Syntax and Semantics of Predicate Modal Logic of Provability

Taishi Kurahashi

Kobe University Research Fellow of the Japan Society for the Promotion of Science (DC2)

Seminar in Logic and Philosophy of Mathematics March 26, 2013

Contents

- Propositional modal logic of provability
- Predicate modal logic of provability
- Main theorem
- Predicate provability logics of fragments of PA
- Further work

- Propositional modal logic of provability
- Predicate modal logic of provability
- Main theorem

Propositional modal logic of provability

- Predicate provability logics of fragments of PA
- Further work

•00000

Provability predicates

T: r.e. extension of $I\Sigma_1$

Definition

A formula $Pr_T(x)$ is called a provability predicate of T if for any φ and ψ ,

- $Pr_T(x)$ is Σ_1 ;
- $T \vdash \varphi \Leftrightarrow \mathrm{I}\Sigma_1 \vdash \mathsf{Pr}_T(\lceil \varphi \rceil);$
- $T \vdash \mathsf{Pr}_T(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_T(\lceil \varphi \rceil) \to \mathsf{Pr}_T(\lceil \psi \rceil));$
- $\varphi \colon \Sigma_1 \Rightarrow T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil).$

Provability predicates

T: r.e. extension of $I\Sigma_1$

Definition

A formula $Pr_T(x)$ is called a provability predicate of T if for any φ and ψ ,

- $Pr_T(x)$ is Σ_1 ;
- $T \vdash \varphi \Leftrightarrow \mathrm{I}\Sigma_1 \vdash \mathrm{Pr}_T(\lceil \varphi \rceil)$:
- $T \vdash \mathsf{Pr}_T(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_T(\lceil \varphi \rceil) \to \mathsf{Pr}_T(\lceil \psi \rceil));$
- $\varphi \colon \Sigma_1 \Rightarrow T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil).$

We compare the following three notions on modal formulas:

- Provability in formal systems of modal logic
- Validity on Kripke frames
- Validity on arithmetical semantics

Let F be the set of all propositional modal formulas.

Let F be the set of all propositional modal formulas.

Definition

Propositional modal logic of provability

Propositional modal logic of provability

000000

A mapping * from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- $\bot^* \equiv 0 = 1$:
- $(A \to B)^* \equiv (A^* \to B^*);$
- • • :
- \bullet $(\Box A)^* \equiv \Pr_T(\ulcorner A^* \urcorner).$

Let F be the set of all propositional modal formulas.

Definition

A mapping * from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- $\bot^* \equiv 0 = 1$:
- $(A \to B)^* \equiv (A^* \to B^*);$
- • • :
- \bullet $(\Box A)^* \equiv \Pr_T(\ulcorner A^* \urcorner).$

- A: propositional modal formula.
 - A is T-valid $\stackrel{\text{def.}}{\Leftrightarrow} \forall *$: T-interpretation, $T \vdash A^*$.

Let F be the set of all propositional modal formulas.

Definition

Propositional modal logic of provability

Propositional modal logic of provability

000000

A mapping * from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- $\bot^* \equiv 0 = 1$:
- $(A \rightarrow B)^* \equiv (A^* \rightarrow B^*)$:
- • • :
- \bullet $(\Box A)^* \equiv \Pr_T(\ulcorner A^* \urcorner).$

- A: propositional modal formula.
 - A is **T-valid** $\overset{\text{def.}}{\Leftrightarrow} \forall *: T\text{-interpretation}, T \vdash A^*.$
- \bullet PL $(T) := \{A \mid A \text{ is } T\text{-valid}\}$

000000

Arithmetical semantics

Let F be the set of all propositional modal formulas.

Definition

A mapping * from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- $\bot^* \equiv 0 = 1$:
- $(A \rightarrow B)^* \equiv (A^* \rightarrow B^*)$:
- • • :
- \bullet $(\Box A)^* \equiv \Pr_T(\ulcorner A^* \urcorner).$

- A: propositional modal formula.
 - A is T-valid $\stackrel{\text{def.}}{\Leftrightarrow} \forall *$: T-interpretation, $T \vdash A^*$.
- $PL(T) := \{A \mid A \text{ is } T\text{-valid}\}$: the provability logic of T.

Propositional modal logic GL

Propositional modal logic GL

- Axioms:
 - Tautologies;
 - $\bullet \Box (A \to B) \to (\Box A \to \Box B);$
 - $\bullet \Box (\Box A \to A) \to \Box A.$
- Inference rules:

modus ponens from A and $A \rightarrow B$ infer B;

necessitation form A infer $\Box A$.

Propositional modal logic GL

Propositional modal logic GL

- Axioms:
 - Tautologies;
 - $\bullet \Box (A \to B) \to (\Box A \to \Box B);$
 - $\bullet \Box (\Box A \to A) \to \Box A.$
- Inference rules:

modus ponens from A and $A \rightarrow B$ infer B;

necessitation form A infer $\Box A$.

 $\mathsf{Th}(\mathsf{GL}) := \{ A \mid \mathsf{GL} \vdash A \}.$

Propositional modal logic GL

Propositional modal logic GL

- Axioms:
 - Tautologies;
 - $\bullet \Box (A \to B) \to (\Box A \to \Box B);$
 - $\bullet \Box (\Box A \to A) \to \Box A.$
- Inference rules:

modus ponens from A and $A \rightarrow B$ infer B;

necessitation form A infer $\Box A$.

 $\mathsf{Th}(\mathsf{GL}) := \{ A \mid \mathsf{GL} \vdash A \}.$

Note that $\mathsf{Th}(\mathsf{GL}) \subset \mathsf{PL}(T)$.

Kripke semantics

Definition

Kripke frame is a system $\langle W, \prec \rangle$ where

- W is a non-empty set of worlds;
- $\bullet \prec$ is a binary relation on W: accessibility relation.

