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Propositional provability logic

o Provability predicate of r.e. theory T is a 3; formula Prr(x)
which weakly represents the set {"¢" | T I ¢} in PA, i.e.,
V: sentence, PA - Prr (") < T F .

e Fix a provability predicate which satisfies the following five
conditions:

DI T+ ¢ = PAF Pry("p))

D2 PAE Prr("p — ¢7) — (Prr("¢") — Prr("47))

D3 PAF Prr ("¢ ") — Prr("Prr ("))

Lob PAF Prr("Prr (") — ) — Pro(T¢).
3q-comp. ¢: 33 = T+ ¢ — Prp(Te?).
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Propositional provability logic

Godel's thesis (1933)

The provability of a formal system can be considered as a modality.

The system GL of propositional modal logic

@ Axioms:

o Tautologies;
o (A — B) — (UA — UB);
o (A — A) — OA.

o Inference rules:

modus ponens from A and A — B infer B;

necessitation form A infer [JA.

Th(GL):= {A | GL F A}.
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Propositional provability logic

Let F' be the set of all propositional modal sentences.

Kripke frame is a system (W, <) where

e W is a non-empty set of worlds;

@ < is a binary relation on W: accessibility relation.
Kripke model is a system M = (W, <, |F) where

o (W, <) is a Kripke frame;

o |- is a binary relation on W X F' such that Vw € W,

o wh L;
sowlA— B& (wkF Aorwl- B);

O ooot

o wlF-UJA & V' € W(w < w = w - A).
o wlF0A S Jw € W(w < w & w I A).
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Propositional provability logic

A: modal sentence, F: Kripke frame, M: Kripke model.

o Aisvalidin M ' vw e W, wIF A.

o Ais valid in F & A is valid in (F,IF) for any I-.

o Kripke frame (W, <) is a GL-frame if < is
1. transitive,

2. conversely well-founded.
e Fr(GL):= {A | A is valid in any GL-frame }.

Theorem (Segerberg, 1971)

Th(GL) = Fr(GL).
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T: r.e. theory.

Definition (arithmetical interpretation)
A mapping * from F' to all sentences in the language of T is called

a T-interpretation
if it satisfies the following conditions:

o l*= 0=1;
o (A — B)* = (A* — B*);
o (JA)* = Prp("A*Y).

Definition

e A: propositional modal sentence.
. . £, . .
Ais T-valid & Vs: T-interpretation, T - A*.

e PL(T) := {A | Ais T-valid} :the provability logic of T.
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Propositional provability logic

T: 3:-sound r.e. extension of PA.

Theorem (Solovay, 1976)
Th(GL) = PL(T).

Th(GL)
d % R Segerberg (1971)
PL(T — Fr(GL

Solovay (1976)

Th(GL) = Fr(GL) = PL(T) for any X;-sound r.e. extension T of PA.
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Predicate provability logic

@ Assume that the language of predicate modal logic has no
function and constant symbols.

e Arithmetical interpretations of predicate modal logic assign a
k-ary formula in the language of T to each k-ary predicate
symbol.

o Kripke frame for predicate modal logic is a system
(W, <,{Dw}wew) where
{D.,}wew is a sequence of non-empty sets s.t.

w < w = Dy C Dy

o Kripke model for predicate modal logic is a system
(W, <, {Dw }wew, ) where
I is a binary relation between elements w of W and closed
formulas with parameters form D,,.
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Predicate provability logic

@ QGL is a natural extension of GL to predicate modal logic.

@ Define Th(QGL), Fr(QGL) and PL(T') similarly to the propositional
case.

F: Kripke frame. TFAE:
@ AIl axioms of QGL are valid in F;

© F is transitive and conversely well-founded.

So Th(QGL) C Fr(QGL).

For a predicate modal formula A, TFAE:
Q QGLF A;

@ A is valid in any transitive Kripke model where
O0(OB — B) — OB is valid for any predicate modal formula B.

Th(QGL) can be characterized by a class of Kripke models.



Predicate provability logic
[e]e] o]
Predicate provability logic

Theorem (Montagna, 1984)
@ Th(QGL) C Fr(QGL).
@ PL(PA) ¢ Fr(QGL).

Th(QGL) C PL(PA).

c°ro||ary,j?2 ‘f \\_1 Eb@

(PL(PA)) == (Fr(QcL)]
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Predicate provability logic

@ Montagna pointed out that
3T, T’: X1-sound r.e. extensions of PA s.t. PL(T) # PL(T").

Montagna's conjecture (1984)

[{PL(T) | T : r.e. extension of PA} = Th(QGL)?

a7 pN
[ﬂ{PL(T) | T': r.e. extension of PA}] [ Fr(GL) ]

The relationships between Th(QGL), Fr(QGL) and PL(T') have
not been understood completely.
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Theorem 1 (T.K.)

For any X;-sound r.e. extension T of 1X;,

Fr(QGL) ¢ PL(T).

a7 VAN
2 (F@eL)

Theorem 2 (T.K.)

N{PL(T) | T : r.e. La-theory extending IX1} ¢ Fr(QGL).

La= {+a X, 8,0, <}-
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The following corollary shows that Montagna’s conjecture does not
hold for a restricted case.

