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Key Pose-Based Dynamic Humanoid Motion
Generation Using Parallel Multi-Fidelity Model

Predictive Control
Yuichi Tazaki1

Abstract—This paper proposes a method that realizes dynamic
motion of humanoid robots from reference key poses. The
proposed control method runs two types of model predictive
controllers with different fidelity and time scale in parallel; one
performs long-horizon prediction by making use of a closed-
form solution of the centroidal dynamics, and the other performs
short-horizon prediction based on the whole-body dynamics. In
dynamical simulation of 32-DoF humanoid robot, the controller
was able to perform challenging motions including toe contact
and jumps over unlevel surfaces in real time computation speed
without any offline optimization.

Index Terms—Humanoid Robots, Trajectory Optimization,
Model Predictive Control

I. INTRODUCTION

Humanoid robots can perform a variety of dynamic motions
by utilizing their large degrees of freedom. However, their
high dimensional nature and inherently unstable floating-base
dynamics, coupled with the discontinuity of contact makes
motion generation and tracking control extremely challenging.
To tackle high complexity, hierarchical strategy consisting of
reference motion generation, motion retargeting, and tracking
control has been a widely accepted approach.

Reference motion can be acquired by a variety of means
such as motion capture, key poses, and generative models.
In any case, raw reference motion is often incompatible with
the kinematics and/or dynamics of the robot. Therefore, mo-
tion retargeting (a.k.a. dynamics filter) is required to convert
reference motion to physically plausible motion that can be
executed by a robot. Existing model-based dynamics retarget-
ing techniques [1, 2] are based on classical walking pattern
generation of biped locomotion, and are limited to simple
motions in which at least one foot makes flat contact with the
floor. Trajectory optimization based on whole-body models
can handle wider variety of motions. Because of its high
computation cost, however, optimization is often performed
offline.

In order to realize motion on a real humanoid robot, one
also needs to construct a feedback control loop for tracking
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Fig. 1. Screenshot images of generated motion. From left to right : Box
Step, Moonwalk, and Stepping Stones.

retargeted (dynamically filtered) motion data under model
uncertainty and disturbances. Trajectory tracking control is
necessary even in simulations because there are differences
in models and algorithms used inside dynamical simulation
and those used for trajectory generation. Whole-body model
predictive control has attracted strong research interest because
it can handle the dynamics and kinematic limits of the robot
as well as contact-related constraints without simplification.
Some recent studies reported its hardware implementation to
humanoid robots [3][4]. Numerical solution methods of MPC
has polynomial complexity in terms of the dimension of the
state and control input. For this reason, application of MPC to
humanoid robots poses greater challenge than to other legged
robots such as quadrupeds because the former generally has
much greater degrees-of-freedom than the latter. For speeding
up MPC, parallelization based on bi-level optimization [5,
6] and subdividision of the prediction horizon [7] have been
studied. However, decomposing the overall problem generally
deteriorates convergence rate and therefore requires more
iterations. Another approach is to vary the fidelity of prediction
models over the prediction horizon. In [8, 9], a whole-body
model with high time resolution was used in a leading part
of the prediction horizon while a reduced-order model with
coarse stepping was used in the later part. This method has so
far been applied to quadrupeds only, and extension to various
humanoid motions is an unexplored topic.

