktriangledown Prf(x,y): s.p.p. of T
- $\bullet \; \mathsf{Pr}_T(x) \equiv \exists y \mathsf{Prf}(x,y)$

Rosser's first incompleteness theorem

Rosser provability predicate

- ullet Prf(x,y): s.p.p. of T
- $\bullet \; \mathsf{Pr}_T(x) \equiv \exists y \mathsf{Prf}(x,y)$
- $\bullet \ \operatorname{Pr}^R_T(x) \equiv \exists y (\operatorname{Prf}(x,y) \land \forall z < y \neg \operatorname{Prf}(\neg x,z))$

Rosser's first incompleteness theorem

Rosser provability predicate

- ullet Prf(x,y): s.p.p. of T
- $\bullet \; \mathsf{Pr}_T(x) \equiv \exists y \mathsf{Prf}(x,y)$
- $\Pr_T^R(x) \equiv \exists y (\Pr(x,y) \land \forall z < y \neg \Pr(\neg x,z))$ Rosser provability predicate of T.

Rosser provability predicate

- ullet Prf(x,y): s.p.p. of T
- $\bullet \; \mathsf{Pr}_T(x) \equiv \exists y \mathsf{Prf}(x,y)$
- $\Pr_T^R(x) \equiv \exists y (\Pr(x,y) \land \forall z < y \neg \Pr(\neg x,z))$ Rosser provability predicate of T.

A sentence π satisfying PA $\vdash \pi \leftrightarrow \neg Pr_T^R(\lceil \pi \rceil)$ is called a Rosser sentence of T.

Rosser's first incompleteness theorem

Rosser provability predicate

- ullet Prf(x,y): s.p.p. of T
- $\bullet \; \mathsf{Pr}_T(x) \equiv \exists y \mathsf{Prf}(x,y)$
- $\Pr_T^R(x) \equiv \exists y (\Pr(x,y) \land \forall z < y \neg \Pr(\neg x,z))$ Rosser provability predicate of T.

A sentence π satisfying PA $\vdash \pi \leftrightarrow \neg Pr_T^R(\lceil \pi \rceil)$ is called a Rosser sentence of T.

Theorem (Rosser, 1936)

T: consistent $\Rightarrow T \nvdash \pi$ and $T \nvdash \neg \pi$.

Rosser's first incompleteness theorem

Rosser provability predicate

- Prf(x, y): s.p.p. of T
- $\Pr_T^R(x) \equiv \exists y (\Pr(x,y) \land \forall z < y \neg \Pr(\neg x,z))$ Rosser provability predicate of T.

A sentence π satisfying PA $\vdash \pi \leftrightarrow \neg Pr_T^R(\lceil \pi \rceil)$ is called a Rosser sentence of T.

Theorem (Rosser, 1936)

T: consistent $\Rightarrow T \nvdash \pi$ and $T \nvdash \neg \pi$.

Remark

Rosser's theorem holds for any s.p.p. of T.

Gödel's theorems and Rosser's theorem

$\mathsf{Pr}_T(x)$ is dependent on the choice of $\tau(z)$

We defined $\Pr_T(x)$ to be $\exists y \Prf_{\tau}(x,y)$ for some PR binumeration $\tau(z)$ of T.

Gödel's theorems and Rosser's theorem

$\mathsf{Pr}_T(x)$ is dependent on the choice of au(z)

We defined $\Pr_T(x)$ to be $\exists y \Prf_{\tau}(x,y)$ for some PR binumeration $\tau(z)$ of T.

However, the provability of $\neg \mathsf{Con}_T$ is sometimes dependent on the choice of $\tau(z)$.

$\mathsf{Pr}_T(x)$ is dependent on the choice of $\tau(z)$

We defined $\Pr_T(x)$ to be $\exists y \Pr_{\tau}(x,y)$ for some PR binumeration $\tau(z)$ of T.

However, the provability of $\neg \mathsf{Con}_T$ is sometimes dependent on the choice of $\tau(z)$.