Kripke semantics

Definition

Kripke frame is a system $\langle W, \prec \rangle$ where

- W is a non-empty set of worlds;
- $\bullet \prec$ is a binary relation on W: accessibility relation.

Kripke model is a system $\mathcal{M} = \langle W, \prec, \Vdash \rangle$ where

- $\langle W, \prec \rangle$ is a Kripke frame;
- ullet is a binary relation on $W \times F$ such that $\forall w \in W$,
 - w ⊮ ⊥:
 - $\bullet \ w \Vdash A \to B \Leftrightarrow (w \nVdash A \text{ or } w \Vdash B)$:
 - • • :
 - $\bullet \ w \Vdash \Box A \Leftrightarrow \forall w' \in W(w \prec w' \Rightarrow w' \Vdash A).$
 - $w \Vdash \Diamond A \Leftrightarrow \exists w' \in W(w \prec w' \& w' \Vdash A)$.

Definition

Propositional modal logic of provability

Propositional modal logic of provability

000000

A: modal formula, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} orall w \in W. \ w \Vdash A.$
- ullet A is valid in $\mathcal{F} \stackrel{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash \rangle$ for any \Vdash .

GL-frames and Kripke completeness theorem

Definition

A: modal formula, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} orall w \in W. \ w \Vdash A.$
- A is valid in $\mathcal{F} \stackrel{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash \rangle$ for any \Vdash .

- Kripke frame $\langle W, \prec \rangle$ is a GL-frame if \prec is
 - 1. transitive.
 - 2. conversely well-founded.

Definition

Propositional modal logic of provability

Propositional modal logic of provability

000000

A: modal formula, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} orall w \in W. \ w \Vdash A.$
- ullet A is valid in $\mathcal{F} \stackrel{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash \rangle$ for any \Vdash .

- Kripke frame $\langle W, \prec \rangle$ is a GL-frame if \prec is
 - 1. transitive,
 - 2. conversely well-founded.
- $Fr(GL) := \{A \mid A \text{ is valid in any GL-frame } \}.$

Definition

Propositional modal logic of provability

Propositional modal logic of provability

000000

A: modal formula, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} orall w \in W. \ w \Vdash A.$
- ullet A is valid in $\mathcal{F} \stackrel{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash \rangle$ for any \Vdash .

Definition

- Kripke frame $\langle W, \prec \rangle$ is a GL-frame if \prec is
 - 1. transitive,
 - 2. conversely well-founded.
- $Fr(GL) := \{A \mid A \text{ is valid in any GL-frame } \}.$

Theorem (Segerberg, 1971)

 $\mathsf{Th}(\mathsf{GL}) = \mathsf{Fr}(\mathsf{GL}).$

Solovay's arithmetical completeness theorem

 $T: \Sigma_1$ -sound.

$$\mathsf{Th}(\mathsf{GL}) = \mathsf{PL}(T).$$

Solovay's arithmetical completeness theorem

 $T: \Sigma_1$ -sound.

$$\mathsf{Th}(\mathsf{GL}) = \mathsf{PL}(T).$$

If T is Σ_1 -sound r.e. extension of $I\Sigma_1$, then Th(GL) = Fr(GL) = PL(T).

- Propositional modal logic of provability
- Predicate modal logic of provability
- Main theorem
- Predicate provability logics of fragments of PA
- Further work

• QGL is a natural extension of GL to predicate modal logic.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and QPL(T) similarly as in the propositional case.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and QPL(T) similarly as in the propositional case.
- T-interpretations of predicate modal logic map each k-ary predicate symbol to a k-ary formula in the language of T.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and QPL(T) similarly as in the propositional case.
- T-interpretations of predicate modal logic map each k-ary predicate symbol to a k-ary formula in the language of T.
- Kripke frame for predicate modal logic is a triple $\langle W, \prec, \{D_w\}_{w \in W} \rangle$:
 - $\{D_w\}_{w\in W}$ is a family of non-empty sets.
 - $\forall w, w' \in W, \ w \prec w' \Rightarrow D_w \subseteq D_{w'}$.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and QPL(T) similarly as in the propositional case.
- T-interpretations of predicate modal logic map each k-ary predicate symbol to a k-ary formula in the language of T.
- Kripke frame for predicate modal logic is a triple $\langle W, \prec, \{D_w\}_{w \in W} \rangle$:
 - $\{D_w\}_{w\in W}$ is a family of non-empty sets.
 - $\forall w, w' \in W, \ w \prec w' \Rightarrow D_w \subseteq D_{w'}$.
- Kripke model for predicate modal logic is a 4-tuple $\langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$: \Vdash is a relation between elements w of W and closed formulas with parameters form D_w .

Montagna's theorem

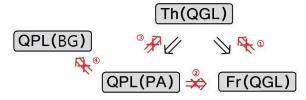
By the definitions, $\mathsf{Th}(\mathsf{QGL}) \subseteq \mathsf{Fr}(\mathsf{QGL}) \cap \mathsf{QPL}(T)$.

Montagna's theorem

By the definitions, $\mathsf{Th}(\mathsf{QGL}) \subseteq \mathsf{Fr}(\mathsf{QGL}) \cap \mathsf{QPL}(T)$.

Theorem (Montagna, 1984)

- Fr(QGL) $\not\subseteq$ Th(QGL).
- \bigcirc QPL(PA) $\not\subseteq$ Fr(QGL).
- **3** QPL(PA) \nsubseteq Th(QGL).



Vardanyan's theorem on Π_2^0 -completeness

Theorem (Vardanyan, 1985)

QPL(PA) is Π_2^0 -complete.

- QPL(PA) is not Σ_1^0 .
- QPL(PA) cannot be characterized by any recursive extension of QGL.