Recently, deep reinforcement learning techniques have
shown impressive performance in both motion retargeting [10]
and tracking [11]. However, this approach generally requires
massive computation resource for offline training. Moreover,
it requires uniform and finely sampled reference motion, and
application to non-uniform and coarse key poses has not been
investigated so far.
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This paper proposes a trajectory generation and tracking
technique for dynamic motion specified by a series of key
poses. It consists of two model predictive controllers that run
at different model fidelity and time scale: Centroidal (CD-
)MPC and Whole-body (WB-)MPC. A main difference from
[9] is that we use non-uniform time stepping in CD-MPC,
whereas in [9], uniform low-resolution time stepping was used
for SRB (single rigid body) MPC. Our formulation based on
a close-form solution of the centroidal dynamics can accept
nonuniform step durations, and therefore much more suited
to key frame-based motion specification. Another benefit of
our method is that the update rate of CD-MPC and WB-
MPC can also be set differently. There is also a difference
in the formulation of WB-MPC; while the joint coordinate
rigid body dynamics was used in [9], the centroidal dynamics
+ full kinematics formulation is used in this study. The
developed technique is tested with a number of challenging
key pose sequences that include jumping and toe contact. In
dynamical simulation, a closed-loop system consisting of the
proposed controller and a 32-DoF humanoid robot model was
constructed, and dynamic motion was successfully realized as
shown in screenshot images (Fig. 1). Base on an earlier work
reported in [12], this paper makes a number of significant
extensions as summarized below.
• A new contact description which enables compact and

uniform description of flat and non-flat contacts on unlevel
surfaces is proposed.

• The value function computed in CD-MPC is used to con-
struct a terminal cost of WB-MPC to effectively extend its
prediction horizon.

• Quantitative evaluation of disturbance rejection performance
is conducted. Moreover, the closed-loop performance under
different settings of terminal cost and prediction horizon
length is compared.
The remaining part of this paper is organized as follows.

In Section II, the proposed trajectory generation and tracking
method is described in detail. Followed by an overview
of the control system architecture (II-A), the mathematical
description of CD-MPC (II-C) and WB-MPC (II-D) are given.
Furthermore, parallel execution of multiple MPC threads (II-E)
and terminal cost design (II-F) are discussed. In Section III,
simulation results are shown. Concluding remarks are given
in Section IV.

II. CONTROL SYSTEM DESIGN

A. Control System Architecture

The overall block diagram and information flow of the con-
trol system is shown in Fig. 2. The control system consists of
a hierarchy of components which run at different frequencies:
CD-MPC, WB-MPC, and linear feedback. Both trajectory
optimization problems are computed by the iterative linear
quadratic regulator (iLQR) algorithm [13]. It is a variant of
differential dynamic programming (DDP) and shows super-
linear convergence to a local optimal solution thanks to Gauss-
Newton approximation [14]. The CD-MPC thread receives a
reference trajectory computed by interpolation of key poses as
inputs and outputs optimized centroidal states together with
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Fig. 2. Control system architecture

modified contact locations and timing. The update cycle of
CD-MPC is synchronized with the irregular spacing of key
frames, which normally ranges between 0.05 and 0.3 seconds.
The WB-MPC thread group receives the output of CD-MPC
and computes optimized whole-body motion at a medium
frequency of 250Hz. At the lowest level, linear feedback
control with the optimal feedback gain runs at a high frequency
of 1kHz. Desired joint acceleration and contact wrench output
are converted to desired joint torque by means of inverse
dynamics. Full state of the robot is retrieved from the simulator
and fed back to WB-MPC and CD-MPC. In [12], CD-MPC
was used without state feedback, meaning that it worked as
a pure dynamics filter. In this work, state feedback of CD-
MPC is enabled to realize footstep adjustment in response to
disturbances, as demonstrated in Section III.

B. Contact Description and Relationship with Key Poses

Reference motion is input to the controller as a series of key
poses. Each key frame consists of a time stamp, a base link
pose, upper body joint angles, and left and right foot poses. It
also includes for each foot a boolean value indicating whether
the foot is in contact or not, and a unit vector indicating the
normal direction of the associated contact surface. In addition,
each foot of the robot has a rectangular contact geometry
whose edges are parallel to the x and y axes of the local
coordinate frame of the foot.

