Rosser-type formalizations of Yablo's paradox

Taishi Kurahashi

Kobe University, Japan Research Fellow of the Japan Society for the Promotion of Science

> Logic Colloquium 2013 Évora, Portugal July 22, 2013

	Σ_1 -sound (ω -consistent)	consistent
Liar paradox	Gödel (1931)	Rosser (1936)
Yablo's paradox	Priest (1997)	?

Contents

- Gödel and Rosser's theorems
- @ Gödel's theorems based on Yablo's paradox
- 8 Rosser-type formalizations

- Gödel and Rosser's theorems
- @ Gödel's theorems based on Yablo's paradox
- 8 Rosser-type formalizations

T: recursive theory of arithmetic containing PA

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $Prf_T(x,y)$ is a standard proof predicate (s.p.p.) of T

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of T: \Leftrightarrow

• $Prf_T(x,y)$ is a Δ_1 formula;

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of T: \Leftrightarrow

- $Prf_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of T: \Leftrightarrow

- $\operatorname{Prf}_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$
 - for the formula $Pr_T(x) \equiv \exists y Prf_T(x, y)$,
 - PA $\vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil));$

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of $T:\Leftrightarrow$

- $\operatorname{Prf}_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$
 - for the formula $Pr_T(x) \equiv \exists y Prf_T(x, y)$,
 - PA $\vdash \Pr_T(\lceil \varphi \to \psi \rceil) \to (\Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \psi \rceil));$
 - $\varphi \in \Sigma_1 \Rightarrow \mathsf{PA} \vdash \varphi \to \mathsf{Pr}_T(\lceil \varphi \rceil)$.

T: recursive theory of arithmetic containing PA $\lceil \varphi \rceil$: The numeral of the Gödel number of a formula φ

Definition

A formula $\mathsf{Prf}_T(x,y)$ is a standard proof predicate (s.p.p.) of $T:\Leftrightarrow$

- $\mathsf{Prf}_T(x,y)$ is a Δ_1 formula;
 - $T \vdash \varphi \Leftrightarrow \exists p \in \omega \text{ s.t. } \mathbb{N} \models \mathsf{Prf}_T(\lceil \varphi \rceil, \bar{p});$
 - for the formula $Pr_T(x) \equiv \exists y Prf_T(x, y)$,
 - $\mathsf{PA} \vdash \mathsf{Pr}_T(\lceil \varphi \to \psi \rceil) \to (\mathsf{Pr}_T(\lceil \varphi \rceil) \to \mathsf{Pr}_T(\lceil \psi \rceil));$
 - $\varphi \in \Sigma_1 \Rightarrow \mathsf{PA} \vdash \varphi \to \mathsf{Pr}_T(\lceil \varphi \rceil)$.

Gödel constructed a s.p.p. of each such a theory T.

Gödel and Rosser's incompleteness theorems

Let $\mathsf{Prf}_T(x,y)$ be any s.p.p. of T.

Gödel and Rosser's incompleteness theorems

Let $Prf_T(x, y)$ be any s.p.p. of T.

- $\Pr_T(x) \equiv \exists y \Pr_T(x,y)$ (a provability predicate of T)
- $\Pr_T^R(x) \equiv \exists y (\Pr_T(x,y) \land \forall z \leq y \neg \Pr_T(\neg x,z))$ (a Rosser provability predicate of T)

Gödel and Rosser's incompleteness theorems

Let $Prf_T(x, y)$ be any s.p.p. of T.

- $\Pr_T(x) \equiv \exists y \Pr_T(x,y)$ (a provability predicate of T)
- $\operatorname{Pr}_T^R(x) \equiv \exists y (\operatorname{Prf}_T(x,y) \land \forall z \leq y \neg \operatorname{Prf}_T(\neg x,z))$ (a Rosser provability predicate of T)

Theorem (Gödel, 1931)

For any φ satisfying $PA \vdash \varphi \leftrightarrow \neg Pr_T(\ulcorner \varphi \urcorner)$,

- T: consistent $\Rightarrow T \nvdash \varphi$;
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \varphi$.

Let $Prf_T(x, y)$ be any s.p.p. of T.

- $Pr_T(x) \equiv \exists y Prf_T(x, y)$ (a provability predicate of T)
- $\Pr_T^R(x) \equiv \exists y (\Pr_T(x,y) \land \forall z \leq y \neg \Pr_T(\neg x,z))$ (a Rosser provability predicate of T)

Theorem (Gödel, 1931)

For any φ satisfying $PA \vdash \varphi \leftrightarrow \neg Pr_T(\ulcorner \varphi \urcorner)$,

- T: consistent $\Rightarrow T \nvdash \varphi$;
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \varphi$.

