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o Prfr(z,y) is a A, formula;
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Standard proof predicates

T': recursive theory of arithmetic containing PA
"¢ ": The numeral of the G6del number of a formula ¢

Definition

A formula Prfr(z,y) is a standard proof predicate (s.p.p.) of T
=
o Prfr(z,y) is a A, formula;

oThHep < 3pcwst.NgEPrr(Te’,p);
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"¢ ": The numeral of the G6del number of a formula ¢

Definition

A formula Prfr(z,y) is a standard proof predicate (s.p.p.) of T
B4
o Prfr(z,y) is a A, formula;
o ThHep<< dp €ws.t. NEPrr ("¢, p);
o for the formula Prr(x) = 3yPrfr(x,v),
o PAFPrr("e — %) — (Prr("¢?) — Prr(T97));
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"¢ ": The numeral of the G6del number of a formula ¢

Definition

A formula Prfr(z,y) is a standard proof predicate (s.p.p.) of T
B4

o Prfr(z,y) is a A, formula;

o ThHep<< dp €ws.t. NEPrr ("¢, p);

o for the formula Prr(x) = 3yPrfr(x,v),

o PAF Prp (T — 7)) — (Prp(T@7) — Prp(TpT));
o @ EX1 =>PAF @ — Prp(TpT).
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Standard proof predicates

T': recursive theory of arithmetic containing PA
"¢ ": The numeral of the G6del number of a formula ¢

Definition

A formula Prfr(z,y) is a standard proof predicate (s.p.p.) of T
B4

o Prfr(z,y) is a A, formula;

o ThHep<< dp €ws.t. NEPrr ("¢, p);

o for the formula Prr(x) = 3yPrfr(x,v),

o PAF Prp (T — 7)) — (Prp(T@7) — Prp(TpT));
o @ EX1 =>PAF @ — Prp(TpT).

Godel constructed a s.p.p. of each such a theory T'.
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Let Prfr(x,y) be any s.p.p. of T'.
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Godel and Rosser’s incompleteness theorems

Let Prfr(x,y) be any s.p.p. of T'.
o Prp(x) = JyPrfr(x,y) (a provability predicate of T')

° Pr%(sc) = Jy(Prfr(z,y) AVz < y=Prfr(—z, 2))
(a Rosser provability predicate of T')
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o Prp(x) = JyPrfr(x,y) (a provability predicate of T')

° Pr%(sc) = Jy(Prfr(z,y) AVz < y=Prfr(—z, 2))
(a Rosser provability predicate of T')

For any sentence ¢ satisfying PA - ¢ <> =Prr(T¢"),

@ T': consistent = T ¥ ;
@ T: ¥j-sound = T ¥ —p.
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Let Prfr(x,y) be any s.p.p. of T'.
o Prp(x) = JyPrfr(x,y) (a provability predicate of T')

° Pr%(sc) = Jy(Prfr(z,y) AVz < y=Prfr(—z, 2))
(a Rosser provability predicate of T')

Theorem (Godel, 1931)

For any sentence ¢ satisfying PA - ¢ <> =Prr(T¢"),

@ T': consistent = T ¥ ;
@ T: ¥j-sound = T ¥ —p.

T is X1-sound
< V: 37 sentence (T'F ¢ = N = ).
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Godel and Rosser’s incompleteness theorems

Let Prfr(x,y) be any s.p.p. of T'.
o Prp(x) = JyPrfr(x,y) (a provability predicate of T')

° Pr%(sc) = Jy(Prfr(z,y) AVz < y=Prfr(—z, 2))
(a Rosser provability predicate of T')

Theorem (Godel, 1931)

For any sentence ¢ satisfying PA - ¢ <> =Prr(T¢"),

@ T': consistent = T ¥ ;
@ T: ¥j-sound = T ¥ —p.

T is X1-sound
< V: 37 sentence (T'F ¢ = N = ).

Theorem (Rosser, 1936)

For any sentence 1) satisfying PA F 1) <> —Pr?("iﬁ),
T: consistent = T ¥ ¢ and T ¥ —.
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Guaspari and Solo

Theorem (Guaspari and Solovay, 1979)

@ There is a s.p.p. s.t. not all of whose Rosser sentences are provably
equivalent.
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Theorem (Guaspari and Solovay, 1979)

@ There is a s.p.p. s.t. not all of whose Rosser sentences are provably
equivalent.

@ There is a s.p.p. whose Rosser sentences are all provably
equivalent.
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Guaspari and Solov:

@ There is a s.p.p. s.t. not all of whose Rosser sentences are provably
equivalent.

@ There is a s.p.p. whose Rosser sentences are all provably
equivalent.

They constructed required standard proof predicates by rearrenging
proofs of a given s.p.p.
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Yablo’s paradox (Yablo, 1993)

@ Let Yp, Y1,..., be an infinite sequence of propositions.

o Each Y; states that “For every j > i, Yj is false”.