In order to handle different contact modes on non-level
surfaces in a unified and compact way, each foot pose is
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expressed in terms of footprint pose, tilt angle, and lift offset,
as illustrated in Fig. 3. Similar idea has been used for footstep
planning on uneven terrain [15]; we extend this idea to express
poses in line contact and floating state. Given a foot pose and
a contact normal, the corresponding footprint pose, tilt angle,
and lift offset can be calculated. For a foot not in contact, the z
direction of the global cooridnate frame is used as the normal
direction.

Contact states between key frames are determined by the
following rules, where possible types of contact state are float,
line contact, and surface contact.
• If the foot is off-contact in either key frame, then the contact

state is float.
• If the foot is in contact with the same contact surface in

both key frames, and:
– if the tilt angle is zero in both key frames, then the contact

state is surface contact.
– if the tilt angle is zero in one key frame and non-zero in

the other, or if the tilt angle is non-zero in both key frame
with a common contact edge, then the contact mode is
line contact.

If neither of the above conditions hold, then the input key
frames are considered as invalid.

The overall processing flow of key frames is the following.
Input key frames initially do not have velocity information.
So in the first step, reference velocity is computed from finite
difference of adjacent key poses. Next, for each key frame,
footprint, tilt angle, and lift offset and their time derivatives are
calculated. Moreover, the contact states between each adjacent
key frames are indentified based on the rules described above,
and reference centroidal states (CoM position, velocity, and
angular momentum) are calculated based on the kinematics
and mass distribution of the robot model. Note that only 2D
parameters of footprints (i.e., x, y, and yaw angle) are passed to
the CD-MPC while other values (tilt angle and lift offset) are
retained. This is because the 2D information of footprints is
sufficient for expressing the contact complementarity condition
regardless of whether the contact mode is surface contact or
line contact. It also contributes to reducing the state and input
dimensions of the CD-MPC and hence its computation cost.
Continuous-time foot movement is obtained by interpolation
and given to the WB-MPC as references. Upon interpolation,
the footprint pose, tilt angle, and lift offset and their time
derivatives are transformed back to the pose and velocity of

foot
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Fig. 4. Stiffness-based parameterization of contact wrench

the foot, and conventional cubic interpolation is applied to the
position and Euler angles.

C. Centroidal MPC

The centroidal dynamics equation [16] is expressed as
follows.

p̈ =
1

m

∑
l

fl, L̇ =
∑
l

[ηl + (pf,l − p)× fl] (1)

Here, m is the total mass, p is the center-of-mass (CoM), and
L is the total angular momentum with respect to the CoM.
Moreover, pf,l is the position of the l-th foot and fl and ηl

are the linear and rotational components of the contact wrench
applied to it. Further more, the relationship between the total
angular momentum and the whole-body configuration of the
robot is expressed as follows.

L = I(θ)ω + qL̂(θ, θ̇). (2)

Here, q is a unit quaternion expressing the rotation of the
base link and ω is the angular velocity of the base link.
Moreover I is the composite rigid-body inertia with respect
to the CoM, which is dependent on the joint angle vector θ.
Furthermore, L̂ is the local angular momentum of the system;
namely, it expresses the total angular momentum expressed of
the movement of the links expressed in the local coordinate
frame of the base link.

The stiffness-based parametrization [17] is used, in which
contact wrench is expressed by a tuple λ ≥ 0, ĉ ∈ R2,
r̂ ∈ R2, η̂ ∈ R. Here, λ is the stiffness and it expresses
the strength of the contact force. Moreover, ĉ is the offset
from the center of the footprint to the center-of-pressure (CoP)
and r̂ is the offset from the CoP to the centroidal moment
pivot (CMP), both consisting of x and y components in the
contact coordinate frame. These points determine the point of
application and the direction of the contact force as illusrated
in Fig. 4. Furthermore, η̂ is the normalized torsional moment.
It is normalized in the sense that multiplying it with mλ2

l gives
moment with respect to the z-axis of the contact frame. With
these parameters, the contact wrench is transcribed as follows.

fl = mλ2
l (p− (pf,l + cl + rl))

