On Kripke frames and arithmetical interpretations for QGL

Taishi Kurahashi

Kobe University, Japan

14th Congress of Logic, Methodology and Philosophy of Science Nancy, France July 22, 2011

Contents

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

- Predicate provability logic
- Main theorems
- A related topic

• Provability predicate of r.e. theory T is a Σ_1 formula $\Pr_T(x)$ which weakly represents the set $\{ \ulcorner \varphi \urcorner \mid T \vdash \varphi \}$ in PA, i.e., $\forall \varphi$: sentence, PA $\vdash \Pr_T(\ulcorner \varphi \urcorner) \Leftrightarrow T \vdash \varphi$.

- Provability predicate of r.e. theory T is a Σ_1 formula $\Pr_T(x)$ which weakly represents the set $\{ \ulcorner \varphi \urcorner \mid T \vdash \varphi \}$ in PA, i.e., $\forall \varphi$: sentence, PA $\vdash \Pr_T(\ulcorner \varphi \urcorner) \Leftrightarrow T \vdash \varphi$.
- Fix a provability predicate which satisfies the following five conditions:

The properties of $\Pr_T(x)$

D1
$$T \vdash \varphi \Rightarrow \mathsf{PA} \vdash \Pr_T(\lceil \varphi \rceil)$$

D2 PA
$$\vdash \Pr_T(\ulcorner \varphi \to \psi \urcorner) \to (\Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \psi \urcorner))$$

D3 PA
$$\vdash \Pr_T(\lceil \varphi \rceil) \to \Pr_T(\lceil \Pr_T(\lceil \varphi \rceil)\rceil)$$

$$\mathsf{L\"ob}\ \mathsf{PA} \vdash \mathrm{Pr}_T(\lceil \mathrm{Pr}_T(\lceil \varphi \rceil) \to \varphi \rceil) \to \mathrm{Pr}_T(\lceil \varphi \rceil).$$

$$\Sigma_1$$
-comp. $\varphi \colon \Sigma_1 \Rightarrow T \vdash \varphi \to \Pr_T(\lceil \varphi \rceil)$.

Gödel's thesis (1933)

000000

The provability of a formal system can be considered as a modality.

Gödel's thesis (1933)

The provability of a formal system can be considered as a modality.

The system **GL** of propositional modal logic

- Axioms:
 - Tautologies;
 - $\bullet \ \Box (A \to B) \to (\Box A \to \Box B);$
 - $\bullet \ \Box (\Box A \to A) \to \Box A.$
- Inference rules:

modus ponens from A and $A \rightarrow B$ infer B;

necessitation form A infer $\Box A$.

The provability of a formal system can be considered as a modality.

The system **GL** of propositional modal logic

- Axioms:
 - Tautologies;
 - $\bullet \Box (A \to B) \to (\Box A \to \Box B);$
 - $\bullet \Box (\Box A \to A) \to \Box A.$
- Inference rules:

modus ponens from A and $A \rightarrow B$ infer B;

necessitation form A infer $\Box A$.

 $\mathsf{Th}(\mathsf{GL}) := \{ A \mid \mathsf{GL} \vdash A \}.$

Propositional provability logic

Let F be the set of all propositional modal sentences.

Let F be the set of all propositional modal sentences.

Definition

Kripke frame is a system $\langle W, \prec \rangle$ where

- W is a non-empty set of worlds;
- $\bullet \prec$ is a binary relation on W: accessibility relation.

Let F be the set of all propositional modal sentences.

Definition

Kripke frame is a system $\langle W, \prec \rangle$ where

- W is a non-empty set of worlds;
- $\bullet \prec$ is a binary relation on W: accessibility relation.

Kripke model is a system $\mathcal{M} = \langle W, \prec, \Vdash \rangle$ where

- $\langle W, \prec \rangle$ is a Kripke frame;
- ullet is a binary relation on W imes F such that $orall w\in W$,
 - w ⊮ ⊥;
 - $ullet w \Vdash A o B \Leftrightarrow (w \nVdash A ext{ or } w \Vdash B);$
 - · · · ;
 - $\bullet \ w \Vdash \Box A \Leftrightarrow \forall w' \in W(w \prec w' \Rightarrow w' \Vdash A).$
 - $w \Vdash \Diamond A \Leftrightarrow \exists w' \in W(w \prec w' \& w' \Vdash A)$.