@ Then we cannot determine whether Y; is true or false.
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Godel’s theorems based on Yablo’s paradox

Formalization of Yak sequence

Let Y () be a formula satisfying the following equivalence:
PA - Vz(Y (x) <> Yy > z—=Prr("Y (9)7)),

where y is free in Prr("Y (9)7).
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Formalization of Yablo’s sequence

Let Y () be a formula satisfying the following equivalence:
PA - Vz(Y (x) <> Yy > z—=Prr("Y (9)7)),

where y is free in Prr("Y (9)7).

Theorem (Priest, 1997)

o T: consistent = Vn € N, T F Y (n).
o T: ¥i-sound = Vn € N, T ¥ Y (n).
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Godel’s theorems based on Yablo’s paradox

Formalization of Yablo’s sequence

Let Y () be a formula satisfying the following equivalence:
PA - Vz(Y (x) <> Yy > z—=Prr("Y (9)7)),

where y is free in Prr("Y (9)7).

Theorem (Priest, 1997)

o T: consistent = Vn € N, T F Y (n).
o T: ¥i-sound = Vn € N, T ¥ Y (n).

Theorem (Kikuchi and K., 2011; Ciesliriski and Urbaniak, 2012)

e For any n € N,PA |- Y (72) < Conr.
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Godel’s theorems based on Yablo’s paradox

Formalization of Yablo’s sequence

Let Y () be a formula satisfying the following equivalence:
PA - Vz(Y (x) <> Yy > z—=Prr("Y (9)7)),

where y is free in Prr("Y (9)7).

Theorem (Priest, 1997)

o T: consistent = Vn € N, T F Y (n).
o T: ¥i-sound = Vn € N, T ¥ Y (n).

Theorem (Kikuchi and K., 2011; Ciesliriski and Urbaniak, 2012)

e For any n € N,PA |- Y (72) < Conr.
o For any m,n € N,PA Y (m) < Y (@).
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It is dependent on the choice of a s.p.p.
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Formalizations of Yablo’s sequence using Rosser predicates

Rosser-type formalization of Yablo’s sequence

Let Y E(x) be a formula satisfying the following equivalence:

PA - Va(YE(z) < Vy > z-PrZ(TY B(g)).
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Formalizations of Yablo’s sequence using Rosser predicates

ype formalizat lo’s sequence
Let Y E(x) be a formula satisfying the following equivalence:

PA - Va (Y B(z) & Yy > z—PrZ(TY B(g)).

o T: consistent = Vn € N, T ¥ YE(q).
e T: ¥i-sound = Vn € N, T ¥ =Y E(n).
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Rosser-type formalizations

Formalizations of Yablo’s sequence using Rosser predicates

lo’s sequence
Let Y E(x) be a formula satisfying the following equivalence:

PA - Vz(Y B(z) < Vy > 2—PrR("Y B(3))).

o T: consistent = Vn € N, T ¥ YE(a).
e T: ¥i-sound = Vn € N, T ¥ =Y E(n).

Question

T: consistent = Vn € N, T ¥ -YE(n)?

No.

If T is consistent but not Xj-sound, then the provability of =Y ®(n) is
dependent on the choice of a s.p.p.
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Main Theorems

T: consistent
= there is a s.p.p. of T s.t. Vn € N, T ¥ Y (7).
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Main Theorems

Theorem 1

T: consistent
= there is a s.p.p. of T s.t. Vn € N, T ¥ Y (7).

N

Theorem 2
T: not ¥i-sound
= there is a s.p.p. of T s.t. Vn €N, T F Y (@a).
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Main Theorems

Theorem 1

T: consistent
= there is a s.p.p. of T s.t. Vn € N, T ¥ Y (7).

N

Theorem 2

T: not ¥i-sound
= there is a s.p.p. of T s.t. Vn €N, T F Y (@a).

We proved these theorems by using the technique of Gaspari and

Solovay.
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IPrfr(x,y): s.p.p. of T
3Y ®(x): Rosser-type Yablo formula of Prfr(x,y) s.t.
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Theorem 1 (precise version)

VPrfy(x,y): s.p.p. of T,
IPrfr(x,y): s.p.p. of T
3Y ®(x): Rosser-type Yablo formula of Prfr(x,y) s.t.

o PA - Vz(Prr(x) < Priy(x));
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VPrfy(x,y): s.p.p. of T,
IPrfr(x,y): s.p.p. of T
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e PA - Vz(Prr(z) +> Prp(x));
e PA - Y*(0) <+ 7 for a Rosser sentence 7 of Prfr(z,y);
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Theorem 1 (precise version)

VPrfy(x,y): s.p.p. of T,
IPrfr(x,y): s.p.p. of T
3Y ®(x): Rosser-type Yablo formula of Prfr(x,y) s.t.

e PA - Vz(Prr(z) +> Prp(x));
e PA - Y*(0) <+ 7 for a Rosser sentence 7 of Prfr(z,y);

o T: consistent = T ¥ =Y ®(q) for all n € w.
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Proof of Theorem 1

Theorem 1 (precise version)

VPrfy(x,y): s.p.p. of T,
IPrfr(x,y): s.p.p. of T
3Y ®(x): Rosser-type Yablo formula of Prfr(x,y) s.t.

e PA - Vz(Prr(z) +> Prp(x));
e PA - Y*(0) <+ 7 for a Rosser sentence 7 of Prfr(z,y);
o T: consistent = T ¥ =Y ®(q) for all n € w.