T is Σ_1 -sound

 $\Leftrightarrow \forall \varphi \colon \Sigma_1 \text{ sentence } (T \vdash \varphi \Rightarrow \mathbb{N} \models \varphi).$

Let $Prf_T(x, y)$ be any s.p.p. of T.

- $Pr_T(x) \equiv \exists y Prf_T(x, y)$ (a provability predicate of T)
- $\Pr_T^R(x) \equiv \exists y (\Pr_T(x, y) \land \forall z \leq y \neg \Pr_T(\neg x, z))$ (a Rosser provability predicate of T)

Theorem (Gödel, 1931)

For any φ satisfying $PA \vdash \varphi \leftrightarrow \neg Pr_T(\lceil \varphi \rceil)$,

- T: consistent $\Rightarrow T \nvdash \varphi$;
- $T: \Sigma_1$ -sound $\Rightarrow T \nvdash \neg \varphi$.

T is Σ_1 -sound

 $\Leftrightarrow \forall \varphi \colon \Sigma_1 \text{ sentence } (T \vdash \varphi \Rightarrow \mathbb{N} \models \varphi).$

Theorem (Rosser, 1936)

For any ψ satisfying $PA \vdash \psi \leftrightarrow \neg Pr_T^R(\lceil \psi \rceil)$,

T: consistent $\Rightarrow T \nvdash \psi$ and $T \nvdash \neg \psi$.

Theorem (Guaspari and Solovay, 1979)

• There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.

Theorem (Guaspari and Solovay, 1979)

- **1** There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.

Theorem (Guaspari and Solovay, 1979)

- **1** There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.
- ullet $\Pr_T^R(\ulcorner \varphi \urcorner)$ means " φ has a smaller proof in T than any proof of $\lnot \varphi$ ".

Theorem (Guaspari and Solovay, 1979)

- There is a s.p.p. s.t. not all of whose Rosser sentences are provably equivalent.
- There is a s.p.p. whose Rosser sentences are all provably equivalent.
- $\Pr_T^R(\lceil \varphi \rceil)$ means " φ has a smaller proof in T than any proof of $\neg \varphi$ ".
- They constructed a new s.p.p. with the required conditions by rearrenging proofs of a given s.p.p.

- Gödel and Rosser's theorems
- @ Gödel's theorems based on Yablo's paradox
- 8 Rosser-type formalizations

Yablo's paradox

Yablo's paradox (Yablo, 1993)

- Let Y_0, Y_1, \ldots , be an infinite sequence of propositions.
- Each Y_i states that "For every j > i, Y_j is false".
- Then we cannot determine whether Y_i is true or false.

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\ulcorner Y(\dot{y})\urcorner)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash Y(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Theorem (Kikuchi and K., 2011; Cieśliński and Urbaniak, 2012)

• For any $n \in \mathbb{N}$, PA $\vdash Y(\bar{n}) \leftrightarrow \mathsf{Con}_T$.

Formalization of Yablo's sequence

Let Y(x) be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T(\lceil Y(\dot{y}) \rceil)),$$

where y is free in $Pr_T(\lceil Y(\dot{y}) \rceil)$.

Theorem (Priest, 1997)

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y(\bar{n}).$
- $T: \Sigma_1$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y(\bar{n}).$

Theorem (Kikuchi and K., 2011; Cieśliński and Urbaniak, 2012)

- For any $n \in \mathbb{N}$, PA $\vdash Y(\bar{n}) \leftrightarrow \mathsf{Con}_T$.
- For any $m, n \in \mathbb{N}$, PA $\vdash Y(\bar{m}) \leftrightarrow Y(\bar{n})$.

	Σ_1 -sound	consistent
Liar paradox	$Pr_T(x)$	$Pr^R_T(x)$
Yablo's paradox	$Pr_T(x)$	$Pr^R_T(x)$?

	Σ_1 -sound	consistent
Liar paradox	$Pr_T(x)$	$Pr^R_T(x)$
Yablo's paradox	$Pr_T(x)$	$Pr^R_T(x)$?

It is dependent on the choice of a s.p.p.

