Taishi Kurahashi

Kobe University

証明論研究集会 2013 Keio University August 9, 2013

- Gödel and Rosser's theorems
- @ Gödel's theorems based on Yablo's paradox
- 8 Rosser-type formalizations
- Proof of Theorem 1

- ② Gödel's theorems based on Yablo's paradox
- 8 Rosser-type formalizations
- Proof of Theorem 1

Gödel and Rosser's theorems

T: recursive theory of arithmetic containing PA

•00

T: recursive theory of arithmetic containing PA $^{ \Gamma }\varphi ^{ \gamma }$: The numeral of the Gödel number of a formula φ

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

Gödel and Rosser's theorems Gödel and Rosser's theorems

A formula $Prf_T(x,y)$ is a standard proof predicate (s.p.p.) of T

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of $T:\Leftrightarrow$

• $Prf_T(x,y)$ is a Δ_1 formula;

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $Prf_T(x,y)$ is a standard proof predicate (s.p.p.) of T :⇔

- $Prf_T(x, y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of T: \Leftrightarrow

- $Prf_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$
 - for the formula $Pr_T(x) \equiv \exists y Prf_T(x, y)$,
 - $\bullet \ \mathsf{PA} \vdash \mathsf{Pr}_T(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_T(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_T(\ulcorner \psi \urcorner));$

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $Prf_T(x,y)$ is a standard proof predicate (s.p.p.) of T :⇔

- $Prf_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$
 - for the formula $Pr_T(x) \equiv \exists y Prf_T(x,y)$,
 - PA $\vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil));$
 - $\varphi \in \Sigma_1 \Rightarrow \mathsf{PA} \vdash \varphi \to \mathsf{Pr}_T(\lceil \varphi \rceil)$.

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of $T:\Leftrightarrow$

- $\mathsf{Prf}_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$
 - for the formula $Pr_T(x) \equiv \exists y Prf_T(x, y)$,
 - $\mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_T(\lceil \varphi \rceil) \to \mathsf{Pr}_T(\lceil \psi \rceil));$
 - $\varphi \in \Sigma_1 \Rightarrow \mathsf{PA} \vdash \varphi \to \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Gödel constructed a s.p.p. of each such a theory T.

0●0Gödel and Rosser's theorems

Gödel and Rosser's incompleteness theorems

Let $\mathsf{Prf}_T(x,y)$ be any s.p.p. of T.

•

Let $Prf_T(x, y)$ be any s.p.p. of T.

Gödel and Rosser's theorems

Gödel and Rosser's theorems

000

- $\Pr_T(x) \equiv \exists y \Pr_T(x,y)$ (a provability predicate of T)
- $\Pr_T^R(x) \equiv \exists y (\Pr_T(x,y) \land \forall z \leq y \neg \Pr_T(\neg x,z))$ (a Rosser provability predicate of T)

Let $\mathsf{Prf}_T(x,y)$ be any s.p.p. of T.

- $Pr_T(x) \equiv \exists y Prf_T(x, y)$ (a provability predicate of T)
- $\operatorname{Pr}_T^R(x) \equiv \exists y (\operatorname{Prf}_T(x,y) \land \forall z \leq y \neg \operatorname{Prf}_T(\neg x,z))$ (a Rosser provability predicate of T)

Theorem (Gödel, 1931)

Gödel and Rosser's theorems

Gödel and Rosser's theorems

000

For any sentence φ satisfying $PA \vdash \varphi \leftrightarrow \neg Pr_T(\lceil \varphi \rceil)$,

- T: consistent $\Rightarrow T \nvdash \varphi$;
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \varphi$.

Let $Prf_T(x, y)$ be any s.p.p. of T.

- $Pr_T(x) \equiv \exists y Prf_T(x, y)$ (a provability predicate of T)
- $\operatorname{Pr}_T^R(x) \equiv \exists y (\operatorname{Prf}_T(x,y) \land \forall z \leq y \neg \operatorname{Prf}_T(\neg x,z))$ (a Rosser provability predicate of T)

Theorem (Gödel, 1931)

For any sentence φ satisfying $PA \vdash \varphi \leftrightarrow \neg Pr_T(\lceil \varphi \rceil)$,

- T: consistent $\Rightarrow T \nvdash \varphi$;
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \varphi$.

T is Σ_1 -sound

Gödel and Rosser's theorems

Gödel and Rosser's theorems

000

 $\Leftrightarrow \forall \varphi \colon \Sigma_1 \text{ sentence } (T \vdash \varphi \Rightarrow \mathbb{N} \models \varphi).$

Gödel and Rosser's incompleteness theorems

Let $Prf_T(x,y)$ be any s.p.p. of T.

