Nonstandard models of arithmetic and QGL

Taishi Kurahashi

Kobe University

Workshop on Proof Theory and Computability Theory February 20-24, 2011

Contents

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

- Provability predicate of r.e. theory T is a Σ_1 formula $\Pr_T(x)$ which weakly represents the set $\{ \ulcorner \varphi \urcorner \mid T \vdash \varphi \}$ in PA, i.e., $\forall \varphi$: sentence, PA $\vdash \Pr_T(\ulcorner \varphi \urcorner) \Leftrightarrow T \vdash \varphi$.
- Fix a provability predicate which satisfies the following five conditions:

The properties of $Pr_T(x)$

D1
$$T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \Pr_T(\lceil \varphi \rceil)$$

D2 PA
$$\vdash \Pr_T(\ulcorner \varphi \to \psi \urcorner) \to (\Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \psi \urcorner))$$

D3 PA
$$\vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil)\rceil)$$

$$\mathsf{L\"ob}\ \mathsf{PA} \vdash \mathrm{Pr}_T(\lceil \mathrm{Pr}_T(\lceil \varphi \rceil) \to \varphi \rceil) \to \mathrm{Pr}_T(\lceil \varphi \rceil).$$

$$\Sigma_1$$
-comp. $\varphi \colon \Sigma_1 \Rightarrow T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil)$.

Gödel's thesis (1933)

The provability of a formal system can be considered as a modality.

The system **GL** of propositional modal logic

- Axioms:
 - Tautologies;
 - $\bullet \Box (A \to B) \to (\Box A \to \Box B);$
 - $\bullet \Box (\Box A \to A) \to \Box A.$
- Inference rules:

modus ponens from A and $A \rightarrow B$ infer B;

necessitation form A infer $\Box A$.

 $\mathsf{Th}(\mathsf{GL}) := \{ A \mid \mathsf{GL} \vdash A \}.$

Let F be the set of all propositional modal sentences.

Definition

Kripke frame is a system $\langle W, \prec \rangle$ where

- W is a non-empty set of worlds;
- $\bullet \prec$ is a binary relation on W: accessibility relation.

Kripke model is a system $\mathcal{M} = \langle W, \prec, \Vdash \rangle$ where

- $\langle W, \prec \rangle$ is a Kripke frame;
- ullet \Vdash is a binary relation on W imes F such that $orall w\in W$,
 - w ⊮ ⊥;
 - $ullet w \Vdash A o B \Leftrightarrow (w \nvDash A \text{ or } w \Vdash B);$
 - • • ;
 - $\bullet \ w \Vdash \Box A \Leftrightarrow \forall w' \in W(w \prec w' \Rightarrow w' \Vdash A).$
 - $w \Vdash \Diamond A \Leftrightarrow \exists w' \in W(w \prec w' \& w' \Vdash A)$.

Propositional provability logic

Propositional provability logic

000000

Definition

A: modal sentence, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} \forall w \in W$. $w \Vdash A$.
- A is valid in $\mathcal{F} \stackrel{\text{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash \rangle$ for any \Vdash .

Definition

- Kripke frame $\langle W, \prec \rangle$ is a GL-frame if \prec is
 - 1. transitive.
 - 2. conversely well-founded.
- $Fr(GL) := \{A \mid A \text{ is valid in any GL-frame } \}.$

Theorem (Segerberg, 1971)

$$\mathsf{Th}(\mathsf{GL}) = \mathsf{Fr}(\mathsf{GL}).$$

Propositional provability logic

Propositional provability logic

000000

Definition (arithmetical interpretation)

A mapping \ast from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- $\bot^* \equiv 0 = 1$;
- $(A \to B)^* \equiv (A^* \to B^*);$
- $\bullet \ (\Box A)^* \equiv \Pr_T(\ulcorner A^* \urcorner).$

Definition

- A: propositional modal sentence.
 - $A \text{ is } T\text{-valid} \overset{\text{def.}}{\Leftrightarrow} \forall *: T\text{-interpretation, } T \vdash A^*.$
- $PL(T) := \{A \mid A \text{ is } T\text{-valid}\}\$: the provability logic of T.

$T: \Sigma_1$ -sound r.e. extension of PA.

Theorem (Solovay, 1976)

$$\mathsf{Th}(\mathsf{GL}) = \mathsf{PL}(T).$$

 $\mathsf{Th}(\mathsf{GL}) = \mathsf{Fr}(\mathsf{GL}) = \mathsf{PL}(T)$ for any Σ_1 -sound r.e. extension T of PA .

- Predicate provability logic
- Main theorems
- A related topic

- Assume that the language of predicate modal logic has no function and constant symbols.
- Arithmetical interpretations of predicate modal logic assign a k-ary formula in the language of T to each k-ary predicate symbol.
- Kripke frame for predicate modal logic is a system $\langle W, \prec, \{D_w\}_{w \in W} \rangle$ where $\{D_w\}_{w \in W}$ is a sequence of non-empty sets s.t. $w \prec w' \Rightarrow D_w \subseteq D_{w'}$.
- Kripke model for predicate modal logic is a system $\langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$ where \Vdash is a binary relation between elements w of W and closed formulas with parameters form D_w .