Vardanyan's theorem on Π_2^0 -completeness

Theorem (Vardanyan, 1985)

QPL(PA) is Π_2^0 -complete.

- QPL(PA) is not Σ_1^0 .
- QPL(PA) cannot be characterized by any recursive extension of QGL.

Montagna's conjecture (1984)

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \Sigma_1 \text{-sound r.e. extension of PA} \} = \mathsf{Th}(\mathsf{QGL})$

Vardanyan's theorem on Π_2^0 -completeness

Theorem (Vardanyan, 1985)

QPL(PA) is Π_2^0 -complete.

- QPL(PA) is not Σ_1^0 .
- QPL(PA) cannot be characterized by any recursive extension of QGL.

Montagna's conjecture (1984)

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \Sigma_1 \text{-sound r.e. extension of PA} \} = \mathsf{Th}(\mathsf{QGL})$

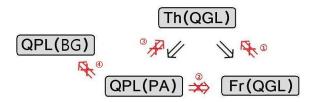
In a similar way as in the proof of Vardanyan's theorem,

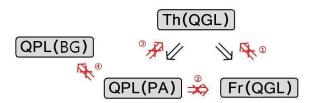
 $\bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of PA} \} \text{ is } \Pi_2^0\text{-hard.}$

Corollary

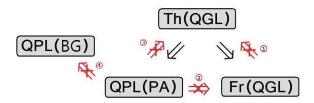
 $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \not\subseteq Th(QGL).$

How about other inclusions?





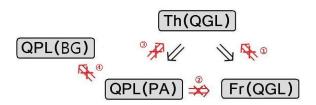
• $Fr(QGL) \subset QPL(T)$?



• $Fr(QGL) \subset QPL(T)$?

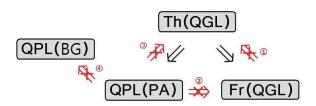
Predicate modal logic of provability

• $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \subseteq Fr(QGL)$?



• $Fr(QGL) \subset QPL(T)$?

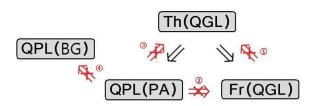
- $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \subseteq Fr(QGL)$?
- $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \cap Fr(QGL) \subseteq Th(QGL)$?



• $Fr(QGL) \subset QPL(T)$?

Predicate modal logic of provability

- $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \subseteq Fr(QGL)$?
- $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \cap Fr(QGL) \subseteq Th(QGL)$?
- $\exists i, j \in \omega (i \neq j)$ s.t. $\mathsf{QPL}(\mathsf{I}\Sigma_i) = \mathsf{QPL}(\mathsf{I}\Sigma_j)$?



• $Fr(QGL) \not\subseteq QPL(T)$.

Predicate modal logic of provability

- $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \not\subset Fr(QGL).$
- $\bigcap \{QPL(T) \mid T : r.e. \text{ extension of PA} \} \cap Fr(QGL) \subseteq Th(QGL)$?
- $\exists i, j \in \omega (i \neq j)$ s.t. $\mathsf{QPL}(\mathsf{I}\Sigma_i) = \mathsf{QPL}(\mathsf{I}\Sigma_j)$?

Prop

 $\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{QPL}(T)$ for any Σ_2 -sound r.e. extension T of $\mathrm{I}\Sigma_1$.

Prop

Predicate modal logic of provability

 $\mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{QPL}(T)$ for any Σ_2 -sound r.e. extension T of $\mathrm{I}\Sigma_1$.

• Montagna proved $A \equiv \forall x \exists y \Box (p(x) \rightarrow \Diamond p(y)) \rightarrow \forall x \Box \neg p(x)$ witnesses the non-inclusion $Fr(QGL) \nsubseteq Th(QGL)$.

 $\mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{QPL}(T)$ for any Σ_2 -sound r.e. extension T of $\mathrm{I}\Sigma_1$.

- Montagna proved $A \equiv \forall x \exists y \Box (p(x) \rightarrow \Diamond p(y)) \rightarrow \forall x \Box \neg p(x)$ witnesses the non-inclusion $Fr(QGL) \nsubseteq Th(QGL)$.
- This sentence also witnesses $Fr(QGL) \nsubseteq QPL(T)$.

 $\mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{QPL}(T)$ for any Σ_2 -sound r.e. extension T of $\mathrm{I}\Sigma_1$.

- Montagna proved $A \equiv \forall x \exists y \Box (p(x) \to \Diamond p(y)) \to \forall x \Box \neg p(x)$ witnesses the non-inclusion $Fr(QGL) \nsubseteq Th(QGL)$.
- This sentence also witnesses $Fr(QGL) \not\subset QPL(T)$.

Theorem (Solovay-Somoryński-<u>Friedman)</u>

 $\exists \varphi(x) \colon \Pi_1$ formula s.t.

 $\forall n \in \omega$.

- **1** $T + \varphi(\bar{n})$ is consistent, and
- 2 I $\Sigma_1 \vdash \varphi(\bar{n}) \to \mathsf{Con}_{T+\varphi(\bar{n}+1)}$.

 $\mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{QPL}(T)$ for any Σ_2 -sound r.e. extension T of $\mathrm{I}\Sigma_1$.

- Montagna proved $A \equiv \forall x \exists y \Box (p(x) \to \Diamond p(y)) \to \forall x \Box \neg p(x)$ witnesses the non-inclusion $Fr(QGL) \nsubseteq Th(QGL)$.
- This sentence also witnesses $Fr(QGL) \not\subset QPL(T)$.

Theorem (Solovay-Somoryński-Friedman)

 $\exists \varphi(x) \colon \Pi_1$ formula s.t.

 $\forall n \in \omega$.

- **1** $T + \varphi(\bar{n})$ is consistent, and
- \bullet I $\Sigma_1 \vdash \varphi(\bar{n}) \to \mathsf{Con}_{T+\varphi(\bar{n}+1)}$.