(Feferman)

T: consistent

 $\Rightarrow \exists \tau(z)$: PR binumeration of T s.t. $T \nvdash \neg \mathsf{Con}_{\tau}$.

$\mathsf{Pr}_T(x)$ is dependent on the choice of $\tau(z)$

We defined $\Pr_T(x)$ to be $\exists y \Pr_{\tau}(x,y)$ for some PR binumeration $\tau(z)$ of T.

However, the provability of $\neg \mathsf{Con}_T$ is sometimes dependent on the choice of $\tau(z)$.

(Feferman)

T: consistent

 $\Rightarrow \exists \tau(z)$: PR binumeration of T s.t. $T \nvdash \neg \mathsf{Con}_{\tau}$.

(Orey)

T: not Σ_1 -sound

 $\Rightarrow \exists \tau(z)$: PR binumeration of T s.t. $T \vdash \neg \mathsf{Con}_{\tau}$.

 $Pr_T^R(x)$ is dependent on the choice of a s.p.p.

Theorem (Guaspari and Solovay, 1979)

There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent. $Pr_T^R(x)$ is dependent on the choice of a s.p.p.

Theorem (Guaspari and Solovay, 1979)

- There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.

 $\mathsf{Pr}_T^R(x)$ is dependent on the choice of a s.p.p.

Theorem (Guaspari and Solovay, 1979)

- There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.
- $\bullet \ \operatorname{Pr}^R_T(\ulcorner \varphi \urcorner) \ \text{means} \ ``\varphi \ \text{has a smaller proof in} \ T \ \text{than any proof of} \ \lnot \varphi ".$

 $\mathsf{Pr}_T^R(x)$ is dependent on the choice of a s.p.p.

Theorem (Guaspari and Solovay, 1979)

- There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.
- $\qquad \operatorname{Pr}^R_T(\ulcorner \varphi \urcorner) \text{ means $"\varphi$ has a smaller proof in T than any proof of $\lnot \varphi"$.}$
- They constructed a new s.p.p. with the required conditions by rearrenging proofs of a given s.p.p.

- Gödel's theorems and Rosser's theorem
- Yablo's paradox
- Rosser's theorem based on Yablo's paradox

Yablo's paradox

Yablo, 1993

Let $Y_0,Y_1,\ldots,Y_n,\ldots$ be an infinite sequence of propositions s.t. for each $i\in\mathbb{N}$,

$$Y_i \Leftrightarrow \forall j > i(Y_j \text{ is false}).$$

Then we cannot determine the truth of each Y_i .

Priest, 1997

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

Note: y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Priest, 1997

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

Note: y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, \ T \nvdash Y(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Priest, 1997

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

Note: y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y(\bar{n})$.
- T: Σ_1 -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Theorem (Kikuchi and K., 2011; Cieśliński and Urbaniak, 2012)

• PA $\vdash Y(\bar{n}) \leftrightarrow \mathsf{Con}_T$.

Priest, 1997

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

Note: y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Theorem (Kikuchi and K., 2011; Cieśliński and Urbaniak, 2012)

- PA $\vdash Y(\bar{n}) \leftrightarrow \mathsf{Con}_T$.
- T: consistent $\Rightarrow T \nvdash Con_T$.

Yablo's paradox

	Σ_1 -sound	consistent
Liar paradox	Gödel (1931)	Rosser (1936)
Yablo's paradox	Priest (1997)	?

	Σ_1 -sound	consistent
Liar paradox	$Pr_T(x)$	$Pr^R_T(x)$
Yablo's paradox	$Pr_T(x)$	$Pr^R_T(x)$?

	Σ_1 -sound	consistent
Liar paradox	$Pr_T(x)$	$Pr_T^R(x)$
Yablo's paradox	$Pr_T(x)$	$Pr^R_T(x)$

It is dependent on the choice of a s.p.p.!