Definition

A: modal sentence, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \overset{\mathrm{def.}}{\Leftrightarrow} orall w \in W$, $w \Vdash A$.
- ullet A is valid in $\mathcal{F} \overset{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash
 angle$ for any \Vdash .

A: modal sentence, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} orall w \in W$, $w \Vdash A$.
- ullet A is valid in $\mathcal{F} \stackrel{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash
 angle$ for any \Vdash .

Definition

- Kripke frame $\langle W, \prec \rangle$ is a GL-frame if \prec is
 - 1. transitive,
 - 2. conversely well-founded.
- $Fr(GL) := \{A \mid A \text{ is valid in any GL-frame } \}.$

Definition

A: modal sentence, \mathcal{F} : Kripke frame, \mathcal{M} : Kripke model.

- ullet A is valid in $\mathcal{M} \stackrel{\mathrm{def.}}{\Leftrightarrow} orall w \in W$, $w \Vdash A$.
- ullet A is valid in $\mathcal{F} \stackrel{\mathrm{def.}}{\Leftrightarrow} A$ is valid in $\langle \mathcal{F}, \Vdash
 angle$ for any \Vdash .

Definition

- Kripke frame $\langle W, \prec \rangle$ is a GL-frame if \prec is
 - 1. transitive,
 - 2. conversely well-founded.
- $Fr(GL):= \{A \mid A \text{ is valid in any GL-frame } \}.$

Theorem (Segerberg, 1971)

$$\mathsf{Th}(\mathsf{GL}) = \mathsf{Fr}(\mathsf{GL}).$$

Propositional provability logic

T: r.e. theory (arithmetic).

000000

T: r.e. theory (arithmetic).

Definition (arithmetical interpretation)

A mapping * from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- p^* is a sentence in the language of T for any propositional variable p:
- $\bot^* \equiv 0 = 1$;
- $(A \to B)^* \equiv (A^* \to B^*);$
- • • :
- $(\Box A)^* \equiv \Pr_T(\lceil A^* \rceil)$.

Propositional provability logic

000000

T: r.e. theory (arithmetic).

Definition (arithmetical interpretation)

A mapping * from F to all sentences in the language of T is called a T-interpretation

if it satisfies the following conditions:

- p^* is a sentence in the language of T for any propositional variable p:
- $\bot^* \equiv 0 = 1$;
- $(A \to B)^* \equiv (A^* \to B^*);$
- • • :
- $\bullet (\Box A)^* \equiv \Pr_T(\Box A^* \Box).$

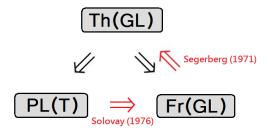
Definition

- A: propositional modal sentence. A is T-valid $\stackrel{\text{def.}}{\Leftrightarrow} \forall *$: T-interpretation, $T \vdash A^*$.
- $PL(T) := \{A \mid A \text{ is } T\text{-valid}\}\$:the provability logic of T.

 $T: \Sigma_1$ -sound r.e. extension of PA.

Theorem (Solovay, 1976)

 $\mathsf{Th}(\mathsf{GL}) = \mathsf{PL}(T).$



 $T: \Sigma_1$ -sound r.e. extension of PA.

Theorem (Solovay, 1976)

 $\mathsf{Th}(\mathsf{GL}) = \mathsf{PL}(T).$

 $\mathsf{Th}(\mathsf{GL}) = \mathsf{Fr}(\mathsf{GL}) = \mathsf{PL}(T)$ for any Σ_1 -sound r.e. extension T of PA.

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

 Define Th(QGL), Fr(QGL) and PL(T) similarly to the propositional case.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and PL(T) similarly to the propositional case.
- Arithmetical interpretations of predicate modal logic assign a k-ary formula in the language of T to each k-ary predicate symbol.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and PL(T) similarly to the propositional case.
- Arithmetical interpretations of predicate modal logic assign a k-ary formula in the language of T to each k-ary predicate symbol.
- Kripke frame for predicate modal logic is a triple $\langle W, \prec, \{D_w\}_{w \in W} \rangle$:
 - ullet $\{D_w\}_{w\in W}$ is a sequence of non-empty sets.
 - $\forall w, w' \in W, \ w \prec w' \Rightarrow D_w \subseteq D_{w'}$.

- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and PL(T) similarly to the propositional case.
- Arithmetical interpretations of predicate modal logic assign a k-ary formula in the language of T to each k-ary predicate symbol.
- Kripke frame for predicate modal logic is a triple $\langle W, \prec, \{D_w\}_{w \in W} \rangle$:
 - ullet $\{D_w\}_{w\in W}$ is a sequence of non-empty sets.
 - $\forall w, w' \in W, \ w \prec w' \Rightarrow D_w \subseteq D_{w'}$.
- Kripke model for predicate modal logic is a 4-tuple $\langle W, \prec, \{D_w\}_{w \in W}, \Vdash \rangle$:

 \Vdash is a relation between elements w of W and closed formulas with parameters form D_w .

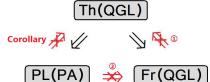
- QGL is a natural extension of GL to predicate modal logic.
- Define Th(QGL), Fr(QGL) and PL(T) similarly to the propositional case.
- Arithmetical interpretations of predicate modal logic assign a k-ary formula in the language of T to each k-ary predicate symbol.
- Kripke frame for predicate modal logic is a triple $\langle W, \prec, \{D_w\}_{w \in W} \rangle$:
 - ullet $\{D_w\}_{w\in W}$ is a sequence of non-empty sets.
 - $\forall w, w' \in W, \ w \prec w' \Rightarrow D_w \subseteq D_{w'}$.
- Kripke model for predicate modal logic is a 4-tuple $\langle W, \prec, \{D_w\}_{w \in W}, \vdash \rangle$: \vdash is a relation between elements w of W and closed for
 - \Vdash is a relation between elements w of W and closed formulas with parameters form D_w .
- $\mathsf{Th}(\mathsf{QGL}) \subset \mathsf{Fr}(\mathsf{QGL}) \cap \mathsf{PL}(T)$.
- Th(QGL) is characterized by a class of Kripke models.

Theorem (Montagna, 1984)

- $Fr(QGL) \nsubseteq Th(QGL)$.

Corollary

 $PL(PA) \nsubseteq Th(QGL)$.

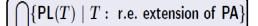


Montagna also proved that PL(PA) ⊈ PL(BG).

Montagna's conjecture (1984)

$$\bigcap \{ PL(T) \mid T : \text{ r.e. extension of PA} \} = Th(QGL)?$$

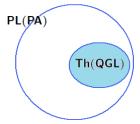




Montagna also proved that PL(PA) ⊈ PL(BG).

Montagna's conjecture (1984)

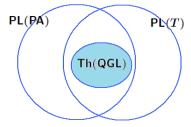
$$\bigcap \{ \mathsf{PL}(T) \mid T : \text{ r.e. extension of PA} \} = \mathsf{Th}(\mathsf{QGL})?$$



• Montagna also proved that $PL(PA) \nsubseteq PL(BG)$.

Montagna's conjecture (1984)

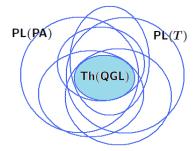
$$\bigcap \{ \mathsf{PL}(T) \mid T : \text{ r.e. extension of PA} \} = \mathsf{Th}(\mathsf{QGL})?$$



• Montagna also proved that $PL(PA) \nsubseteq PL(BG)$.

Montagna's conjecture (1984)

$$\bigcap \{PL(T) \mid T : \text{ r.e. extension of PA}\} = Th(QGL)$$
?



What is an r.e. extension of PA?

Theorem (Vardanyan, 1985)

 $\mathsf{PL}(\mathsf{PA})$ is $\Pi^0_2\text{-complete}.$

 $\mathsf{PL}(\mathsf{PA})$ is $\Pi^0_2\text{-complete}.$

- PL(PA) is not Σ_1^0 .
- \bullet PL(PA) is not characterized by any r.e. extension of QGL.

PL(PA) is Π_2^0 -complete.

- PL(PA) is not Σ_1^0 .
- PL(PA) is not characterized by any r.e. extension of QGL.

By the same argument,

 $\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_{A} \text{-theory extending PA} \} \text{ is not } \Sigma^{0}_{1}.$

$$\mathcal{L}_A = \{+, \times, S, 0, <\}.$$

PL(PA) is Π_2^0 -complete.