• Define $\mathsf{Th}(\mathsf{QGL})$, $\mathsf{Fr}(\mathsf{QGL})$ and $\mathsf{PL}(T)$ similarly to the propositional case.

Theorem

Predicate provability logic

 \mathcal{F} : Kripke frame. TFAE:

- **1** All axioms of QGL are valid in \mathcal{F} ;
- \bigcirc \mathcal{F} is transitive and conversely well-founded.

So $Th(QGL) \subset Fr(QGL)$.

Theorem

For a predicate modal formula A, TFAE:

- \bigcirc QGL \vdash A:
- 2 A is valid in any transitive Kripke model where
 - $\Box(\Box B \to B) \to \Box B$ is valid for any predicate modal formula B.

Th(QGL) can be characterized by a class of Kripke models.

Theorem (Montagna, 1984)

- **1** Th(QGL) \subseteq Fr(QGL).
- PL(PA) ⊈ Fr(QGL).

Corollary

 $\mathsf{Th}(\mathsf{QGL}) \subsetneq \mathsf{PL}(\mathsf{PA}).$

Montagna pointed out that

$$\exists T, T' \colon \Sigma_1$$
-sound r.e. extensions of PA s.t. $\mathsf{PL}(T) \neq \mathsf{PL}(T')$.

Montagna's conjecture (1984)

$$\bigcap \{ PL(T) \mid T : \text{ r.e. extension of PA} \} = Th(QGL)?$$

The relationships between Th(QGL), Fr(QGL) and PL(T) have not been understood completely.

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

Theorem 1 (T.K.)

For any Σ_1 -sound r.e. extension T of $I\Sigma_1$,

$$\mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{PL}(T)$$
.

Theorem 2 (T.K.)

 $\bigcap \{\mathsf{PL}(T) \mid T : \mathsf{r.e.}\ \mathcal{L}_A\text{-theory extending } \mathsf{I}\Sigma_1\} \not\subseteq \mathsf{Fr}(\mathsf{QGL}).$

$$\mathcal{L}_A = \{+, \times, S, 0, <\}.$$

The following corollary shows that Montagna's conjecture does not hold for a restricted case.

Corollary of Theorem 2

 $\bigcap \{\mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_A \text{-theory extending } \mathsf{I}\Sigma_1\} \nsubseteq \mathsf{Th}(\mathsf{QGL}).$

If we weaken the theory in the condition of the conjunction to $I\Sigma_2$, then we obtain a stronger version.

Theorem 3 (T.K.)

 $\bigcap \{\mathsf{PL}(T) \mid T : \mathsf{r.e.}\ \mathcal{L}_A\text{-theory extending } \mathsf{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{Th}(\mathsf{QGL}).$

An outline of the proof of Theorem 1.

It suffices to find a predicate modal sentence A s.t.

- (i)' $\neg A \in \mathsf{Fr}(\mathsf{QGL})$ and
- (ii)' $\neg A \notin \mathsf{PL}(\mathsf{PA})$.

These conditions are equivalent to the following conditions:

Conditions

- (i) $\mathcal{M} = \langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$: transitive Kripke model. $\exists w \in W \text{ s.t. } w \Vdash A$ $\Rightarrow \prec \text{ is not conversely well-founded.}$
- (ii) $\exists \mathcal{M} \models PA \exists *: PA$ -interpretation s.t. $\mathcal{M} \models A^*$.

Montagna proved that

Fr(QGL) ⊄ PL(PA)

$$C \equiv \exists x \Diamond p(x) \land \forall x \exists y \Box (p(x) \to \Diamond p(y))$$
 satisfies the condition (i).

So $\neg C \in \mathsf{Fr}(\mathsf{QGL})$.

- $\bullet \ C^* \equiv \exists x \mathsf{Con}(\mathsf{PA} + p^*(x)) \land \forall x \exists y \mathsf{Pr}_{\mathsf{PA}}(\ulcorner p^*(\dot{x}) \to \mathsf{Con}(\mathsf{PA} + p^*(\dot{y})) \urcorner) \mid$
- (ii) $\exists \mathcal{M} \models \mathsf{PA} \ \exists *: \mathsf{PA}$ -interpretation s.t. $\mathcal{M} \models C^*$.

However, we do not know the existence of such \mathcal{M} and *.

 We shall modify the predicate modal sentence C so that (ii) holds while (i) is kept.