Corollary of Theorem 2
N{PL(T) | T : r.e. La-theory extending IX;} ¢ Th(QGL).

If we weaken the theory in the condition of the conjunction to 1X,,
then we obtain a stronger version.

Theorem 3 (T.K.)

N{PL(T) | T : r.e. La-theory extending IX2} N Fr(QGL) ¢ Th(QGL).
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Fr(QGL) ¢ PL(PA)

An outline of the proof of Theorem 1.

It suffices to find a predicate modal sentence A s.t.

(i)’ -A € Fr(QGL) and
(i)’ =A ¢ PL(PA). J

These conditions are equivalent to the following conditions:

(i) M = (W, <,{Dy}wew,F): transitive Kripke model.
Jwe Wst. wi- A
=>=< is not conversely well-founded.

(i) IM = PA 3 x: PA-interpretation s.t. M |= A*.
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Fr(QGL) ¢ PL(PA)

p(x): a unary predicate symbol.

o Montagna proved that
C = 3z0p(z) A VzIyO(p(z) — Op(y))
satisfies the condition (i).
So —=C € Fr(QGL).

Ky Montagna
"k\ (1984)

(PLER)] & (FreD)

@ C* = JzCon(PA+p™ (x))AVxIyPrea("p* () — Con(PA-l—p*(@'/))T)J

(ii) 3IM = PA Tx: PA-interpretation s.t. M |= C*.
However, we do not know the existence of such M and =*.
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Fr(QGL) ¢ PL(PA)

e We shall modify the predicate modal sentence C so that (ii)
holds while (i) is kept. ’

Definition (iterated consistency assertions)

Con® := (0 = 0);
Con™t! := Con(PA + Con™).

Definition (parameterized iterated consistency assertions)

Let Conpa(z) be one of the £ 4-formula ¢(x) which satisfies

PA - Vz(p(z) < [Con(PA + p(—1)) V x = 0]).

Vn € w, PA I Conpa(72) <> Con™.

JzOp(z) A VzIyO(p(z) — Op(y))
= Vap(xz) AV (p(z + 1) — Op(x)).
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Fr(QGL) ¢ PL(PA)

The main idea of the proof of Theorem 1

Proposition
@ PA I Vx(Conpa(z + 1) — Con(PA + Conpa(2))).
@ N = Con(PA + VxConpa(x))O

If p*(x) = Conpa(x), then
M = PA
M = (Vap(z) A ¥z (p(z + 1) — Op(a)))*.

OVz(p(x + 1) — Op(x)) asserts the existence of an infinite
sequence of worlds starting from any nonstandard element of a

nonstandard model of arithmetic.
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Fr(QGL) ¢ PL(PA)

X = {E(.’I}, y), S(xz,y), A(x,y, 2), M(x,y, 2), Z(x), L(x, y)}
set of predicate symbols.

Definition

PA-interpretation * is natural

E28 E*(xz,y) = “x=1vy", S*(z,y) = “S(x) = y” and so on.

e For each L 4-formula ¢, let [¢] be one of the relational
formulas written by using the symbols in X, which is
equivalent to ¢ in the sense of the natural interpretations.

o For any L s-formula ¢ and any natural interpretation =,

PA - ¢ <[] *.
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Fr(QGL) ¢ PL(PA)

B = VzVy(S(y,z) A p(z) — Op(y)).

Let A be the conjunction of the following six sentences:
Q Vzp(zx)
QB
@ OB
0 Vavy(S(z,y) — 0S(x,y))
9 (AQ)
@ [—Con(PA + VxzConpa(x))]

where A Q is a conjunction of all axioms of Robinson’s arithmetic Q.

Then A satisfies (i) and (ii).

(i) M = (W, <,{Dy}wew,|F): transitive Kripke model.
dw e Wst. wik A
=>=< is not conversely well-founded.

(i) IM = PA 3 x: PA-interpretation s.t. M |= A*.



Main theorems
000000e
Fr(QGL) ¢ PL(PA)

B = Vavy(S(y, z) A p(z) — Op(v))
A =Vap(z) N BAOB AVaeVy(S(z,y) — US(z,y))A

[A Q) A[—Con(PA + VYzConpa(z)))

(i)
o Assume that
M = (W, <, {Dy}wew, ) is a transitive Kripke model and
wo € W satisfies A.

@ wqg is a model of Q
@ Since N |= Con(PA + VzConpa(x)), wo must be non-standard.

=< is not conversely well-founded.

)
@ PA + VzConpa(x): consistent.
e IM |= PA + VzConpa(xz) + —Con(PA + VxConpa()).

e x: natural PA-interpretation s.t. p*(z) = Conpa(x).

=M= A~
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A related topic

Theorem (Artemov and Dzhaparidze, 1990)

A: predicate modal sentence.

A is PA-valid

= A is valid in any finite transitive and conversely well founded
Kripke frame.

(A frame is finite < whose universe and domains are all finite)

Th(QGL)
<z N
PL(PA)| = FA|A is valid in any corresponding

finite Kripke frame}
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Problems

Problem 1
o Is there a class of Kripke models which characterizes PL(T")?

72BN

(PLEAY) < (D

Problem 2
o Is Montagna’s conjecture true?
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