Let * be a T-interpretation s.t. $(p(x))^* \equiv \varphi(x)$, then $\mathbb{N} \models \neg A^*$.

Prop

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_1\} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$

Prop

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_1\} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$

 $P_+,P_\times,P_S,P_0,P_<,P_=$: new predicate symbols corresponding to $+,\times,S,0,<,=$ respectively.

Prop.

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathsf{I}\Sigma_1 \} \not\subseteq \mathsf{Fr}(\mathsf{QGL}).$

 $P_+, P_\times, P_S, P_0, P_<, P_=$: new predicate symbols corresponding to $+, \times, S, 0, <, =$ respectively.

• For each \mathcal{L}_A -formula φ , let $[\varphi]$ be one of the relational formula obtained by rewriting φ by using only these new symbols.

Prop

Predicate modal logic of provability

$$\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_1\} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$$

$$P_+,P_\times,P_S,P_0,P_<,P_=$$
 new predicate symbols corresponding to $+,\times,S,0,<,=$ respectively.

• For each \mathcal{L}_A -formula φ , let (φ) be one of the relational formula obtained by rewriting φ by using only these new symbols.

$$\mathsf{D} \equiv \neg \Box \bot \land \bigwedge \{ P_{\circ} \to \Box P_{\circ}, \neg P_{\circ} \to \Box \neg P_{\circ} \mid \circ \in \mathcal{L}_{A} \},$$

Prop

Predicate modal logic of provability

$$\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_1\} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$$

 $P_+, P_\times, P_S, P_0, P_<, P_=$: new predicate symbols corresponding to $+, \times, S, 0, <, =$ respectively.

• For each \mathcal{L}_A -formula φ , let (φ) be one of the relational formula obtained by rewriting φ by using only these new symbols.

$$\mathsf{D} \equiv \neg \Box \bot \land \bigwedge \{ P_{\circ} \to \Box P_{\circ}, \neg P_{\circ} \to \Box \neg P_{\circ} \mid \circ \in \mathcal{L}_{A} \},$$

Lemma (Artemov)

 $\forall *: T$ -interpretation, $\forall \varphi : \mathcal{L}_A$ -sentence,

$$\mathrm{I}\Sigma_1 \vdash \mathsf{D}^* \wedge \llbracket \bigwedge \mathrm{I}\Delta_0(exp) \rrbracket^* \to (\varphi \leftrightarrow \llbracket \varphi \rrbracket^*).$$

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathsf{I}\Sigma_1\} \not\subseteq \mathsf{Fr}(\mathsf{QGL}).$

 $P_+, P_\times, P_S, P_0, P_<, P_=$: new predicate symbols corresponding to $+, \times, S, 0, <, =$ respectively.

• For each \mathcal{L}_A -formula φ , let $[\varphi]$ be one of the relational formula obtained by rewriting φ by using only these new symbols.

$$\mathsf{D} \equiv \neg \Box \bot \land \bigwedge \{ P_{\circ} \to \Box P_{\circ}, \neg P_{\circ} \to \Box \neg P_{\circ} \mid \circ \in \mathcal{L}_{A} \},$$

Lemma (Artemov)

 $\forall *: T$ -interpretation, $\forall \varphi : \mathcal{L}_A$ -sentence,

 $\mathrm{I}\Sigma_1 \vdash \mathsf{D}^* \wedge [\![\wedge \mathrm{I}\Delta_0(exp)]\!]^* \to (\varphi \leftrightarrow [\![\varphi]\!]^*).$

Let $A \equiv \mathsf{D} \wedge [\![\wedge \mathsf{I} \Delta_0(exp)]\!] \rightarrow [\![\wedge \mathsf{I} \Sigma_1]\!].$

$$\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_1\} \not\subseteq \mathsf{Fr}(\mathsf{QGL}).$$

$$P_+,P_\times,P_S,P_0,P_<,P_=$$
: new predicate symbols corresponding to $+,\times,S,0,<,=$ respectively.

• For each \mathcal{L}_A -formula φ , let (φ) be one of the relational formula obtained by rewriting φ by using only these new symbols.

$$\mathsf{D} \equiv \neg \Box \bot \land \bigwedge \{ P_{\circ} \to \Box P_{\circ}, \neg P_{\circ} \to \Box \neg P_{\circ} \mid \circ \in \mathcal{L}_{A} \},$$

Lemma (Artemov)

 $\forall *: T$ -interpretation, $\forall \varphi : \mathcal{L}_A$ -sentence,

$$\mathrm{I}\Sigma_1 \vdash \mathsf{D}^* \wedge \llbracket \bigwedge \mathrm{I}\Delta_0(exp) \rrbracket^* \to (\varphi \leftrightarrow \llbracket \varphi \rrbracket^*).$$

Let $A \equiv \mathsf{D} \wedge [\![\wedge \mathsf{I} \Delta_0(exp)]\!] \rightarrow [\![\wedge \mathsf{I} \Sigma_1]\!].$

- Since $T \vdash \bigwedge \mathrm{I}\Sigma_1$, $A \in \mathsf{QPL}(T)$ by Artemov's lemma.
- From the fact that $I\Delta_0(exp) \nvdash \bigwedge I\Sigma_1$, there is a Kripke model where A is not valid.

- Propositional modal logic of provability
- Predicate modal logic of provability
- Main theorem
- Predicate provability logics of fragments of PA
- Further work

Theorem (T.K.)

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2 \} \cap \mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{Th}(\mathsf{QGL}).$

Theorem (T.K.)

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{Th}(\mathsf{QGL}).$

Actually, we proved

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{QPL}(\mathrm{I}\Sigma_1).$

Theorem (T.K.)