ηl = cl × fl +mλ2
l (nc,l η̂l)

(3)



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2025 4

Here, cl = qc,l

[
ĉl
0

]
and rl = qc,l

[
r̂l
0

]
are 3D offsets of

the CoP and the CMP. Moreover, qc,l and nc,l denote the
orientation and the normal direction of the contact surface
associated with the l-th foot, respectively. By substituting (3)
into (1), we obtain the following equations.

p̈ = λ̄2(p− (p̄+ r̄)), L̇ = m(p̈× r̄ + η̄) (4)

where

λ̄ =
√∑

l λ
2
l + ϵ2, p̄ =

∑
l λ

2
l (pf,l + cl) + g

λ̄2
, r̄ =

∑
l λ

2
l rl

λ̄2
,

η̄ = λ̄2p̄× r̄ +
∑

l λ
2
l (nc,l η̂l − (pf,l + cl)× rl).

(5)

Here, ϵ ≥ 0 is a small constant inserted to avoid dividing
by zero in the case of a flight-phase (i.e., λl = 0 ∀l).
If flight phases need not be considered, then ϵ can be set
as 0 and (4) holds precisely. Otherwise the equalities hold
approximately. Nevertheless, practically ϵ can be set very
small (e.g., 10−6) and error results from it is negligible. By
applying the zero-order hold to the wrench parameters, the
centroidal dynamics can be analytically integrated over a time
interval between each consecutive key frames to obtain a
discrete-time prediction model for p, v, and L (See [17] for
detailed derivation). Here, the composite inertia I and the local
angular momentum L̂ are calculated from interpolated key-
pose sequence and provided to CD-MPC as references. The
state and control input of CD-MPC are defined as follows.

xcd
k =

[
pk,vk, qk,Lk, tk, {xl,k, yl,k, θl,k}

]
,

ucd
k =

[
τk, {ẋl,k, ẏl,k, θ̇l,k, λl,k, ĉl,k, r̂l,k, η̂l,k}

] (6)

Note that each time step corresponds to a single time interval
between consecutive key frames. The tuple {xl,k, yl,k, θl,k}
denotes the 2D information (x and y coordinates and yaw
angle) of the l-th footprint in the k-th key frame. The variable
tk denotes the time instant of the beginning of the k-th key
frame.

The cost function is defined as a weighted sum of quadratic
error terms:
Jcd = ∥xcd

Ncd − xcd,ref
Ncd ∥2W cd,x

+

Ncd−1∑
k=0

[
∥xcd

k − xcd,ref
k ∥2W cd,x + ∥ucd

k − ucd,ref
k ∥2W cd,u

]
(7)

where N cd is the number of prediction steps (counted by num-
ber of key frames), xcd,ref

k and ucd,ref
k are desired values, and

W cd,x and W cd,u are diagonal weight matrices. The desired
values of the centroidal state and foot poses are calculated
from key poses. The desired value of λl is dependent on the
contact state of the l-th contact during the k-th frame. If it is
in contact, the desired stiffness is set as a value needed for
statically supporting the weight of the robot, and otherwise it
is set as zero. The desired value of other wrench parameters
are always set as zero. Contact complementarity constraint can
be expressed simply as follows.

λl,k ≥ 0, ẋl,k = ẏl,k = θ̇l,k = 0 if l-th foot is in contact
λl,k = 0 otherwise

(8)

Note that this condition restricts the velocity of the footprint
but not that of the foot itself. In the case of toe contact, for
example, the foot can tilt with respect to the contact edge
while the footprint remains fixed. Moreover, box constraints
are imposed on the CoP offset ĉl and the torsional moment
η̂l. Their bounds must be set according to the contact mode.
Furthermore, the static friction constraint is expressed as
follows (the subscript k is omitted).