- Gödel's theorems and Rosser's theorem
- Yablo's paradox
- Rosser's theorem based on Yablo's paradox

Rosser's theorem based on Yablo's paradox

Formalizations of Yablo's sequence using Rosser predicates

Priest

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\ulcorner Y(\dot{y}) \urcorner).$$

Priest

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

$$\mathsf{PA} \vdash Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^{\mathbf{R}}(\ulcorner Y^R(\dot{y})\urcorner).$$

Priest

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

$$\mathsf{PA} \vdash Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^R(\ulcorner Y^R(\dot{y})\urcorner).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash Y^R(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n}).$

Priest

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\ulcorner Y(\dot{y})\urcorner).$$

$$\mathsf{PA} \vdash Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^R(\ulcorner Y^R(\dot{y})\urcorner).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, \ T \nvdash Y^R(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n}).$

Problem

 $T: \text{consistent} \Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$?

Priest

$$\mathsf{PA} \vdash Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil).$$

$$\mathsf{PA} \vdash Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^R(\ulcorner Y^R(\dot{y})\urcorner).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash Y^R(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n}).$

Problem

 $T: \text{consistent} \Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$?

Answer

No. If T is consistent but not Σ_1 -sound, then the provability of $\neg Y^R(\bar{n})$ is dependent on the choice of a s.p.p.

Result 1

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $orall n \in \mathbb{N}, \ T
ot \vdash
eg Y^R(\bar{n}).$

Result 1

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n}).$

Result 2

T: not Σ_1 -sound

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, \ T \vdash \neg Y^R(\bar{n}).$

 $\forall au(z)$: PR binumeration of T

 $\exists \mathsf{Prf}(x,y) \text{: s.p.p. of } T \text{ s.t.}$

 $\forall au(z) ext{: PR binumeration of } T$

 $\exists \mathsf{Prf}(x,y)$: s.p.p. of T s.t.

 $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(x) \leftrightarrow \exists y \mathsf{Prf}(x,y);$

 $\forall au(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y)$;
- PA $\vdash Y^R(0) \leftrightarrow \pi$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.

 $\forall \tau(z)$: PR binumeration of T

- PA \vdash Pr $_{\tau}(x) \leftrightarrow \exists y$ Prf(x,y);
- PA $\vdash Y^R(0) \leftrightarrow \pi$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.
- T: consistent

 $\forall \tau(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y);$
- PA $\vdash Y^R(0) \leftrightarrow \pi$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.
- T: consistent
- ullet $T
 ot \vdash \neg \pi$ by Rosser's theorem

 $\forall \tau(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y);$
- PA $\vdash Y^R(0) \leftrightarrow \pi$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.
- T: consistent
- $T \nvdash \neg \pi$ by Rosser's theorem
- $T \nvdash \neg Y^R(0)$

 $\forall \tau(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y);$
- PA $\vdash Y^R(0) \leftrightarrow \pi$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.
- T: consistent
- $T \nvdash \neg \pi$ by Rosser's theorem
- \bullet $T \nvdash \neg Y^R(0)$
- ullet $T
 ot \vdash \neg Y^R(\bar{n}) \text{ since } \vdash Y^R(0)
 ightarrow Y^R(\bar{n}).$

orall au(z): PR binumeration of T

 $\exists \mathsf{Prf}(x,y)$: s.p.p. of T s.t.

ullet PA \vdash Pr $_{ au}(x) \leftrightarrow \exists y \mathsf{Prf}(x,y);$

 $\forall au(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y);$
- ullet PA $\vdash \exists x Y^R(x) \leftrightarrow \mathsf{Con}_{ au}.$

 $\forall \tau(z)$: PR binumeration of T

- $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_\tau(x) \leftrightarrow \exists y \mathsf{Prf}(x,y);$
- $\bullet \ \mathsf{PA} \vdash \exists x Y^R(x) \leftrightarrow \mathsf{Con}_\tau.$
- ullet T: not Σ_1 -sound

 $\forall \tau(z)$: PR binumeration of T

- ullet PA \vdash Pr $_{ au}(x) \leftrightarrow \exists y$ Prf(x,y);
- PA $\vdash \exists x Y^R(x) \leftrightarrow \mathsf{Con}_{\tau}$.
- T: not Σ_1 -sound
- Let $\tau(z)$ be s.t. $T \vdash \neg \mathsf{Con}_{\tau}$