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{Th}(\mathsf{QGL}).$

Actually, we proved

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{QPL}(\mathrm{I}\Sigma_1).$

• $\forall x \exists y \Box (p(x) \to \Diamond p(y)) \to \forall x \Box \neg p(x)$ cannot be a witness of the non-inclusion.

Theorem (T.K.)

Main theorem

 $\cap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathsf{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{Th}(\mathsf{QGL}).$

Actually, we proved

 $\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{QPL}(\mathrm{I}\Sigma_1).$

- $\forall x \exists y \Box (p(x) \to \Diamond p(y)) \to \forall x \Box \neg p(x)$ cannot be a witness of the non-inclusion.
- We introduce another method of constructing a witness of each non-inclusion $Fr(QGL) \nsubseteq QPL(T)$.

Sufficient conditions

We describe our method of constructing a witness of $Fr(QGL) \nsubseteq QPL(PA)$.

Sufficient conditions

We describe our method of constructing a witness of $Fr(QGL) \nsubseteq QPL(PA)$.

It suffices to find a predicate modal sentence A s.t.

- (i)' $\neg A \in \mathsf{Fr}(\mathsf{QGL})$ and
- (ii)' $\neg A \notin \mathsf{QPL}(\mathsf{PA})$.

Sufficient conditions

We describe our method of constructing a witness of $Fr(QGL) \nsubseteq QPL(PA).$

It suffices to find a predicate modal sentence A s.t.

- (i)' $\neg A \in Fr(QGL)$ and
- (ii)' $\neg A \notin \mathsf{QPL}(\mathsf{PA})$.

These conditions are equivalent to the following conditions respectively:

Conditions

- (i) $\forall \mathcal{M} = \langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$: transitive Kripke model, if $\exists w \in W \text{ s.t. } w \Vdash A$. then \prec is not conversely well-founded.
- (ii) $\exists \mathcal{M} \models \mathsf{PA} \; \exists *: \mathsf{PA}$ -interpretation s.t. $\mathcal{M} \models A^*$.

Parameterized iterated consistency assertions

Definition (iterated consistency assertions)

$$\mathsf{Con}^0 :\equiv (0 = 0);$$

 $\mathsf{Con}^{n+1} :\equiv \mathsf{Con}(\mathsf{PA} + \mathsf{Con}^n).$

Definition (iterated consistency assertions)

$$Con^0 :\equiv (0 = 0);$$

Main theorem

 $\mathsf{Con}^{n+1} :\equiv \mathsf{Con}(\mathsf{PA} + \mathsf{Con}^n).$

Definition (parameterized iterated consistency assertions)

Let $\mathsf{Con}_\mathsf{PA}(x)$ be one of the \mathcal{L}_A -formula $\varphi(x)$ which satisfies

$$\mathsf{PA} \vdash orall x (arphi(x) \leftrightarrow [\mathsf{Con}(\mathsf{PA} + arphi(\dot{x}\dot{-}1)) \lor x = 0]).$$

Parameterized iterated consistency assertions

Definition (iterated consistency assertions)

$$\mathsf{Con}^0 :\equiv (0 = 0);$$

 $\mathsf{Con}^{n+1} :\equiv \mathsf{Con}(\mathsf{PA} + \mathsf{Con}^n).$

Definition (parameterized iterated consistency assertions)

Let $Con_{PA}(x)$ be one of the \mathcal{L}_A -formula $\varphi(x)$ which satisfies

$$\mathsf{PA} \vdash \forall x (\varphi(x) \leftrightarrow [\mathsf{Con}(\mathsf{PA} + \varphi(\dot{x} \dot{-}1)) \lor x = 0]).$$

$$\forall n \in \omega$$
, PA $\vdash \mathsf{Con}_{\mathsf{PA}}(\bar{n}) \leftrightarrow \mathsf{Con}^n$.

A main idea of the construction is based on the following proposition.

Proposition

A main idea of the construction is based on the following proposition.

Proposition

- $\bullet \mathsf{PA} \vdash \forall x (\mathsf{Con}_{\mathsf{PA}}(x+1) \to \mathsf{Con}(\mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}(\dot{x}))).$
- - $B :\equiv \forall x p(x) \land \Box \forall x (p(x+1) \rightarrow \Diamond p(x)).$

A main idea of the construction is based on the following proposition.

Proposition

Main theorem

- - $B :\equiv \forall x p(x) \land \Box \forall x (p(x+1) \rightarrow \Diamond p(x)).$
 - *: PA-interpretation s.t. $(p(x))^* \equiv \mathsf{Con}_{\mathsf{PA}}(x)$.

A main idea of the construction is based on the following proposition.

Proposition

- - $B :\equiv \forall x p(x) \land \Box \forall x (p(x+1) \rightarrow \Diamond p(x)).$
 - *: PA-interpretation s.t. $(p(x))^* \equiv \mathsf{Con}_{\mathsf{PA}}(x)$.
 - Then $\exists \mathcal{M} \models \mathsf{PA} \text{ s.t. } \mathcal{M} \models B^*$.

A main idea of the construction is based on the following proposition.

Proposition

Main theorem

- - $B :\equiv \forall x p(x) \land \Box \forall x (p(x+1) \rightarrow \Diamond p(x)).$
 - *: PA-interpretation s.t. $(p(x))^* \equiv \mathsf{Con}_{\mathsf{PA}}(x)$.
 - Then $\exists \mathcal{M} \models \mathsf{PA} \text{ s.t. } \mathcal{M} \models B^*$.
 - We construct an infinite increasing sequence of worlds from this sentence by starting from a non-standard element of a non-standard model of arithmetic.

