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Provability predicates

T': r.e. extension of I3,

Definition
A formula Prr(z) is called a provability predicate of T'
if for any ¢ and 1,

@ Prr(z) is X1;

T HFp&IX FPrr(Te);

o T+ Pro(p = ¥7) = (Prr("¢") — Pro("97));
0 p: X1 =>TkF o — Prp(Te?).
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Provability predicates

T': r.e. extension of I3,

Definition

A formula Prr(x) is called a provability predicate of T'
if for any ¢ and 1,

@ Prr(z) is X1;

T HFp&IX FPrr(Te);

o TEPrr("e = v") = (Prr("¢") = Prr("¢7));
0 p: X1 =>TkF o — Prp(Te?).

We compare the following three notions on modal formulas:
@ Provability in formal systems of modal logic

@ Validity on Kripke frames

@ Validity on arithmetical semantics
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Arithmetical semantics

Let F' be the set of all propositional modal formulas.

Definition

A mapping * from F' to all sentences in the language of T is called a
T-interpretation

if it satisfies the following conditions:

e 1l*= 0=1;
o (A— B)* = (A* — B*);
[+] DI

o (JA)* = Prr(TA*).

Definition

@ A: propositional modal formula.
A is T-valid & v T-interpretation, T - A™.

@ PL(T) := {A | Ais T-valid}
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Arithmetical semantics

Let F' be the set of all propositional modal formulas.

Definition

A mapping * from F' to all sentences in the language of T is called a
T-interpretation

if it satisfies the following conditions:

e 1l*= 0=1;
o (A— B)* = (A* — B*);
[+] DI

o (JA)* = Prr(TA*).

Definition

@ A: propositional modal formula.
A is T-valid & v T-interpretation, T - A™.

@ PL(T) := {A | Ais T-valid} : the provability logic of T'.
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o Tautologies;
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o O(0A — A) — DA.

o Inference rules:

modus ponens from A and A — B infer B;
necessitation form A infer (JA.
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Propositional modal logic GL

@ Axioms:
o Tautologies;
e 0(A — B) —» (A — OB);
o O(0A — A) — DA.

o Inference rules:

modus ponens from A and A — B infer B;
necessitation form A infer (JA.

Th(GL):= {A | GL - A}.
Note that Th(GL) C PL(T).
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Kripke semantics

Kripke frame is a system (W, <) where

e W is a non-empty set of worlds;

@ < is a binary relation on W: accessibility relation.
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Kripke semantics

Kripke frame is a system (W, <) where

e W is a non-empty set of worlds;

@ < is a binary relation on W: accessibility relation.
Kripke model is a system M = (W, <, |F) where

e (W, <) is a Kripke frame;

e |- is a binary relation on W X F such that Vw € W,

o wh L;
sowl-A— B<& (wkF Aorwl- B);
PO

o wlFOA & V' € W(w < w = w |- A).
wlk0A & Jw € W(w < w & w' |- A).
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GL-frames and Kripke completeness theorem

Definition

A: modal formula, F: Kripke frame, M: Kripke model.
o Alisvalidin M € vw e W, w - A.

o Ais valid in F & A is valid in (F,IF) for any IF-.
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o Kripke frame (W, <) is a GL-frame if < is
1. transitive,

2. conversely well-founded.
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GL-frames and Kripke completeness theorem

A: modal formula, F: Kripke frame, M: Kripke model.

o Ais valid in M & vw e W, w IF A.

o Ais valid in F & A is valid in (F,IF) for any IF-.

<

o Kripke frame (W, <) is a GL-frame if < is
1. transitive,

2. conversely well-founded.
e Fr(GL):= {A | A is valid in any GL-frame }.

Theorem (Segerberg, 1971)

Th(GL) = Fr(GL).
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Solovay's arithmetical completeness theorem

T: ¥1-sound.

Theorem (Solovay, 1976)

Th(GL) = PL(T).

y % R Segerberg (1971)
(PL(N] = (Fr(GL)]

Solovay (1976)

If T is X;1-sound r.e. extension of I3;, then Th(GL) = Fr(GL) = PL(T). J
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@ QGL is a natural extension of GL to predicate modal logic.

@ Define Th(QGL), Fr(QGL) and QPL(T') similarly as in the
propositional case.

@ T-interpretations of predicate modal logic map each k-ary predicate
symbol to a k-ary formula in the language of T'.

@ Kripke frame for predicate modal logic is a triple
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o {Dy}wew is a family of non-empty sets.
o Vw,w' € W, w < w = D, C Dy.
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Predicate modal logic of provability

@ QGL is a natural extension of GL to predicate modal logic.

@ Define Th(QGL), Fr(QGL) and QPL(T') similarly as in the
propositional case.