- PL(PA) is not Σ_1^0 .
- PL(PA) is not characterized by any r.e. extension of QGL.

By the same argument,

 $\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_{A} \text{-theory extending PA} \} \text{ is not } \Sigma_{1}^{0}.$

$$\mathcal{L}_A = \{+, \times, S, 0, <\}.$$

Corollary

 $\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_A \text{-theory extending PA} \not\subseteq \mathsf{Th}(\mathsf{QGL}) \ .$

PL(PA) is Π_2^0 -complete.

- PL(PA) is not Σ_1^0 .
- PL(PA) is not characterized by any r.e. extension of QGL.

By the same argument,

 $\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_A \text{-theory extending PA} \}$ is not Σ_1^0 .

$$\mathcal{L}_A = \{+, \times, S, 0, <\}.$$

Corollary

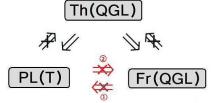
 $\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_{\mathsf{A}} \text{-theory extending PA} \} \not\subset \mathsf{Th}(\mathsf{QGL})$.

The relationships between Th(QGL), Fr(QGL) and PL(T) have not been understood completely.

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

Theorem 1(T.K.)

$$\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{PL}(T)$$
.



Theorem 2(T.K.)

 $\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_{A} \text{-theory extending } \mathsf{I}\Sigma_{1} \} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$

$$\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_{A} \text{-theory extending } \mathsf{I}\Sigma_{1} \} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$$

We concretely constructed a counter example of the inclusion.

Corollary to Theorem 2

 $\bigcap \{\mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_A$ -theory extending $\mathsf{I}\Sigma_1\} \nsubseteq \mathsf{Th}(\mathsf{QGL})$.

$$\bigcap \{ \mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_{A} \text{-theory extending } \mathsf{I}\Sigma_{1} \} \nsubseteq \mathsf{Fr}(\mathsf{QGL}).$$

We concretely constructed a counter example of the inclusion.

Corollary to Theorem 2

 $\bigcap \{\mathsf{PL}(T) \mid T : \mathsf{r.e.} \ \mathcal{L}_A\text{-theory extending } \mathsf{I}\Sigma_1\} \nsubseteq \mathsf{Th}(\mathsf{QGL}).$

Theorem 3(T.K.)

 $\bigcap \{\mathsf{PL}(T) \mid T : \mathsf{r.e.}\ \mathcal{L}_A\text{-theory extending } \mathsf{I}\Sigma_2\} \cap \mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{Th}(\mathsf{QGL}).$

An outline of the proof of Theorem 1.

Theorem 1

For any Σ_1 -sound r.e. extension T of $I\Sigma_1$,

 $\mathsf{Fr}(\mathsf{QGL}) \not\subseteq \mathsf{PL}(T)$.

An outline of the proof of Theorem 1.

Theorem 1

$$\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{PL}(T)$$
.

$$\begin{split} B &\equiv \forall x \forall y (S(y,x) \land p(x) \rightarrow \Diamond p(y)) \;, \\ A &\equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (S(x,y) \rightarrow \Box S(x,y)) \\ \land \left[\bigwedge \mathsf{Q} \right] \land \left[\neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x)) \right] \end{split}$$

An outline of the proof of Theorem 1.

Theorem 1

For any Σ_1 -sound r.e. extension T of $I\Sigma_1$,

$$\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{PL}(T)$$
.

$$\begin{split} B &\equiv \forall x \forall y (S(y,x) \land p(x) \rightarrow \Diamond p(y)) \;, \\ A &\equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (S(x,y) \rightarrow \Box S(x,y)) \\ \land \left[\bigwedge \mathsf{Q} \right] \land \left[\neg \mathsf{Con}(\mathsf{PA} + \forall x \mathsf{Con}_{\mathsf{PA}}(x)) \right] \end{split}$$

• $w \Vdash A \Rightarrow w$ is a non-standard model of arithmetic.

An outline of the proof of Theorem 1.