0000000

$$B \equiv \forall x \forall y (P_S(y,x) \land p(x) \rightarrow \Diamond p(y)).$$

Let A be the conjunction of the following six sentences:

- \bigcirc $\forall x p(x)$
- **2** B

- \bigcirc $(\land Q)$

where Q is Robinson's arithmetic.

$$B \equiv \forall x \forall y (P_S(y, x) \land p(x) \rightarrow \Diamond p(y)).$$

Let A be the conjunction of the following six sentences:

- \bigcirc $\forall x p(x)$
- **2** B

Main theorem

- **○** [(∧ Q)]

where Q is Robinson's arithmetic.

Then A satisfies (i) and (ii).

- (i) $\forall \mathcal{M} = \langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$: transitive Kripke model, if $\exists w \in W \text{ s.t. } w \Vdash A$. then \prec is not conversely well-founded.
- (ii) $\exists \mathcal{M} \models \mathsf{PA} \; \exists *: \mathsf{PA}$ -interpretation s.t. $\mathcal{M} \models A^*$.

$$B \equiv \forall x \forall y (P_S(y, x) \land p(x) \rightarrow \Diamond p(y))$$

$$A \equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (P_S(x, y) \rightarrow \Box P_S(x, y))$$

$$\land [\land Q] \land [\neg Con(PA + \forall x Con_{PA}(x))]$$

$$\begin{split} B &\equiv \forall x \forall y (P_S(y,x) \land p(x) \rightarrow \Diamond p(y)) \\ A &\equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (P_S(x,y) \rightarrow \Box P_S(x,y)) \\ & \land \llbracket \bigwedge \mathbb{Q} \rrbracket \land \llbracket \neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x)) \rrbracket \end{split}$$

(i)

Assume that

$$\mathcal{M}=\langle W, \prec, \{D_w\}_{w\in W}, \Vdash \rangle$$
 is a transitive Kripke model and $w_0\in W$ satisfies A .

- w_0 is a model of Q.
- Since $\mathbb{N} \models \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x))$, w_0 must be non-standard.

 $\Rightarrow \prec$ is not conversely well-founded.

$$\begin{split} B &\equiv \forall x \forall y (P_S(y,x) \land p(x) \rightarrow \Diamond p(y)) \\ A &\equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (P_S(x,y) \rightarrow \Box P_S(x,y)) \\ & \land \llbracket \bigwedge \mathbb{Q} \rrbracket \land \llbracket \neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x)) \rrbracket \end{split}$$

(i)

- Assume that
 - $\mathcal{M} = \langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$ is a transitive Kripke model and $w_0 \in W$ satisfies A.
- w_0 is a model of Q.
- Since $\mathbb{N} \models \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x))$, w_0 must be non-standard.
- $\Rightarrow \prec$ is not conversely well-founded.

(ii)

- PA + $\forall x \mathsf{Con}_{\mathsf{PA}}(x)$: consistent.
- $\exists \mathcal{M} \models \mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x) + \neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x)).$
- *: natural PA-interpretation s.t. $(p(x))^* \equiv \mathsf{Con}_{\mathsf{PA}}(x)$.
- $\Rightarrow \mathcal{M} \models A^*$.

Witness of our main theorem

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2 \} \cap \mathsf{Fr}(\mathsf{QGL}) \not\subset \mathsf{QPL}(\mathrm{I}\Sigma_1).$

$$egin{aligned} B &\equiv orall x orall y (P_S(y,x) \wedge p(x)
ightarrow \langle p(y)
angle, \ C &\equiv orall x p(x) \wedge B \wedge \Box B \wedge \llbracket \neg \mathsf{Con}(\mathrm{I}\Sigma_1 + orall x \mathsf{Con}_{\mathrm{I}\Sigma_1}(x))
rbracket, \ \mathsf{D} &\equiv \neg \Box \bot \wedge \bigwedge \{P_\circ
ightarrow \Box P_\circ, \neg P_\circ
ightarrow \Box \neg P_\circ \mid \circ \in \mathcal{L}_A \}, \ A' &\equiv \llbracket \mathrm{I}\Sigma_1
rbracket \wedge \mathsf{D} \wedge C
ightarrow \llbracket \mathrm{I}\Sigma_2
rbracket. \end{aligned}$$

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2 \} \cap \mathsf{Fr}(\mathsf{QGL}) \not\subset \mathsf{QPL}(\mathrm{I}\Sigma_1).$

$$egin{aligned} B &\equiv orall x orall y (P_S(y,x) \wedge p(x)
ightarrow \lozenge p(y)), \ C &\equiv orall x p(x) \wedge B \wedge \Box B \wedge \llbracket \neg \mathsf{Con}(\mathrm{I}\Sigma_1 + orall x \mathsf{Con}_{\mathrm{I}\Sigma_1}(x))
rbracket, \ \mathsf{D} &\equiv \neg \Box \bot \wedge \bigwedge \{P_\circ
ightarrow \Box P_\circ, \neg P_\circ
ightarrow \Box \neg P_\circ \mid \circ \in \mathcal{L}_A \}, \ A' &\equiv \llbracket \mathrm{I}\Sigma_1
rbracket \wedge \mathsf{D} \wedge C
ightarrow \llbracket \mathrm{I}\Sigma_2
rbracket. \end{aligned}$$

Then A' satisfies (i) and (ii).

Main theorem

Witness of our main theorem

 $\bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2 \} \cap \mathsf{Fr}(\mathsf{QGL}) \not\subset \mathsf{QPL}(\mathrm{I}\Sigma_1).$

$$egin{aligned} B &\equiv orall x orall y (P_S(y,x) \wedge p(x)
ightarrow \lozenge p(y)), \ C &\equiv orall x p(x) \wedge B \wedge \Box B \wedge \llbracket \neg \mathsf{Con}(\mathrm{I}\Sigma_1 + orall x \mathsf{Con}_{\mathrm{I}\Sigma_1}(x))
rbracket, \ \mathsf{D} &\equiv \neg \Box \bot \wedge \bigwedge \{P_\circ
ightarrow \Box P_\circ, \neg P_\circ
ightarrow \Box \neg P_\circ \mid \circ \in \mathcal{L}_A \}, \ A' &\equiv \llbracket \mathrm{I}\Sigma_1
rbracket \wedge \mathsf{D} \wedge C
ightarrow \llbracket \mathrm{I}\Sigma_2
rbracket. \end{aligned}$$

Then A' satisfies (i) and (ii).