 $\forall \tau(z)$: PR binumeration of T

- PA \vdash Pr $_{\tau}(x) \leftrightarrow \exists y$ Prf(x,y);
- PA $\vdash \exists x Y^R(x) \leftrightarrow \mathsf{Con}_{\tau}$.
- T: not Σ_1 -sound
- Let $\tau(z)$ be s.t. $T \vdash \neg \mathsf{Con}_{\tau}$
- \bullet $T \vdash \neg \exists x Y^R(x)$

 $\forall \tau(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Prf(x,y)$;
- PA $\vdash \exists x Y^R(x) \leftrightarrow \mathsf{Con}_{\tau}$.
- T: not Σ_1 -sound
- Let $\tau(z)$ be s.t. $T \vdash \neg \mathsf{Con}_{\tau}$
- \bullet $T \vdash \neg \exists x Y^R(x)$
- ullet $\forall n \in \mathbb{N}$, $T \vdash \neg Y^R(\bar{n})$.

Outline of proof

Theorem 1

 $\forall \tau(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y)$;
- PA $\vdash \pi \leftrightarrow Y^R(0)$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.

Outline of proof

Theorem 1

 $\forall \tau(z)$: PR binumeration of T

- PA $\vdash \Pr_{\tau}(x) \leftrightarrow \exists y \Pr(x,y)$;
- PA $\vdash \pi \leftrightarrow Y^R(0)$ for a Rosser sentence π of $\mathsf{Prf}(x,y)$.

$$\mathsf{PA} \vdash \mathsf{Pr}^R_T(\ulcorner \pi \urcorner) \leftrightarrow \exists y > 0 \mathsf{Pr}^R_T(\ulcorner Y^R(\dot{y}) \urcorner).$$

Outline of proof

Theorem 1

 $\forall \tau(z)$: PR binumeration of T

 $\exists \mathsf{Prf}(x,y)$: s.p.p. of T s.t.

- PA \vdash Pr $_{\tau}(x) \leftrightarrow \exists y$ Prf(x,y);
- PA $\vdash \pi \leftrightarrow Y^R(0)$ for a Rosser sentence π of Prf(x,y).

$$\mathsf{PA} \vdash \mathsf{Pr}^R_T(\ulcorner \pi \urcorner) \leftrightarrow \exists y > 0 \mathsf{Pr}^R_T(\ulcorner Y^R(\dot{y}) \urcorner).$$

 π has a smaller proof than any proof of $\neg \pi$ $\Leftrightarrow \exists z>0$ s.t. $Y^R(z)$ has a smaller proof than any proof of $\neg Y^R(z)$.

Rosser's theorem based on Yablo's paradox

Define $\mathrm{Prf}(x,y)$ by copying $\mathrm{Prf}_{\tau}(x,y)$ until a proof of one of π , $\neg\pi$ and $Y^R(a)$ appears.

Define $\mathrm{Prf}(x,y)$ by copying $\mathrm{Prf}_{ au}(x,y)$ until a proof of one of π , $\neg\pi$ and $Y^R(a)$ appears.

Define $\mathrm{Prf}(x,y)$ by copying $\mathrm{Prf}_{\tau}(x,y)$ until a proof of one of π , $\neg\pi$ and $Y^R(a)$ appears.

• π has a smaller proof than any proof of $\neg \pi$ $\Leftrightarrow \exists z > 0$ s.t. $Y^R(z)$ has a smaller proof than any proof of $\neg Y^R(z)$. Define $\Pr(x,y)$ by copying $\Pr(x,y)$ until a proof of one of π , $\neg\pi$ and $Y^R(a)$ appears.

- π has a smaller proof than any proof of $\neg \pi$ $\Leftrightarrow \exists z > 0$ s.t. $Y^R(z)$ has a smaller proof than any proof of $\neg Y^R(z)$.
- We can construct $\operatorname{Prf}(x,y)$ so that the theorems of $\operatorname{Prf}(x,y)$ coincide with that of $\operatorname{Prf}_{\tau}(x,y)$.

Thank you for your attention!