∥nc,l × (nc,l × (p− (pf,l + cl + rl)))∥
≤ µnT

c,l(p− (pf,l + cl + rl))
(9)

where µ is the static friction coefficient. Thanks to the conic
nature of friction constraint, the stiffness λl can be omitted
from the inequality. These inequality constraints are trans-
formed into logarithmic barrier functions and integrated into
the cost function.

One limitation of CD-MPC is that it cannot take kinematic
limits of legs into account. In this study, key poses were
designed carefully so that the foot poses will stay inside the
movable range even after optimization of CD-MPC.

D. Whole-body MPC

Whole-body MPC is based on the centroidal dynamics
+ full kinematics formulation proposed in [18] with minor
modifications. The state and control input of WB-MPC are
defined as follows.

xwb
κ =

[
pκ,vκ, qκ,Lκ,θκ, θ̇κ

]
,

uwb
κ =

[
θ̈κ, {fl,κ,ηl,κ}

] (10)

One main difference from [18] is that the state variable
includes the position and velocity of the CoM instead of
those of the base link. This formulation makes WB-MPC more
compatible with CD-MPC and enables coordination between
them in terms of reference values and terminal cost with less
effort of variable transformation. It also requires little compli-
cation of internal computation because base link position can
be computed easily from the CoM position and joint angles
by means of forward kinematics. A discrete-time prediction
model for WB-MPC is derived by applying the Euler method
with a fixed time step ∆twb. The angular velocity ω needed
for updating q is given by ω = I−1(L− qL̂).

The cost function of WB-MPC is defined as follows:

Jwb = V (tf , fwb2cd(x
wb
Nwb))

Nwb−1∑
κ=0

[
∥xwb

κ − xwb,ref
κ ∥2Wwb,x + ∥uwb

κ − uwb,ref
κ ∥2Wwb,u

]
(11)

where V (·) is the terminal cost (see II-F for details), Nwb is
the number of prediction steps, xwb,ref

k and uwb,ref
k are desired

values, and Wwb,x and Wwb,u are diagonal weight matrices.
The desired values of the centroidal states are obtained by
substituting the output of CD-MPC into the closed-form
solution of the centroidal dynamics. The desired values of
the foot poses and velocities are obtained by interpolating
the foot poses output by CD-MPC. Desired contact wrenches
are calculated by substituting the output of CD-MPC to
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(3). Desired joint angle and velocity are directly taken from
interpolated key poses, and desired joint acceleration is set as
zero. Inequality constraints expressing the friction and moment
limit are imposed on contact wrenches. Moreover, range limits
on joint angles and velocities are imposed. In particular, joint
limits on the knee joints prevent them from fully stretching
with a small margin to avoid numerical instability caused by
kinematic singularity.

E. Parallel Execution of Whole-body MPC Threads

Because of high dimensionality of state and control input,
each optimization cycle of WB-MPC takes several millisec-
onds even if warm start is used. This severely limits the update
frequency of WB-MPC. To improve the update rate, multiple
computation threads are executed and optimization is triggered
in shifted timing. As illustrated in Fig. 5, np optimization
threads are executed in parallel. Consider that the optimization
computation of the i-th thread is triggered at time t. This
optimization will be completed by t+∆tdelay. For simplicity
we assume that ∆tdelay is equal to ∆twb, the time step of
the prediction model of WB-MPC, although this assumption is
generally not necessary. The (i+1)-th thread will be triggered
at t+∆tupdate, where ∆tupdate = ∆tdelay/np. In this manner,
the update period is shortened to ∆tupdate while the latency
is still determined by ∆tdelay. Because of the limitation of the
number of available CPU cores, it is still difficult to reduce the
update period down to the control period ∆tctrl. We therefore
combine this technique with linear feedback control with the
optimal feedback gain produced by the DDP algorithm [19].
Linear feedback is performed at every control cycle, while the
feedback gain is updated every ∆tupdate/∆tctrl cycles.