- $Pr_T(x) \equiv \exists y Prf_T(x,y)$ (a provability predicate of T)
- $\Pr_T^R(x) \equiv \exists y (\Pr_T(x, y) \land \forall z \leq y \neg \Pr_T(\neg x, z))$ (a Rosser provability predicate of T)

Theorem (Gödel, 1931)

For any sentence φ satisfying $PA \vdash \varphi \leftrightarrow \neg Pr_T(\lceil \varphi \rceil)$,

- T: consistent $\Rightarrow T \nvdash \varphi$;
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \varphi$.

T is Σ_1 -sound

 $\Leftrightarrow \forall \varphi \colon \Sigma_1 \text{ sentence } (T \vdash \varphi \Rightarrow \mathbb{N} \models \varphi).$

Theorem (Rosser, 1936)

For any sentence ψ satisfying $PA \vdash \psi \leftrightarrow \neg Pr_T^R(\lceil \psi \rceil)$, T: consistent $\Rightarrow T \nvdash \psi$ and $T \nvdash \neg \psi$.

Guaspari and Solovay's results

Theorem (Guaspari and Solovay, 1979)

• There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.

Theorem (Guaspari and Solovay, 1979)

Gödel and Rosser's theorems

Gödel and Rosser's theorems

000

• There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.

Guaspari and Solovay's results

There is a s.p.p. whose Rosser sentences are all provably equivalent.

Guaspari and Solovay's results

Theorem (Guaspari and Solovay, 1979)

- There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.

They constructed required standard proof predicates by rearrenging proofs of a given s.p.p.

- Gödel and Rosser's theorems
- ② Gödel's theorems based on Yablo's paradox
- 8 Rosser-type formalizations
- Proof of Theorem 1

Yablo's paradox (Yablo, 1993)

- Let Y_0, Y_1, \ldots , be an infinite sequence of propositions.
- Each Y_i states that "For every j > i, Y_j is false".
- Then we cannot determine whether Y_i is true or false.

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\ulcorner Y(\dot{y})\urcorner)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash Y(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\ulcorner Y(\dot{y}) \urcorner)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash Y(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Theorem (Kikuchi and K., 2011; Cieśliński and Urbaniak, 2012)

• For any $n \in \mathbb{N}$, PA $\vdash Y(\bar{n}) \leftrightarrow \mathsf{Con}_T$.

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash Y(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Theorem (Kikuchi and K., 2011; Cieśliński and Urbaniak, 2012)

- For any $n \in \mathbb{N}$, PA $\vdash Y(\bar{n}) \leftrightarrow \mathsf{Con}_T$.
- For any $m, n \in \mathbb{N}$, PA $\vdash Y(\bar{m}) \leftrightarrow Y(\bar{n})$.

 $Pr_T(x)$

Yablo's paradox

0000

Yablo's paradox

	Σ_1 -sound	consistent
Liar paradox	$Pr_T(x)$	$Pr^R_T(x)$
Yablo's paradox	$Pr_T(x)$	$Pr^R_T(x)$?

It is dependent on the choice of a s.p.p.

Rosser-type formalizations

- Yablo's paradox
- Rosser-type formalizations
- Proof of Theorem 1

Rosser-type formalizations

Rosser-type formalization of Yablo's sequence

Rosser-type formalizations

Let $Y^{R}(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^{\mathbf{R}}(\lceil Y^R(\dot{y}) \rceil)).$$

Formalizations of Yablo's sequence using Rosser predicates

Rosser-type formalizations

Rosser-type formalization of Yablo's sequence

Let $Y^R(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}^{\textcolor{red}{R}}_T(\ulcorner Y^R(\dot{y})\urcorner)).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y^R(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^{R}(\bar{n}).$

Rosser-type formalization of Yablo's sequence

Let $Y^R(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^\mathbf{R}(\ulcorner Y^R(\dot{y})\urcorner)).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y^R(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^{R}(\bar{n}).$

Question

Rosser-type formalizations

T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$?

Rosser-type formalization of Yablo's sequence

Let $Y^{R}(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^{\mathbf{R}}(\ulcorner Y^R(\dot{y})\urcorner)).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y^R(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^{R}(\bar{n}).$

Question

Rosser-type formalizations

 $T: \mathbf{consistent} \Rightarrow \forall n \in \mathbb{N}, T \not\vdash \neg Y^R(\bar{n})$?

Answer

No.

If T is consistent but not Σ_1 -sound, then the provability of $\neg Y^R(\bar{n})$ is dependent on the choice of a s.p.p.