Definition (iterated consistency assertions)

 $\mathsf{Con}^0 : \equiv (0 = 0);$

 $\mathsf{Con}^{n+1} :\equiv \mathsf{Con}(\mathsf{PA} + \mathsf{Con}^n).$

Definition (parameterized iterated consistency assertions)

Let $\mathsf{Con}_\mathsf{PA}(x)$ be one of the \mathcal{L}_A -formula $\varphi(x)$ which satisfies

$$\mathsf{PA} \vdash \forall x (\varphi(x) \leftrightarrow [\mathsf{Con}(\mathsf{PA} + \varphi(\dot{x} \dot{-} 1)) \vee x = 0]).$$

 $\forall n \in \omega$, PA $\vdash \mathsf{Con}_{\mathsf{PA}}(\bar{n}) \leftrightarrow \mathsf{Con}^n$.

$$\exists x \Diamond p(x) \land \forall x \exists y \Box (p(x) \to \Diamond p(y))$$

\Rightarrow \forall x p(x) \land \Box \forall x (p(x+1) \to \Qcirc p(x)).

The main idea of the proof of Theorem 1

Proposition

- $\bullet \mathsf{PA} \vdash \forall x (\mathsf{Con}_{\mathsf{PA}}(x+1) \to \mathsf{Con}(\mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}(\dot{x}))).$

If
$$p^*(x) \equiv \mathsf{Con}_\mathsf{PA}(x)$$
, then $\exists \mathcal{M} \models \mathsf{PA}$ $\mathcal{M} \models (\forall x p(x) \land \Box \forall x (p(x+1) \rightarrow \Diamond p(x)))^*$.

 $\Box \forall x (p(x+1) \rightarrow \Diamond p(x))$ asserts the existence of an infinite sequence of worlds starting from any nonstandard element of a nonstandard model of arithmetic.

Definition

PA-interpretation * is natural

$$\overset{\mathrm{def.}}{\Leftrightarrow} E^*(x,y) \equiv ``x=y''$$
, $S^*(x,y) \equiv ``S(x)=y''$ and so on.

- For each \mathcal{L}_A -formula φ , let $[\![\varphi]\!]$ be one of the relational formulas written by using the symbols in X, which is equivalent to φ in the sense of the natural interpretations.
- ullet For any \mathcal{L}_A -formula arphi and any natural interpretation *,

$$PA \vdash \varphi \leftrightarrow [\![\varphi]\!]^*.$$

Let A be the conjunction of the following six sentences:

- - \bigcirc $\forall x p(x)$
- $\mathbf{a} \; B$

- **○** [(∧ Q)]

where $\bigwedge Q$ is a conjunction of all axioms of Robinson's arithmetic Q.

Then A satisfies (i) and (ii).

- (i) $\mathcal{M} = \langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$: transitive Kripke model. $\exists w \in W \text{ s.t. } w \Vdash A$ $\Rightarrow \prec$ is not conversely well-founded.
- (ii) $\exists \mathcal{M} \models \mathsf{PA} \; \exists *: \mathsf{PA}$ -interpretation s.t. $\mathcal{M} \models A^*$.

$$\begin{split} B &\equiv \forall x \forall y (S(y,x) \land p(x) \rightarrow \Diamond p(y)) \\ A &\equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (S(x,y) \rightarrow \Box S(x,y)) \land \\ & [\![\land \mathsf{Q}]\!] \land [\![\neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x))]\!] \end{split}$$

(i)

Assume that

$$\mathcal{M} = \langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$$
 is a transitive Kripke model and $w_0 \in W$ satisfies A .

- w_0 is a model of Q
- Since $\mathbb{N} \models \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x))$, w_0 must be non-standard.
- $\Rightarrow \prec$ is not conversely well-founded.

(ii)

- PA + $\forall x \mathsf{Con}_{\mathsf{PA}}(x)$: consistent.
- $\exists \mathcal{M} \models \mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x) + \neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x)).$
- *: natural PA-interpretation s.t. $p^*(x) \equiv \mathsf{Con}_{\mathsf{PA}}(x)$.
- $\Rightarrow \mathcal{M} \models A^*$.

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

Theorem (Artemov and Dzhaparidze, 1990)

A: predicate modal sentence.

A is PA-valid

 $\Rightarrow A$ is valid in any finite transitive and conversely well founded Kripke frame.

(A frame is finite ⇔ whose universe and domains are all finite)

Problem 1

• Is there a class of Kripke models which characterizes PL(T)?

Problem 2

• Is Montagna's conjecture true?

References

- K. Segerberg, An essay in classical modal logic, Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet, 1971.
- R. Solovay, Provability interpretations of modal logic, Israel J. Math. 25 (1976), no. 3-4, 287-304.
- F. Montagna. The predicate modal logic of provability. Notre Dame Journal of Formal Logic 25 (1984), 179–189.
- C. Smoryński. Self-Reference and Modal Logic. Springer, New York, 1985.
- S. Artemov; G. Dzhaparidze. Finite Kripke models and predicate logics of provability, J. Symbolic Logic 55 (1990), no. 3, 1090–1098.
- G. Boolos. The logic of provability. Cambridge University Press, Cambridge, 1993.
- G. Dzhaparidze and D. de Jongh. The Logic of Provability. Handbook of Proof Theory. North holland, 1998.
- S. Artemov and Lev D. Beklemishev. Provability logic. Handbook of Philosophical Logic. Springer, 2005.
- T. Kurahashi. Semantical Analysis of Predicate Modal Logic of Provability.
 Master's Thesis, Kobe University, 2011.