F. Terminal Cost Design

Is has been well known in the literature that careful terminal
cost design is crucial for ensuring the closed-loop stability of

MPC. One popular method is to use the value function of an
unconstrained LQR problem as the terminal cost [20]. In the
case of dynamic whole-body motion, however, it is difficult to
require that the robot is always in a steady state at the end of
the prediction horizon. Instead, we propose to use the value
function of CD-MPC as the terminal cost of WB-MPC. We
consider that it has essentially the same effect as the method
proposed in [9], where the fidelity of the model is switched
in a single prediction horizon.

Consider that the terminal time tf of the prediction horizon
of WB-MPC is included in the k-th prediction time interval
of CD-MPC; that is, tk ≤ tf ≤ tk+1 holds. As a result of
DDP computation, the value function of CD-MPC at tk and
tk+1, Vk and Vk+1, respectively, are available. Based on linear
interpolation, the value function at tf together with its gradient
and Hessian is approximately given by

V (tf ,x
cd) = (1− α)Vk(x

cd) + αVk+1(x
cd),

Vx = (1− α)Vx,k + αVx,k+1,

Vxx = (1− α)Vxx,k + αVxx,k+1

(12)

where α = tf−tk
tk+1−tk

. The terminal cost for WB-MPC is given
by V (tf , fwb2cd(x

wb)), where fwb2cd is a mapping from xwb

to xcd. More precisely, the centroidal states in xwb are directly
mapped to those in xcd. The joint angle and velocity variables
in xwb can be mapped to the foot poses and velocities in xcd

by forward kinematics. The time variable in xcd, for which
no corresponding variable exists in xwb, is simply set as zero.
In actual DDP computation of WB-MPC, the gradient and
Hessian of the terminal cost are needed. They are given by
JT
wb2cdVx and JT

wb2cdVxxJwb2cd, where Jwb2cd is the Jacobian
matrix of fwb2cd.

G. Parameter Setting

Typical parameter setting of MPC is summarized in Ta-
bles I(a)-(c). Decision variables are normalized based on their
physical dimensions so that their values range within the same
order of magnitude. The weights shown in Tables I(b)(c) are
applied to normalized variables. In this study, good combina-
tion of weights was searched by manual tuning. Starting from
a typical setting shown in the tables, additional adjustment
could be made according to the needs. For example, lowering
the weights of time, duration, and foot position of the CD-
MPC results in more aggressive step timing and position
adaptation. Moreover, lowering the weights of the upper body
joints in WB-MPC encourages use of upper body movement
for balance compensation. The weights on leg joint angles and
velocities are set as zero to avoid interference with desired foot
pose and velocity.

III. SIMULATION STUDY

A. Setup

A model of RHP Friends (Kawasaki Heavy Industry, [21,
22]) was used for both MPC and dynamical simulation. The
model has 32 DoF (4 DoF in torso and neck, 8 DoF in each
arm, 6 DoF in each leg). The kinematic and inertial param-
eters were matched to the real robot. Note that geometries



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2025 6

TABLE I
TYPICAL PARAMETER AND WEIGHT SETTING

CD-MPC WB-MPC
prediction steps 30 10
time step 1 key frame 20ms
update period 1 key frame 4ms
number of iterations 10 2
number of threads 1 5
state dimension 19 76
input dimension 19 50

(a) MPC parameters

CoM position 1
CoM velocity 1
Base rotation 1
Angular momentum 1
Time 10
Foot position 1
Foot rotation 1
Duration 10
Foot velocity 1
Foot angular velocity 1
Foot stiffness 10
Foot CoP offset 10
Foot CMP offset 10
Foot torsional moment 10

CoM position 5
CoM velocity 5
Base rotation 5
Angular momentum 5
Foot position 5
Foot rotation 5
Foot velocity 5
Foot angular velocity 5
Foot force 200
Foot moment 200
Leg joint angle 0
Leg joint velocity 0
Other joint angle 1
Other joint velocity 1
Joint acceleration 1

(b) CD-MPC weights (c) WB-MPC weights

resembling the real robot are used for visualization only. For
dynamical simulation, a box geometry with dimensions of
[−0.1,+0.15] × [−0.05,+0.05] × [0.0, 0.03] was attached to
each foot to compute contact with the ground, while self-
collision was ignored.