Theorem 1

$$\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{PL}(T)$$
.

```
egin{aligned} B &\equiv orall x orall y (S(y,x) \wedge p(x) 
ightarrow \langle p(y) 
angle \ A &\equiv orall x p(x) \wedge B \wedge \Box B \wedge orall x x orall y (S(x,y) 
ightarrow \Box S(x,y)) \ & \wedge \left[ \bigwedge \mathbb{Q} \right] \wedge \left[ \neg \mathsf{Con}(\mathsf{PA} + orall x x \mathsf{Con}_{\mathsf{PA}}(x)) 
ight] \end{aligned}
```

- $w \Vdash A \Rightarrow w$ is a non-standard model of arithmetic.
- If there is a $w \in W$ such that $w \Vdash A$, then there is an infinte increasing sequence of elements of W.

000

An outline of the proof of Theorem 1.

Theorem 1

$$\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{PL}(T)$$
.

```
B \equiv \forall x \forall u (S(u,x) \land p(x) \rightarrow \Diamond p(u)).
A \equiv \forall x p(x) \land B \land \Box B \land \forall x \forall y (S(x,y) \rightarrow \Box S(x,y))
      \land [\land Q] \land [\neg Con(PA + \forall x Con_{PA}(x))]
```

- $w \Vdash A \Rightarrow w$ is a non-standard model of arithmetic.
- If there is a $w \in W$ such that $w \Vdash A$, then there is an infinte increasing sequence of elements of W.
- $\exists *: T$ -interpretation $\exists \mathcal{M}: \text{ model of } T \text{ s.t. } \mathcal{M} \models A^*$.

Main theorems ○○●

An outline of the proof of Theorem 1.

Theorem 1

For any Σ_1 -sound r.e. extension T of $I\Sigma_1$,

$$\mathsf{Fr}(\mathsf{QGL}) \nsubseteq \mathsf{PL}(T)$$
.

```
egin{aligned} B &\equiv orall x orall y (S(y,x) \wedge p(x) 
ightarrow \langle p(y) 
angle \ , \ A &\equiv orall x p(x) \wedge B \wedge \Box B \wedge orall x orall y (S(x,y) 
ightarrow \Box S(x,y)) \ & \wedge \left[ \bigwedge \mathbb{Q} \right] \wedge \left[ \neg \mathsf{Con}(\mathsf{PA} + orall x \mathsf{Con}_\mathsf{PA}(x)) 
ight] \end{aligned}
```

- $w \Vdash A \Rightarrow w$ is a non-standard model of arithmetic.
- If there is a $w \in W$ such that $w \Vdash A$, then there is an infinte increasing sequence of elements of W.
- $\exists *$: T-interpretation $\exists \mathcal{M}$: model of T s.t. $\mathcal{M} \models A^*$.

Then $\neg A \in \mathsf{Fr}(\mathsf{QGL})$, $\neg A \notin \mathsf{PL}(T)$.

- Propositional provability logic
- Predicate provability logic
- Main theorems
- A related topic

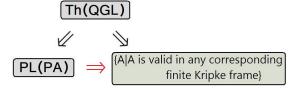
Theorem (Artemov and Dzhaparidze, 1990)

A: predicate modal sentence.

A is PA-valid

 $\Rightarrow A$ is valid in any finite transitive and conversely well founded Kripke frame.

(A frame is finite ⇔ whose universe and domains are all finite)



Problem

Is Montagna's conjecture true?

$$\bigcap \{ PL(T) \mid T : \text{ r.e. extension of PA} \} = Th(QGL)$$
?

 $\{PL(T) \mid T : \text{ r.e. extension of PA}\}$

Fr(GL)

 $\bigcap \{ \mathsf{PL}(T) \mid T : \text{ r.e. theory where PA is relatively interpretable} \}$ = Th(QGL)?

References

- R. Solovay, Provability interpretations of modal logic, Israel J. Math. 25 (1976), no. 3-4, 287-304.
- F. Montagna. The predicate modal logic of provability. Notre Dame Journal of Formal Logic 25 (1984), 179–189.
- S. Artemov; G. Dzhaparidze. Finite Kripke models and predicate logics of provability, J. Symbolic Logic 55 (1990), no. 3, 1090–1098.
- G. Boolos. The logic of provability. Cambridge University Press, Cambridge, 1993.
- G. Dzhaparidze and D. de Jongh. The Logic of Provability. Handbook of Proof Theory. North holland, 1998.
- T. Kurahashi. Semantical Analysis of Predicate Modal Logic of Provability.
 Master's Thesis, Kobe University, 2011.
- T. Kurahashi. Arithmetical interpretations and Kripke frames of predicate modal logic of provability. preprint.