Main Theorems

 \circ

Rosser-type formalizations

Theorem 1

Rosser-type formalizations

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$.

Main Theorems

Theorem 1

Rosser-type formalizations

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$.

Theorem 2

T: not Σ_1 -sound

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \vdash \neg Y^R(\bar{n})$.

Rosser-type formalizations

Theorem 1

Rosser-type formalizations

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$.

Theorem 2

T: not Σ_1 -sound

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \vdash \neg Y^R(\bar{n})$.

We proved these theorems by using the technique of Gaspari and Solovay.

- Yablo's paradox
- ${f 0}$ Rosser-type formalizations
- Proof of Theorem 1

Theorem 1 (precise version)

 $\forall \mathsf{Prf}_T'(x,y) : \text{ s.p.p. of } T,$

Theorem 1 (precise version)

```
\forall \mathsf{Prf}_T'(x,y): s.p.p. of T,
```

$$\exists \mathsf{Prf}_T(x,y) : \text{ s.p.p. of } T$$

 $\exists Y^R(x)$: Rosser-type Yablo formula of $\mathsf{Prf}_T(x,y)$ s.t.

Theorem 1 (precise version)

```
\forall \mathsf{Prf}_T'(x,y): s.p.p. of T,
```

$$\exists \mathsf{Prf}_T(x,y) : \text{ s.p.p. of } T$$

$$\exists Y^R(x)$$
: Rosser-type Yablo formula of $\mathsf{Prf}_T(x,y)$ s.t.

$$\bullet \ \mathsf{PA} \vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x));$$

Theorem 1 (precise version)

```
\forall \mathsf{Prf}_T'(x,y): s.p.p. of T,
```

$$\exists \mathsf{Prf}_T(x,y) : \text{ s.p.p. of } T$$

$$\exists Y^R(x)$$
: Rosser-type Yablo formula of $\mathsf{Prf}_T(x,y)$ s.t.

• PA
$$\vdash \forall x (\Pr_T(x) \leftrightarrow \Pr'_T(x));$$

• PA
$$\vdash Y^R(0) \leftrightarrow \pi$$
 for a Rosser sentence π of $\mathsf{Prf}_T(x,y)$;

Theorem 1 (precise version)

Proof of Theorem 1

```
\forall \mathsf{Prf}_T'(x,y): s.p.p. of T,
```

$$\exists \mathsf{Prf}_T(x,y) : \text{ s.p.p. of } T$$

 $\exists Y^R(x)$: Rosser-type Yablo formula of $\mathsf{Prf}_T(x,y)$ s.t.

• PA
$$\vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x));$$

• PA
$$\vdash Y^R(0) \leftrightarrow \pi$$
 for a Rosser sentence π of $\mathsf{Prf}_T(x,y)$;

•
$$T$$
: consistent $\Rightarrow T \nvdash \neg Y^R(\bar{n})$ for all $n \in \omega$.

Theorem 1 (precise version)

 $\forall \mathsf{Prf}_T'(x,y)$: s.p.p. of T,

 $\exists \mathsf{Prf}_T(x,y)$: s.p.p. of T

 $\exists Y^R(x)$: Rosser-type Yablo formula of $\mathsf{Prf}_T(x,y)$ s.t.

- PA $\vdash \forall x (\Pr_T(x) \leftrightarrow \Pr_T'(x));$
- PA $\vdash Y^R(0) \leftrightarrow \pi$ for a Rosser sentence π of $\mathsf{Prf}_T(x,y)$;
- T: consistent $\Rightarrow T \nvdash \neg Y^R(\bar{n})$ for all $n \in \omega$.

 $T \nvdash \neg \pi$ by Rosser's theorem, and thus $T \nvdash \neg Y^R(0)$.

Since $PA \vdash Y^R(0) \rightarrow Y^R(\bar{n}), T \nvdash \neg Y^R(\bar{n}).$

• Our s.p.p. $Prf_T(x,y)$ is defined as a formula representing a recursive function f enumerating the set of all theorems of T.

- Our s.p.p. $Prf_T(x,y)$ is defined as a formula representing a recursive function f enumerating the set of all theorems of T.
- By using the fixed point lemma, we can use a Rosser-type Yablo formula $Y^{R}(x)$ of $Prf_{T}(x, y)$ and a Rosser sentence π of $Prf_T(x,y)$ in the definition of f.