• $\neg A'$ witnesses $Fr(QGL) \not\subseteq QPL(I\Sigma_1)$.

Main theorem

Witness of our main theorem

$$\bigcap \{\mathsf{QPL}(T) \mid T : \mathsf{r.e.} \ \mathsf{extension} \ \mathsf{of} \ \mathsf{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{QPL}(\mathsf{I}\Sigma_1).$$

$$egin{aligned} B &\equiv orall x orall y (P_S(y,x) \wedge p(x)
ightarrow \lozenge p(y)), \ C &\equiv orall x p(x) \wedge B \wedge \Box B \wedge \llbracket \neg \mathsf{Con}(\mathrm{I}\Sigma_1 + orall x \mathsf{Con}_{\mathrm{I}\Sigma_1}(x))
rbracket, \ \mathsf{D} &\equiv \neg \Box \bot \wedge \bigwedge \{P_\circ
ightarrow \Box P_\circ, \neg P_\circ
ightarrow \Box \neg P_\circ \mid \circ \in \mathcal{L}_A \}, \ A' &\equiv \llbracket \mathrm{I}\Sigma_1
rbracket \wedge \mathsf{D} \wedge C
ightarrow \llbracket \mathrm{I}\Sigma_2
rbracket. \end{aligned}$$

Then A' satisfies (i) and (ii).

- $\neg A'$ witnesses $Fr(QGL) \nsubseteq QPL(I\Sigma_1)$.
- $\neg A' \in \bigcap \{ \mathsf{QPL}(T) \mid T : \mathsf{r.e.} \text{ extension of } \mathrm{I}\Sigma_2 \}$ by Artemov's lemma.

- Predicate modal logic of provability
- Main theorem
- Predicate provability logics of fragments of PA
- Further work

Binumerations

A formula $\alpha(x)$ is called a binumeration of T if for any sentence φ ,

$$\varphi \in T \ \Rightarrow \ T \vdash \alpha(\ulcorner \varphi \urcorner);$$

$$\varphi \notin T \Rightarrow T \vdash \neg \alpha(\lceil \varphi \rceil).$$

Provability logics of fragments of PA

Binumerations

A formula $\alpha(x)$ is called a binumeration of T if for any sentence φ ,

$$arphi \in T \ \Rightarrow \ T \vdash \alpha(\lceil \varphi \rceil);$$
 $arphi \notin T \ \Rightarrow \ T \vdash \neg \alpha(\lceil \varphi \rceil).$

Each recursive theory T has a Σ_1 binumeration.

Provability logics of fragments of PA

Binumerations

A formula $\alpha(x)$ is called a binumeration of T if for any sentence φ ,

$$\begin{aligned} \varphi \in T & \Rightarrow & T \vdash \alpha(\lceil \varphi \rceil); \\ \varphi \notin T & \Rightarrow & T \vdash \neg \alpha(\lceil \varphi \rceil). \end{aligned}$$

Each recursive theory T has a Σ_1 binumeration.

• For each Σ_1 binumeration $\alpha(x)$ of T, let $Pr_{\alpha}(x)$ be the provability predicate of T asserting that "x is provabile from the set of all sentences satisfying $\alpha(z)$ ". Provability logics of fragments of PA

Binumerations

A formula $\alpha(x)$ is called a binumeration of T if for any sentence φ ,

$$\varphi \in T \ \Rightarrow \ T \vdash \alpha(\lceil \varphi \rceil);$$

$$\varphi \notin T \ \Rightarrow \ T \vdash \neg \alpha(\lceil \varphi \rceil).$$

Each recursive theory T has a Σ_1 binumeration.

- For each Σ_1 binumeration $\alpha(x)$ of T, let $Pr_{\alpha}(x)$ be the provability predicate of T asserting that "x is provabile from the set of all sentences satisfying $\alpha(z)$ ".
- Let $QPL(\alpha)$ be the provability logic of T which is defined by using the provability predicate $Pr_{\alpha}(x)$.

Theorem (Artemov, 1986)

Provability logics of fragments of PA

 $T: \Sigma_1$ -sound recursive extension of PA.

 $\forall \alpha(x) \colon \Sigma_1$ binumeration of T,

 $\exists \beta(x) \colon \Sigma_1$ binumeration of T s.t.

 $\mathsf{QPL}(\alpha) \not\subseteq \mathsf{QPL}(\beta)$.

Theorem (Artemov, 1986)

 $T: \Sigma_1$ -sound recursive extension of PA.

 $\forall \alpha(x) \colon \Sigma_1$ binumeration of T,

 $\exists \beta(x) \colon \Sigma_1$ binumeration of T s.t.

$$\mathsf{QPL}(\alpha) \nsubseteq \mathsf{QPL}(\beta)$$
.

• Our main theorem holds for any Σ_1 binumeration.

Theorem (Artemov, 1986)

 $T: \Sigma_1$ -sound recursive extension of PA.

 $\forall \alpha(x) \colon \Sigma_1$ binumeration of T,

 $\exists \beta(x) \colon \Sigma_1$ binumeration of T s.t.

$$\mathsf{QPL}(\alpha) \nsubseteq \mathsf{QPL}(\beta)$$
.

- Our main theorem holds for any Σ_1 binumeration.
- Montagna proved QPL(PA) ⊈ QPL(BG) essentially from the follwoing facts:
 - BG is finitely axiomatizable,
 - PA \vdash Con_{BG} \rightarrow Con_{PA+Conpa}.

