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T': primitive recursive theory of arithmetic extending PA

Godel's incompleteness theorems (1931)

Q If T is X;-sound, then T is incomplete.

Q If T is consistent, then T cannot prove own consistency.

T is X1-sound
S V(T F ¢ = N E ).

| A

Key points
© Provability predicates

@ An analogy with Liar paradox
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Constructions of provability predicates

T The numeral of the Gédel number of a formula ¢.

PR: class of formulas corresponding to the class of primitive recursive
relations.

Note: Ag C PR C A,

Definition

A formula Prf(x, y) is a standard proof predicate (s.p.p.) of T

< Prf(x,y) is a PR formula which represents some proof relation of T,
and satisfies the derivability conditions,

i.e., Prf(x, y) satisfies the following conditions:

@ Prf(x,y) is a PR formula;
e TH o= 3peNs.t. PAF Prf(Tp7, p);
o T¥ ¢ =VpeNs.t. PA-—PH("p",p);

@ The formalized modus ponens, the formalized 3;-completeness.
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Definition

A formula ¢(z) is a binumeration of X C N
if it represents X in PA, i.e., for any n € N,

o n € X = PAL p(n);
on¢ X = PAL —p(n).

Note: Since T is primitive recursive, there is a PR binumeration of T'.

7(z): PR binumeration of T,

@ Prf (z,y) = “y is a proof of « from the set of all sentences
satisfying 7(2)”.

@ Then Prf,(z,y) is a s.p.p. of T'.
o Define Prr(z) to be the formula JyPrf,(x, y).

@ Prr(x): A provability predicate of T'.
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An analogy with Liar paradox

Godel constructed a sentence 7w asserting that “m is not provable
inT”.

The Fixed Point Lemma

Vp(x): formula, 3i: sentence s.t.
PA F 4 < o(T4).

Definition (Godel sentences)
@ There exists a sentence 7 s.t. PA - 7w < =Prp ("7 7).

@ 7 is called a Godel sentence of T'.

Let A be a proposition asserting that “A is false”.
Then we cannot determine the truth of A. )
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Godel’s incompleteness theorems

The first incompleteness theorem

7r: Godel sentence of T
e T: consistent = T F m,
e T: ¥ -sound = T V¥ —r.

Conr = —Prp ("0 =17).

The second incompleteness theorem

7r: Godel sentence of T

e PAF w < Cong,

e T': consistent = T ¥ Cony.

Godel’s theorems hold for any s.p.p. of T.
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first incompleteness theorem

Rosser provability predicate

o Prf(z,y): s.p.p. of T
@ Prr(z) = JyPrf(x, y)
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Rosser’s first incompleteness theorem

Rosser provability predicate

o Prf(z,y): s.p.p. of T
@ Prr(z) = JyPrf(x, y)

e Pr¥(z) = Jy(Prf(x,y) A Vz < y—Prf(—z, 2))
Rosser provability predicate of T'.

A sentence 7 satisfying PA - 7 <+ —PrZ("n7)

is called a Rosser sentence of T'.

Theorem (Rosser, 1936)

T: consistent = T V¥ w and T' ¥ —.
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Rosser’s first incompleteness theorem

Rosser provability predicate

o Prf(z,y): s.p.p. of T
@ Prr(z) = JyPrf(x, y)

e Pr¥(z) = Jy(Prf(x,y) A Vz < y—Prf(—z, 2))
Rosser provability predicate of T'.

A sentence 7 satisfying PA - 7 <> —PrE("77)
is called a Rosser sentence of T'.

Theorem (Rosser, 1936)

T: consistent = T V¥ w and T' ¥ —.

Rosser’s theorem holds for any s.p.p. of T'.
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Prr(z) is dependent on the choice of 7(z)

We defined Prr(x) to be JyPrf,(z,y) for some PR binumeration 7(z)
of T'.

However, the provability of —~Conr is sometimes dependent on the choice
of 7(2).

(GEEED)]

T: consistent
= 37(2): PR binumeration of T' s.t. T' ¥ —=Con.

(Orey)

T: not X;-sound
= 37(2): PR binumeration of T' s.t. T+ —Con.
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Pr®(z) is dependent on the choice of a s.p.p.