In the following subsections, simulation results of three
example motions, Box Step, Moonwalk, and Stepping Stones,
are presented. Key frames and contact phases of these motions
are shown in Fig. 7. Choreonoid [23] was used for both dance
motion editing and dynamical simulation 1. Body Motion
Controller (a built-in dynamics filter of Choreonoid) was not
used and raw key frame sequence was directly input to the
controller. The AIST simulator item was used for physics sim-
ulation. Joint torque commands computed by the controller are
directly input to the simulator. To obtain high accuracy results,
the time step of physics simulation was set as 0.1ms, whereas
the control cycle was set as 1ms. In this setup, the computation
cost of simulation itself was too high to run in real time.
With 1ms time step, simulation including MPC computation
could run in real time on a laptop computer and motions still
could be performed successfully. The trajectory optimization
algorithm for centroidal and whole-body dynamics as well as
the model predictive controller with interfaces to Choreonoid
were implemented in C++ 2.

1 Minor modification was applied to handle unlevel contact plane in key-
pose editing.

2The code is publicly available on github: https://github.com/ytazz/dymp
mpc.

B. Results
Screenshots of dynamical simulation are shown in Fig. 1.

See the attached video for better visualization of simulation.
Box Step: One cycle of box step consists of four foot steps

placed in a square pattern. In the second step of each cycle,
the left and the right legs are crossed. The edited key frames
consist of two cycles of box-step.

First, robustness of the proposed controller against distur-
bances was evaluated. At time 2.5, an impulsive disturbance in
the forward direction was applied to the base link of the robot.
The magnitude of disturbances is expressed in equivalent
DCM shift. Figure 8 shows the response of the robot to various
magnitude of disturbance. Two cases with different degrees of
feedback were compared: full state feedback in which all states
were directly obtained from the simulator, and partial state
feedback in which only base link rotation, joint angles, and
joint velocities were provided and CoM position and velocity
were estimated based on the assumption that the support foot
is in the desired position. For both cases, the robot could
withstand up to 0.2m DCM shift although the latter case was
more perturbed and needed longer time to settle. For small
disturbances, the robot mainly used its upper body movement
to recover balance. For greater disturbances, step adaptation
was also used.

Next, different settings of prediction horizon length N
of WB-MPC and presence of centroidal terminal cost were
compared. The result is summarized in Fig. 9. The plot shows
errors between the CoM position and the angular velocity
of the reference trajectory generated by the CD-MPC and
those computed in dynamical simulation. In this experiment,
CD-MPC simply worked as a reference trajectory generator
with state feedback turned off. Therefore, the plot shows the
tracking performance of WB-MPC in different configurations.
The height of each bar indicates the average over time while
the error bar indicates the maximum error. When N is large
enough (e.g., 20), there is virtually no difference between w/
and w/o terminal cost. Without terminal cost, error grows
gradually as N is decreased. When N was smaller than 8,
the robot fell down in the middle of motion. With terminal
cost, on the other hand, errors do not increase notably until N
decreases to 8. Moreover, the robot could complete the motion
without falling down even when N was as small as 4. This
indicates that terminal cost is in fact useful for realizing stable
close-loop performance with small N . However, with small N
the movement of the robot became jerky as indicated by large
maximum error in the plot. It is concluded that setting N to
8 to 10 with terminal cost strikes a good balance between
tracking performance and computation cost. As a side note,
it was possible to realize Box Stepping with WB-MPC alone.
However, it required N ≥ 50 to realize stable motion.