@ T-interpretations of predicate modal logic map each k-ary predicate
symbol to a k-ary formula in the language of T'.

@ Kripke frame for predicate modal logic is a triple
(W, <,{Dw}wew) :
o {Dy}wew is a family of non-empty sets.
o Vw,w' € W, w < w = D, C Dy.

@ Kripke model for predicate modal logic is a 4-tuple
(VV’ = {Dw}wewa ”_> :
I- is a relation between elements w of W and closed formulas with

parameters form D,,.
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Montagna's theorem

By the definitions, Th(QGL) C Fr(QGL) N QPL(T).

Theorem (Montagna, 1984)

@ Fr(QGL) ¢ Th(QGL).
@ QPL(PA) ¢ Fr(QGL).
Q@ QPL(PA) ¢ Th(QGL).
Q@ QPL(PA) ¢ QPL(BG) (BG: Bernays-Godel set theory).

Rr YRk

@)

(QPL(PA)) == [Fr(QGL)]
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Vardanyan's theorem on II9-completeness

Theorem (Vardanyan, 1985)
QPL(PA) is II3-complete.

@ QPL(PA) is not X9.

@ QPL(PA) cannot be characterized by any recursive extension of QGL.
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Theorem (Vardanyan, 1985)
QPL(PA) is II3-complete.
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Montagna's conjecture (1984)

({QPL(T) | T : X;i-sound r.e. extension of PA} = Th(QGL)
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Vardanyan's theorem on II9-completeness

Theorem (Vardanyan, 1985)
QPL(PA) is II3-complete.

@ QPL(PA) is not X9.

@ QPL(PA) cannot be characterized by any recursive extension of QGL.

Montagna's conjecture (1984)

({QPL(T) | T : X;i-sound r.e. extension of PA} = Th(QGL)

In a similar way as in the proof of Vardanyan’s theorem,

N{QPL(T) | T : r.e. extension of PA} is I13-hard. J

N{QPL(T) | T : r.e. extension of PA} ¢ Th(QGL).
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How about other inclusions?

Ry MRk

@

(QPL(PA)] > (Fr(QGL)]

e Fr(QGL) C QPL(T)?

o N{QPL(T) | T : r.e. extension of PA} C Fr(QGL)?

o N{QPL(T) | T : r.e. extension of PA} N Fr(QGL) C Th(QGL)?
0 3i,j € w(s # j) s.t. QPL(IZ;) = QPL(IX;)?
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How about other inclusions?

Ay N Re

@

(QPL(PA)] == (Fr(QGL)]

e Fr(QGL)ZQPL(T).

o N{QPL(T) | T : r.e. extension of PA}ZFr(QGL).

o N{QPL(T) | T : r.e. extension of PA} N Fr(QGL) C Th(QGL)?
o 3i,j € w(i # j) s.t. QPL(IZ;) = QPL(IZ;)?
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Fr(QGL) ¢ QPL(T) for any X2-sound r.e. extension T of IX;.

e Montagna proved A = VxIy(p(xz) — Op(y)) — VeO—p(x)
witnesses the non-inclusion Fr(QGL) ¢ Th(QGL).

e This sentence also witnesses Fr(QGL) ¢ QPL(T).

Theorem (Solovay-Somoryriski-Friedman)

Jep(x): II; formula s.t.
Vn € w,

@ T + ¢(n) is consistent, and

Q I, + LP(’FL) — CO“T+¢(m)-
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Fr(QGL) ¢ QPL(T) for any X2-sound r.e. extension T of IX;.

e Montagna proved A = VxIy(p(xz) — Op(y)) — VeO—p(x)
witnesses the non-inclusion Fr(QGL) ¢ Th(QGL).

e This sentence also witnesses Fr(QGL) ¢ QPL(T).

Theorem (Solovay-Somoryriski-Friedman)

Jep(x): II; formula s.t.
Vn € w,

@ T + ¢(n) is consistent, and

Q I, + LP(’FL) — CO“T+¢(m)-

Let * be a T-interpretation s.t. (p(x))* = p(x), then N = ~A*.



Predicate modal logic of provability
0O00000e
Predicate modal logic of provability

N{QPL(T) | T : r.e. extension of I3;1} ¢ Fr(QGL).




Predicate modal logic of provability
0O00000e
Predicate modal logic of provability

N{QPL(T) | T : r.e. extension of I3;1} ¢ Fr(QGL).

Py, Py, Ps, Py, P-, P_: new predicate symbols corresponding to
+, X, S, 0, <, = respectively.



Predicate modal logic of provability
0O00000e
Predicate modal logic of provability

N{QPL(T) | T : r.e. extension of I3;1} ¢ Fr(QGL).

Py, Py, Ps, Py, P-, P_: new predicate symbols corresponding to
+, X, S, 0, <, = respectively.