Theorem (Artemov, 1986)

 $T: \Sigma_1$ -sound recursive extension of PA.

 $\forall \alpha(x) \colon \Sigma_1$ binumeration of T,

 $\exists \beta(x) \colon \Sigma_1$ binumeration of T s.t.

$$\mathsf{QPL}(\alpha) \nsubseteq \mathsf{QPL}(\beta)$$
.

- Our main theorem holds for any Σ_1 binumeration.
- Montagna proved QPL(PA) ⊈ QPL(BG) essentially from the follwoing facts:
 - BG is finitely axiomatizable,
 - PA \vdash Con_{BG} \rightarrow Con_{PA+Conpa}.
- These conditions also hold for the theories $I\Sigma_{i+1}$ and $I\Sigma_i$.

Theorem (Artemov, 1986)

 $T: \Sigma_1$ -sound recursive extension of PA.

 $\forall \alpha(x) \colon \Sigma_1$ binumeration of T,

 $\exists \beta(x) \colon \Sigma_1$ binumeration of T s.t.

$$\mathsf{QPL}(\alpha) \nsubseteq \mathsf{QPL}(\beta)$$
.

- Our main theorem holds for any Σ_1 binumeration.
- Montagna proved QPL(PA) ⊈ QPL(BG) essentially from the follwoing facts:
 - BG is finitely axiomatizable,
 - PA \vdash Con_{BG} \rightarrow Con_{PA+Conpa}.
- These conditions also hold for the theories $I\Sigma_{i+1}$ and $I\Sigma_i$.
- The second condition is dependent on the choice of binumerations of PA and BG.

 T_i : a finite axiomatization of $I\Sigma_i$ (i > 0).

Predicate provability logics of fragments of PA

 T_i : a finite axiomatization of $I\Sigma_i$ (i > 0).

$$[T_i](x) :\equiv \bigvee \{x = \lceil \varphi \rceil | \varphi \in T_i\}.$$

 T_i : a finite axiomatization of $I\Sigma_i$ (i > 0).

$$[T_i](x) :\equiv \bigvee \{x = \lceil \varphi \rceil | \varphi \in T_i\}.$$

Theorem (T.K.)

Provability logics of fragments of PA

For any i, j: natural numbers (0 < i < j),

 $\mathsf{QPL}([T_i]) \not\subseteq \bigcup \{ \mathsf{QPL}(\beta) \mid \beta(x) \colon \Sigma_1 \text{ binumeration of some r.a. of } \mathrm{I}\Sigma_i \},$

 $\mathsf{QPL}([T_i]) \not\supseteq \bigcap \{ \mathsf{QPL}(\beta) \mid \beta(x) \colon \Sigma_1 \text{ binumeration of some r.a. of } \mathrm{I}\Sigma_j \}.$

where "r.a." is an abbreviation for "recursive axiomatization".

- Propositional modal logic of provability
- Predicate modal logic of provability
- Main theorem
- Predicate provability logics of fragments of PA
- Further work

Montagna's problem

Montagna's problem (extended)

```
\bigcap \{ \mathsf{QPL}(T) \mid T \text{: r.e. theory where PA is relatively interpretable} \} \\ = \mathsf{Th}(\mathsf{QGL}) ?
```

Montagna's problem

Montagna's problem (extended)

```
\bigcap \{ \mathsf{QPL}(T) \mid T : \text{ r.e. theory where PA is relatively interpretable} \}
= \mathsf{Th}(\mathsf{QGL}) ?
```

Montagna proved QPL(PA) ⊈ QPL(BG).

Montagna's problem

Montagna's problem (extended)

```
\bigcap \{ \mathsf{QPL}(T) \mid T : \text{ r.e. theory where PA is relatively interpretable} \}
= Th(QGL)?
```

- Montagna proved QPL(PA) ⊈ QPL(BG).
- QPL(BG) can be defined in many ways.
 - The choice of a binumeration of BG.
 - The definition of $Pr_{BG}(x)$.

Let $\alpha(x), \beta(x)$ be Σ_1 binumerations of T.

Let $\alpha(x), \beta(x)$ be Σ_1 binumerations of T.

Theorem (Visser and de Jonge, 2006)

 $\exists A$: predicate modal sentence s.t. T.F.A.E.:

- $T + \mathsf{Con}_{\alpha} \vdash \varphi$;
- $A \to [\![\varphi]\!] \in \mathsf{QPL}(\alpha)$.

Let $\alpha(x), \beta(x)$ be Σ_1 binumerations of T.

Theorem (Visser and de Jonge, 2006)

 $\exists A$: predicate modal sentence s.t. T.F.A.E.:

- $T + \mathsf{Con}_{\alpha} \vdash \varphi$;
- $A \to [\varphi] \in \mathsf{QPL}(\alpha)$.

Corollary

If $QPL(\alpha) = QPL(\beta)$, then $T \vdash Con_{\alpha} \leftrightarrow Con_{\beta}$.

Let $\alpha(x), \beta(x)$ be Σ_1 binumerations of T.

Theorem (Visser and de Jonge, 2006)

 $\exists A$: predicate modal sentence s.t. T.F.A.E.:

- $T + \mathsf{Con}_{\alpha} \vdash \varphi$;
- $A \to [\![\varphi]\!] \in \mathsf{QPL}(\alpha)$.

Corollary

If $QPL(\alpha) = QPL(\beta)$, then $T \vdash Con_{\alpha} \leftrightarrow Con_{\beta}$.

Conjecture

$$QPL(\alpha) = QPL(\beta)$$

if and only if $T \vdash \Pr_{\alpha}(\lceil \varphi \rceil) \leftrightarrow \Pr_{\beta}(\lceil \varphi \rceil)$ for any formula φ .

Thank you!