- Gödel and Rosser's theorems
- Yablo's paradox
- 8 Rosser-type formalizations

Rosser-type formalization of Yablo's sequence

Let $Y^R(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^{\textcolor{red}{R}}(\ulcorner Y^R(\dot{y})\urcorner)).$$

Rosser-type formalization of Yablo's sequence

Let $Y^R(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}^{\textcolor{red}{R}}_T(\ulcorner Y^R(\dot{y})\urcorner)).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y^R(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash \neg Y^{R}(\bar{n}).$

Formalizations of Yablo's sequence using Rosser predicates

Rosser-type formalization of Yablo's sequence

Let $Y^R(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^\mathbf{R}(\ulcorner Y^R(\dot{y})\urcorner)).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y^R(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^{R}(\bar{n}).$

Question

T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$?

Formalizations of Yablo's sequence using Rosser predicates

Rosser-type formalization of Yablo's sequence

Let $Y^{R}(x)$ be a formula satisfying the following equivalence:

$$\mathsf{PA} \vdash \forall x (Y^R(x) \leftrightarrow \forall y > x \neg \mathsf{Pr}_T^{\mathbf{R}}(\ulcorner Y^R(\dot{y})\urcorner)).$$

- T: consistent $\Rightarrow \forall n \in \mathbb{N}, T \not\vdash Y^R(\bar{n}).$
- $T: \Sigma_{1}$ -sound $\Rightarrow \forall n \in \mathbb{N}, T \nvdash \neg Y^{R}(\bar{n}).$

Question

 $T: \mathbf{consistent} \Rightarrow \forall n \in \mathbb{N}, \ T \nvdash \neg Y^R(\bar{n})$?

Answer

No.

If T is consistent but not Σ_1 -sound, then the provability of $\neg Y^R(\bar{n})$ is dependent on the choice of a s.p.p.

Main Theorems

Theorem 1

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$.

Main Theorems

Theorem 1

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$.

Theorem 2

T: not Σ_1 -sound

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \vdash \neg Y^R(\bar{n})$.

Main Theorems

Theorem 1

T: consistent

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \nvdash \neg Y^R(\bar{n})$.

Theorem 2

T: not Σ_1 -sound

 \Rightarrow there is a s.p.p. of T s.t. $\forall n \in \mathbb{N}, T \vdash \neg Y^R(\bar{n})$.

We proved these theorems by using the technique of Gaspari and Solovay.

• Cieśliński and Urbaniak asked whether $Y^R(\bar{m})$ and $Y^R(\bar{n})$ $(m \neq n)$ are provably equivalent or not.

- Cieśliński and Urbaniak asked whether $Y^R(\bar{m})$ and $Y^R(\bar{n})$ $(m \neq n)$ are provably equivalent or not.
- We gave a partial answer to thier question:
- The provability of $\forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$ is dependent on the choice of a s.p.p.

- Cieśliński and Urbaniak asked whether $Y^R(\bar{m})$ and $Y^R(\bar{n})$ $(m \neq n)$ are provably equivalent or not.
- We gave a partial answer to thier question:
- The provability of $\forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$ is dependent on the choice of a s.p.p.

Theorem 3

① There is a s.p.p. of T s.t. $PA \vdash \forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$.

- Cieśliński and Urbaniak asked whether $Y^R(\bar{m})$ and $Y^R(\bar{n})$ $(m \neq n)$ are provably equivalent or not.
- We gave a partial answer to thier question:
- The provability of $\forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$ is dependent on the choice of a s.p.p.

Theorem 3

- **1** There is a s.p.p. of T s.t. $\mathsf{PA} \vdash \forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$.
- 2 T: consistent
 - \Rightarrow there is a s.p.p. of T s.t. $T \nvdash \forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$.

- Cieśliński and Urbaniak asked whether $Y^R(\bar{m})$ and $Y^R(\bar{n})$ $(m \neq n)$ are provably equivalent or not.
- We gave a partial answer to thier question:
- The provability of $\forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$ is dependent on the choice of a s.p.p.

Theorem 3

- **1** There is a s.p.p. of T s.t. $\mathsf{PA} \vdash \forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$.
- ② T: consistent \Rightarrow there is a s.p.p. of T s.t. $T \nvdash \forall x \forall y (Y^R(x) \leftrightarrow Y^R(y))$.

Problem

Is there a s.p.p. of T such that $Y^R(0)$ and $Y^R(\bar{1})$ are not provably equivalent?

Thank you for your attention!