@ For each L 4-formula ¢, let [¢] be one of the relational formula
obtained by rewriting ¢ by using only these new symbols.
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N{QPL(T) | T : r.e. extension of I3;1} ¢ Fr(QGL).

Py, Py, Ps, Py, P-, P_: new predicate symbols corresponding to
+, X, S, 0, <, = respectively.

@ For each L 4-formula ¢, let [¢] be one of the relational formula
obtained by rewriting ¢ by using only these new symbols.

D=-0O0LA /\{Po — Py, =Py — 0P, | o€ ﬁA},

Lemma (Artemov)

Vx: T-interpretation, V: L 4-sentence,
I3 - D" A[ATAo(exp)]” — (¢ < [#))-

Let A =D A [AIAo(exp)] — [AIS1).
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N{QPL(T) | T : r.e. extension of I3;1} ¢ Fr(QGL).

Py, Py, Ps, Py, P-, P_: new predicate symbols corresponding to
+, X, S, 0, <, = respectively.

@ For each L 4-formula ¢, let [¢] be one of the relational formula
obtained by rewriting ¢ by using only these new symbols.

D=-0O0LA /\{Po — Py, =Py — 0P, | o€ ﬁA},

Lemma (Artemov)

Vx: T-interpretation, V: L 4-sentence,
I3 - D" A[ATAo(exp)]” — (¥ < [¢]")

Let A =D A[ATIAo(exp)) — [AIZ1).
@ Since T - AIX;, A € QPL(T) by Artemov’s lemma.

@ From the fact that IAq(exp) ¥ AN IXq,
there is a Kripke model where A is not valid.
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Main theorem

Theorem (T.K.)
N{QPL(T) | T : r.e. extension of IX2} N Fr(QGL) ¢ Th(QGL).

Actually, we proved

N{QPL(T) | T : r.e. extension of IX2} N Fr(QGL) ¢ QPL(IX;). )

o VxIyO(p(x) — Op(y)) — VzU-p(x) cannot be a witness of
the non-inclusion.

@ We introduce another method of constructing a witness of
each non-inclusion Fr(QGL) ¢ QPL(T).
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It suffices to find a predicate modal sentence A s.t.

(i)’ =A € Fr(QGL) and
(i)’ —=A &€ QPL(PA). J
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Sufficient conditions

We describe our method of constructing a witness of
Fr(QGL) ¢ QPL(PA).

It suffices to find a predicate modal sentence A s.t.

(i)’ =A € Fr(QGL) and
(i)’ =A ¢ QPL(PA). J

These conditions are equivalent to the following conditions
respectively:

(i) VM = <W, =<, {Dw}w€W3 ||—): transitive Kripke model,
if Jw € W s.t. wlik A,
then < is not conversely well-founded.

(i) IM = PA 3 x: PA-interpretation s.t. M |= A*.
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Con? := (0 = 0);
Con™t! := Con(PA + Con™).
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PA - Vz(p(z) <> [Con(PA + p(—1)) V x = 0]).
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Parameterized iterated consistency assertions

Definition (iterated consistency assertions)

Con? := (0 = 0);
Con™t! := Con(PA + Con™).

N,

Definition (parameterized iterated consistency assertions)

Let Conpa(z) be one of the £ 4-formula ¢ (x) which satisfies

PA - Vz(p(z) <> [Con(PA + p(—1)) V x = 0]).

Vn € w, PA I Conpa(72) <> Con™.

D
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proposition.

Proposition

Q@ PA |- Vxz(Conpa(x + 1) — Con(PA + Conpa(2))).
@ N = Con(PA + VxConpa(x)).
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Main theorem

Main idea

A main idea of the construction is based on the following
proposition.

Proposition

Q@ PA |- Vxz(Conpa(x + 1) — Con(PA + Conpa(2))).

@ N = Con(PA + VxConpa(x)).

e B :=Vap(x) ANVz(p(xz + 1) — Op(x)).
o *: PA-interpretation s.t. (p(x))* = Conpa(x).
e Then IM = PA s.t. M = B*.

@ We construct an infinite increasing sequence of worlds from
this sentence by starting from a non-standard element of a
non-standard model of arithmetic.
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B = VaVy(Ps(y, ) A p(x) — Op(y)).

Let A be the conjunction of the following six sentences:
Q Vap(z)
Q@ B
Q@ UB
Q VaVy(Ps(z,y) — UPs(xz,y))
9 (AQ)
@ [—Con(PA + VzConpa(x))]

where Q is Robinson’s arithmetic.
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B = VaVy(Ps(y, ) A p(x) — Op(y)).

Let A be the conjunction of the following six sentences:
Q Vap(z)
Q@ B
Q@ UB
Q VaVy(Ps(z,y) — UPs(xz,y))
9 (AQ)
@ [—Con(PA + VzConpa(x))]

where Q is Robinson’s arithmetic.