T ¥ —m by Rosser’s theorem, and thus T ¥ -Y ¥(0).
Since PA - Y®(0) — Y®(n), T ¥ =Y E(a).
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Proof of Theorem 1

o Our s.p.p. Prfr(xz,vy) is defined as a formula representing a
recursive function f enumerating the set of all theorems of T'.
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Proof of Theorem 1

o Our s.p.p. Prfr(xz,vy) is defined as a formula representing a
recursive function f enumerating the set of all theorems of T'.

o By using the fixed point lemma, we can use
a Rosser-type Yablo formula Y ®(x) of Prfr(z,y) and
a Rosser sentence 7w of Prfr(z,y)
in the definition of f.
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Proof of Theorem 1

Proof of Theorem 1

o Our s.p.p. Prfr(xz,vy) is defined as a formula representing a
recursive function f enumerating the set of all theorems of T'.
o By using the fixed point lemma, we can use
a Rosser-type Yablo formula Y ®(x) of Prfr(z,y) and
a Rosser sentence 7w of Prfr(z,y)
in the definition of f.
o We prepare a bell and a list, and we define f recursively by

using these materials.
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Proof of Theorem 1

Until the bell rings

o Define the values of f by copying Prf7.(x,y), i.e.

) if n is a proof of some formula ¢;
f(n) =

0=0 o.w.
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Proof of Theorem 1

Until the bell rings

o Define the values of f by copying Prf7.(x,y), i.e.

) if n is a proof of some formula ¢;
f(n) =

0=0 o.w.

e If n is a proof of =Y (a) for some a > 0, put a into the list.

W
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Proof of Theorem 1

o If n is a proof of one of
@ Y (a) for some a > 0 which is not in the list,




Proof of theorem 1
[e]o]e] lelele)
Proof of Theorem 1

the bell rings

o If n is a proof of one of
@ Y (a) for some a > 0 which is not in the list,
Q w,
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the bell rings

o If n is a proof of one of
@ Y (a) for some a > 0 which is not in the list,
Q w,
Q —m,
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Proof of Theorem 1

Until the bell rings

o If n is a proof of one of
@ Y (a) for some a > 0 which is not in the list,
Q w,
Q —m,
then ring the bell!
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Proof of Theorem 1

Q@ If n is a proof of Y (a),
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Proof of Theorem 1

After the bell rings at the stage n
Q@ If n is a proof of Y (a), let

c:= 1+ max({b: b is in the list} U {a}).
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Proof of Theorem 1

After the bell rings at the stage n
Q@ If n is a proof of Y (a), let

c:= 1+ max({b: b is in the list} U {a}).

Define f(n + 1) = Y2(¢)
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Proof of Theorem 1

After the bell rings at the stage n
Q@ If n is a proof of Y (a), let

c:= 1+ max({b: b is in the list} U {a}).

Define f(n + 1) = Y®(€) and f(n + 2) = =.
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Proof of Theorem 1

After the bell rings at the stage n
Q@ If n is a proof of Y (a), let

c:= 1+ max({b: b is in the list} U {a}).

Define f(n + 1) = Y®(€) and f(n + 2) = =.
After n 4+ 3, f outputs all formulas.
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Proof of Theorem 1

After the bell rings at the stage n
Q@ If n is a proof of Y (a), let

c:= 1+ max({b: b is in the list} U {a}).

Define f(n + 1) = Y®(€) and f(n + 2) = =.
After n 4+ 3, f outputs all formulas.
@ If n is a proof of =, let

c:= 1+ max({b: b is in the list} U {0})

and define f(n + 1) = Y2(e).
After n 4+ 2, f enumerates all formulas.
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Proof of Theorem 1

After the bell rings at the stage n
Q@ If n is a proof of Y (a), let

c:= 1+ max({b: b is in the list} U {a}).

Define f(n + 1) = Y®(€) and f(n + 2) = =.
After n 4+ 3, f outputs all formulas.
@ If n is a proof of =, let

c:= 1+ max({b: b is in the list} U {0})

and define f(n + 1) = Y2(e).
After n 4+ 2, f enumerates all formulas.

@ If n is a proof of -, for a suitable recursive enumeration
®o,P1,... of all formulas, f enumerates

_|YR(i), ®Po, —|YR(§), Plye-.

after n + 1.
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Proof of Theorem 1

PA |- ?the bell rings” <+ —ConZ%.

Then PA + Vz(Prr(x) <> Prp(x)).
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Proof of Theorem 1

PA I ”the bell rings” <> —Con’.. \

Then PA + Vz(Prr(x) <> Prp(x)).

PA - 3y > OPrE(TY R(9)7) < PrE(Tn7).
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Proof of Theorem 1

PA I ”the bell rings” <> —Con’.. \

Then PA + Vz(Prr(x) <> Prp(x)).

PA - 3y > OPrE(TY R(9)7) < PrE(Tn7).

Then PA - Y®(0) < .
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Proof of Theorem 1

Thank you for your attention!
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