Theorem (Guaspari and Solovay, 1979)

@ There is a s.p.p. s.t. not all of whose Rosser sentences are provably
equivalent.

© There is a s.p.p. whose Rosser sentences are all provably equivalent.

<

@ PrZ (") means “p has a smaller proof in T than any proof of —¢”.

@ They constructed a new s.p.p. with the required conditions by
rearrenging proofs of a given s.p.p.
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Yablo’s paradox

Yablo, 1993

Let Yo, Y1,...,Yn,... be an infinite sequence of propositions s.t. for
each 7 € N,

Y; < Vi > i(Y; is false).

Then we cannot determine the truth of each Y;.
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Note: y is free in Prr-("Y (9)7).
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PAF Y (x) < Vy > z=Prr("Y (9)7).

Note: y is free in Prr-("Y (9)7).

Theorem (Priest, 1997)
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e PAI Y (n) < Conr.
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Priest, 1997
PAF Y (x) < Vy > z=Prr("Y (9)7).

Note: y is free in Prr-("Y (9)7).

Theorem (Priest, 1997)
e T: consistent = Vn € N, T FY(n).
e T: ¥y-sound = Vn €N, TF Y (n).

A

Theorem (Kikuchi and K., 2011; Ciesliiski and Urbaniak, 2012)

e PAI Y (n) < Conr.
o T': consistent = T ¥ Conr.
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Yablo’s paradox | Prr(z) | Pri(z)

It is dependent on the choice of a s.p.p.!
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Formalizations of Yablo’s sequence using Rosser predicates

PA Y (z) +> Vy > z=Prz("Y (9)7).

PA - YE(z) & Vy > z—PrE("Y E(g)"). J

e T: consistent = Vn € N, T ¥ YE(qn).
@ T: ¥;-sound = Vn € N, T ¥ -YE(n).
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Formalizations of Yablo’s sequence using Rosser predicates

PA Y (z) +> Vy > z=Prz("Y (9)7).

PA - YE(z) < Vy > 2-PrZ(TY ®(9)7). J
e T: consistent = Vn € N, T ¥ YE(qn).
@ T: ¥;-sound = Vn € N, T ¥ -YE(n).

Problem

T: consistent = Vn € N, T ¥ -Y%(a)?
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Rosser's theorem based on Yablo's paradox

Formalizations of Yablo’s sequence using Rosser predicates

PA - Y (z) < Yy > z—Prr("Y (9)).

PAF Y®(z) & Vy > 2-PrE(TY E(9)7). )
e T: consistent = Vn € N, T ¥ Y®(#n).
@ T: ¥;-sound = Vn € N, T ¥ -YE(n).

Problem

T: consistent = Vn € N, T ¥ -Y®(n)?

No. If T is consistent but not X;-sound, then the provability of =Y % (7)
is dependent on the choice of a s.p.p.
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T': consistent
= there is a s.p.p. of T s.t. Vn € N, T ¥ =Y E(n).
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T': consistent
= there is a s.p.p. of T s.t. Vn € N, T ¥ =Y E(n).

| \

Result 2

T: not X;-sound
= there is a s.p.p. of T s.t. Vn € N, T + =Y E(n).
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@ T': consistent

@ T ¥ —m by Rosser’s theorem



Rosser’s theorem based on Yablo's paradox paradox
[e]e] le]elele)

Rosser's theorem based on Yablo's paradox

V7(z): PR binumeration of T'
3Prf(xz, y): s.p.p. of T s.t.

@ PA - Pr-(x) <> JyPrf(z,y);

@ PAF Y®(0) <> 7 for a Rosser sentence 7 of Prf(x,y).
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V7(z): PR binumeration of T'
3Prf(xz, y): s.p.p. of T s.t.

@ PA - Pr-(x) <> JyPrf(z,y);

@ PAF Y®(0) <> 7 for a Rosser sentence 7 of Prf(x,y).

@ T': consistent

@ T ¥ —m by Rosser’s theorem

T ¥ -Y®(0)

T ¥ =Y % (n) since - YE(0) — Y (n).
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@ PA - Pr-(x) <> JyPrf(z,y);
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V7(z): PR binumeration of T'
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Rosser's theorem based on Yablo's paradox

V7(z): PR binumeration of T'
3Prf(xz, y): s.p.p. of T s.t.