- Our s.p.p. $\operatorname{Prf}_T(x,y)$ is defined as a formula representing a recursive function f enumerating the set of all theorems of T.
- By using the fixed point lemma, we can use a Rosser-type Yablo formula $Y^R(x)$ of $\mathsf{Prf}_T(x,y)$ and a Rosser sentence π of $\mathsf{Prf}_T(x,y)$ in the definition of f.
- We prepare a bell and a list, and we define f recursively by using these materials.

Until the bell rings

Proof of Theorem 1

• Define the values of f by copying $Prf'_T(x,y)$, i.e.

$$f(n) := egin{cases} arphi & ext{if n is a proof of some formula $arphi$;} \ 0 = 0 & ext{o.w.} \end{cases}$$

Until the bell rings

Proof of Theorem 1

• Define the values of f by copying $Prf'_T(x,y)$, i.e.

$$f(n) := egin{cases} arphi & ext{if n is a proof of some formula $arphi$;} \ 0 = 0 & ext{o.w.} \end{cases}$$

• If n is a proof of $\neg Y(\bar{a})$ for some a > 0, put a into the list.

Until the bell rings

- If n is a proof of one of
 - **1** $Y(\bar{a})$ for some a > 0 which is not in the list,

Until the bell rings

- If n is a proof of one of
 - **1** $Y(\bar{a})$ for some a > 0 which is not in the list,

Until the bell rings

- If n is a proof of one of
 - **1** $Y(\bar{a})$ for some a > 0 which is not in the list,
 - $^{\circ}$ π ,
 - $\odot \neg \pi$,

Until the bell rings

Proof of Theorem 1

- If n is a proof of one of
 - **1** $Y(\bar{a})$ for some a > 0 which is not in the list,
 - \mathbf{a} π ,
 - $\odot \neg \pi$,

then ring the bell!

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$,

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$, let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{a\}).$$

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$, let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{a\}).$$

Define
$$f(n+1) = Y^R(\bar{c})$$

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$, let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{a\}).$$

Define
$$f(n+1) = Y^R(\bar{c})$$
 and $f(n+2) = \pi$.

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$, let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{a\}).$$

Define
$$f(n+1) = Y^R(\bar{c})$$
 and $f(n+2) = \pi$.

After n+3, f outputs all formulas.

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$, let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{a\}).$$

Define
$$f(n+1) = Y^R(\bar{c})$$
 and $f(n+2) = \pi$.

After $n+3,\,f$ outputs all formulas.

2 If n is a proof of π , let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{0\})$$

and define
$$f(n+1) = Y^R(\bar{c})$$
.

After n+2, f enumerates all formulas.

After the bell rings at the stage n

• If n is a proof of $Y(\bar{a})$, let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{a\}).$$

Define
$$f(n+1) = Y^R(\bar{c})$$
 and $f(n+2) = \pi$.

After n+3, f outputs all formulas.

② If n is a proof of π , let

$$c := 1 + \max(\{b : b \text{ is in the list}\} \cup \{0\})$$

and define
$$f(n+1) = Y^R(\bar{c})$$
.

After n+2, f enumerates all formulas.

§ If n is a proof of $\neg \pi$, for a suitable recursive enumeration $\varphi_0, \varphi_1, \ldots$ of all formulas, f enumerates

$$eg Y^R(ar{1}), arphi_0,
eg Y^R(ar{2}), arphi_1, \dots$$

after n+1.

Lemma 1

 $PA \vdash$ "the bell rings" $\leftrightarrow \neg Con'_T$.

Lemma 1

Proof of Theorem 1

 $PA \vdash$ "the bell rings" $\leftrightarrow \neg Con'_T$.

Then $\mathsf{PA} \vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x))$.

Lemma 1

Proof of Theorem 1

 $PA \vdash$ "the bell rings" $\leftrightarrow \neg Con'_T$.

Then $\mathsf{PA} \vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x)).$

Lemma 2

 $\mathsf{PA} \vdash \exists y > 0 \mathsf{Pr}_T^R(\ulcorner Y^R(\dot{y}) \urcorner) \leftrightarrow \mathsf{Pr}_T^R(\ulcorner \pi \urcorner).$

Lemma 1

 $PA \vdash$ "the bell rings" $\leftrightarrow \neg Con'_T$.

Then $\mathsf{PA} \vdash \forall x (\mathsf{Pr}_T(x) \leftrightarrow \mathsf{Pr}_T'(x))$.

Lemma 2

 $\mathsf{PA} \vdash \exists y > 0 \mathsf{Pr}_T^R(\ulcorner Y^R(\dot{y}) \urcorner) \leftrightarrow \mathsf{Pr}_T^R(\ulcorner \pi \urcorner).$

Then $PA \vdash Y^R(0) \leftrightarrow \pi$.

Thank you for your attention!