Then A satisfies (i) and (ii).

(i) VM = (W, <, { Dy }wew,IF): transitive Kripke model,
if 3w € Ws.t. wik A,
then < is not conversely well-founded.

(i) 3M = PA 3 *: PA-interpretation s.t. M = A*.
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B = VaVy(Ps(y, z) A p(z) — Op(y))
A =Vap(z) A BAOB AVaVy(Ps(z,y) — OPs(xz,vy))

A LA Q)] A [—Con(PA 4 VaConpa(z)))

(i)
@ Assume that
M = (W, <, {Dy}wew, k) is a transitive Kripke model and
wo € W satisfies A.

@ wp Is a model of Q.

@ Since N |= Con(PA + VxConpa(x)), wo must be non-standard.

=>=< is not conversely well-founded.

(ii)
@ PA + VxConpa(z): consistent.
e IM = PA + VxzConpa () + —Con(PA + VazConpa(x)).

e x: natural PA-interpretation s.t. (p(x))* = Conpa(x).

= M = A*.




Main theorem
000000e
Main theorem

Witness of our main theorem

N{QPL(T) | T : r.e. extension of I¥2} N Fr(QGL) ¢ QPL(IX,). J

B = VaVy(Ps(y, ) A p(z) — Op(y)),
C = Vzp(xz) A B AOB A [-Con(IX; 4+ VxConrs, (x))),
D=-0LA /\{Po — Py, =Py — 0P, | o€ [:A}.
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Witness of our main theorem

N{QPL(T) | T : r.e. extension of I¥2} N Fr(QGL) ¢ QPL(IX,). J

B = VaVy(Ps(y, ) A p(z) — Op(y)),
C = Vzp(xz) A B AOB A [-Con(IX; 4+ VxConrs, (x))),
D=-0LA /\{Po — Py, =Py — 0P, | o€ [:A}.

Then A’ satisfies (i) and (ii).
o — A’ witnesses Fr(QGL) ¢ QPL(IX;).

e A’ € N{QPL(T) | T : r.e. extension of IX,}
by Artemov’s lemma.
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Provability logics of fragments of PA

Binumerations

A formula a(x) is called a binumeration of T if for any sentence ¢,

peT = Troa(e);
pd&T = TF-a("e)).

Each recursive theory T has a 31 binumeration.

e For each X; binumeration a(x) of T,
let Pro(x) be the provability predicate of T' asserting that
“z is provabile from the set of all sentences satisfying a(z)”.
o Let QPL(a) be the provability logic of T which is defined by
using the provability predicate Pr, ().
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Provability logics and binumerations

Theorem (Artemov, 1986)

T: X,-sound recursive extension of PA.
Va(x): X1 binumeration of T,

38(x): 31 binumeration of T s.t.

QPL(a) ¢ QPL(B).

@ Our main theorem holds for any 3; binumeration.
e Montagna proved QPL(PA) ¢ QPL(BG) essentially from the
follwoing facts:
o BG is finitely axiomatizable,
o PA ConBG — ConpA+c°nPA.
@ These conditions also hold for the theories I1¥;; and I%;.
@ The second condition is dependent on the choice of
binumerations of PA and BG.
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Provability logics of fragments of PA

Predicate provability logics of fragments of PA

T;: a finite axiomatization of IX; (¢ > 0).
[T)(x) = V{z = "¢lp € Ti}.

Theorem (T.K.)

For any i, j: natural numbers (0 < 7 < j),
QPL([T:]) € U{QPL(B) | B(x): X1 binumeration of some r.a. of IX;},
QPL([T3]) 2 N{QPL(B) | B(x): X1 binumeration of some r.a. of I3;}.

where “r.a.” is an abbreviation for “recursive axiomatization”.
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o
1. Montagna's problem

Montagna's problem

Montagna's problem (extended)

N{QPL(T) | T: r.e. theory where PA is relatively interpretable}
= Th(QGL) ?

e Montagna proved QPL(PA) ¢ QPL(BG).
e QPL(BG) can be defined in many ways.

o The choice of a binumeration of BG.
o The definition of Prgg ().
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2. Characterization of QPL(a) = QPL(3)

Characterization of QPL(ax) = QPL(3)

Let a(x), 3(x) be X; binumerations of T'.

Theorem (Visser and de Jonge, 2006)

JA: predicate modal sentence s.t. T.F.A.E.:

o T + Cong F ¢;
o A —[p] € QPL(c).

If QPL(a) = QPL(3), then T I Con, <> Cong.

QPL(a) = QPL(B)
if and only if T - Pro("¢™) <> Prg("¢7) for any formula ¢.




2. Characterization of QPL(a) = QPL(3)

Thank youl!
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