@ PA - Pr-(x) <> JyPrf(z,y);
e PA - JzY®(x) <+ Con,.

@ T': not X:-sound

@ Let 7(z) be s.t. T + —Con,
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Rosser's theorem based on Yablo's paradox

V7(z): PR binumeration of T'
3Prf(xz, y): s.p.p. of T s.t.

@ PA - Pr-(x) <> JyPrf(z,y);
e PA - JzY®(x) <+ Con,.

@ T': not X;-sound
@ Let 7(z) be s.t. T + —Con,
o T+ —JzY ()
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Rosser's theorem based on Yablo's paradox

V7(z): PR binumeration of T'
3Prf(xz, y): s.p.p. of T s.t.

@ PA - Pr-(x) <> JyPrf(z,y);
PA - 3zY E(z) < Con..

T: not X:-sound

Let 7(z) be s.t. T+ —=Con,
T+ —32YF(x)
vn € N, T - =Y E(a).
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Outline of proof

V7(z): PR binumeration of T'
3Prf(x, y): s.p.p. of T s.t.

® PA |+ Pr.(z) <> JyPrf(x,y);

@ PA - 7 < Y®(0) for a Rosser sentence w of Prf(x,y).
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Outline of proof

V7(z): PR binumeration of T'
3Prf(x, y): s.p.p. of T s.t.

® PA |+ Pr.(z) <> JyPrf(x,y);

@ PA - 7 < Y®(0) for a Rosser sentence w of Prf(x,y).

PA - PrZ("7n7) + Jy > OPrE(TY E(9)D). )
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Outline of proof

V7(z): PR binumeration of T'
3Prf(x, y): s.p.p. of T s.t.

® PA |+ Pr.(z) <> JyPrf(x,y);

@ PA - 7 < Y®(0) for a Rosser sentence w of Prf(x,y).

PA - Pr("nT) <> 3y > OPrE(TY R (3)7). )

7 has a smaller proof than any proof of —7
< Jz > 0 s.t. YE(2) has a smaller proof than any proof of =Y ¥(z). }
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Define Prf(x,y) by copying Prf,(x, y) until a proof of one of 7, -7 and Y % (a)
appears.




Rosser’s theorem based on Yablo's paradox paradox
O0000e0

Rosser's theorem based on Yablo's paradox

Define Prf(x,y) by copying Prf,(x, y) until a proof of one of 7, -7 and Y % (a) l

appears.
Prf,(xy) Prilxy)
@ -1e) i
—Y(3) —Y(6
o ! i
012 012
- YD) Y)Y V(D) -
N {} BRI
012 012
Y(a) ~Y(a) Y(a)
~f) Y@ [ ] [
@ b4 S b S

012+ 012+
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Define Prf(x,y) by copying Prf,(x, y) until a proof of one of 7, -7 and Y % (a) ’

appears.

Prf (xy) Prf(x,y)
R R T T
=Y(3) —Y(B)
@ % [ Q—Q
012 012---
b ATV VDY) V) -
2, y l YUY VY
012 012
. T =Y Y(a)
—Y(3) Y(3) el
@ ¥ s - @_{}
012-- 012---

@ 7 has a smaller proof than any proof of -7
& 3z > 0 s.t. YE(2) has a smaller proof than

any proof of =Y £(z).
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Define Prf(x,y) by copying Prf,(x, y) until a proof of one of 7, -7 and Y % (a) ’

appears.
Prf (xy) Prf(x,y)
R R T T
=Y(3) —Y(B)
@ % b Q—Q
012 012
b ATV VDY) V) -
2, y l YUY VY
012 012
. T =Y Y(a)
—Y(3) Y(3) el
@ ¥ s - @_{}
012+ 012

@ 7 has a smaller proof than any proof of -7
& 3z > 0 s.t. YE(2) has a smaller proof than any proof of =Y 2 (2).

@ We can construct Prf(xz, y) so that the theorems of Prf(x, y) coincide with
that of Prf,(xz,y).
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Thank you for your attention!



	G�del's theorems and Rosser's theorem
	G�del's theorems and Rosser's theorem

	Yablo's paradox
	Yablo's paradox

	Rosser's theorem based on Yablo's paradox paradox
	Rosser's theorem based on Yablo's paradox