Moonwalk: In moonwalk, the swing foot is slid backward
while the support foot makes toe contact with the ground.
In the later part of each swing phase, the heel of the swing
foot is lifted up while the heel of the support foot is lowered.
The overall movement generates an illusion that the robot
glides backward even though it is making forward-walking
motion. Real sliding movement involving dynamical friction
force cannot be expressed in our centroidal dynamics model.

https://github.com/ytazz/dymp_mpc
https://github.com/ytazz/dymp_mpc
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Instead, sliding-like movement was realized by lifting the
swing foot very slightly from the ground. The static friction
coefficient was set as 1.0. We can observe in the plot of my in
Fig. 10 that ground reaction moment needed for maintaining
toe-contact of the support foot is generated by CD-MPC and
tracked well by WB-MPC.

Stepping Stones: In this example, the robot hops over non-
level stepping stones. As shown in the screenshot image,
stepping stones are placed in the left and the right alternately
and they are sloped 30 degrees towards the center line. The
friction coefficient was set as 2.0. In each single-support-phase
(SSP) during hopping, the direction and magnitude of CoM
acceleration needs to be carefully controlled while maintaining
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of CD-MPC (dashed), WB-MPC (dotted), and simulation response (solid).
From top to bottom: contact force (x and z components, right foot (red), left
foot(blue)) and contact moment (y component, right foot (red), left foot(blue)).

TABLE II
COMPUTATION TIME

ave [ms] max [ms]
PC1 PC2 PC1 PC2

CD-MPC (10 iterations) 20.692 19.790 22.989 22.907
WB-MPC (2 iterations) 8.241 8.581 9.437 13.249
WB-MPC (3 iterations) 13.647 13.057 15.398 15.456
WB-MPC (4 iterations) 19.717 16.090 22.050 17.892

the variation of angular momentum to minimum. To provide
sufficient degrees of freedom of contact wrench to the planner,
each single-support-phase (SSP) with a period of 0.2s was
equally subdivided into a number of sub-phases. In Fig. 11,
simulation results of 2 and 6 sub-phases per SSP are shown.
With greater number of subdivisions, the vertical movement
of the CoM as well as the peak magnitude of contact force
could be reduced. This result indicates that high enough
time resolution is needed for some critical time intervals to
ensure good quality of generated trajectories. It was also found
important to impose torsional moment limit to avoid twisting
of the foot and maintain stable contact. Thanks to whole-body
MPC, upper body movement that reduces torsional moment
was automatically generated.

C. Computation Time

The average and maximum computation time of MPC
threads measured on two different processors (PC1(Intel Core
i7-1280P), PC2(AMD Ryzen 9 5950X)) are summarized in
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Table II. The computation time of CD-MPC was negligible
considering its low update rate (one update per key frame).
The computation time of WB-MPC could be made smaller
than the specified optimization period (20ms) by limiting the
number of iterations to 3.

IV. CONCLUSION

This paper proposed a parallel multi-fidelity model pre-
dictive control framework that can generate dynamic whole-
body motion of humanoid robots from a series of key poses.
Combining the proposed framework with a contact planner
may be an effective solution for reducing the manual effort of
key pose editing. In the current design, CD-MPC uses moment
of inertia and local angular momentum calculated from key
poses. This point may require improvement in order to apply
the method to motions involving large rotation such as parcour,
somersault, and cart-wheel. Moreover, quantitative comparison
with other multi-fidelity MPC and learning-based approaches
should be conducted. Lastly, major technical challenges toward
sim2real would be to integrate whole-body state estimation
into the control system loop and to respect joint velocity and
torque limits.

REFERENCES

[1] S. Nakaoka, S. Kajita, and K. Yokoi. Intuitive and flexible user
interface for creating whole body motions of biped humanoid robots.
In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1675–1682, 2010.

[2] G. Bin Hammam, D. E. Orin, and B. Dariush. Whole-body humanoid
control from upper-body task specifications. In 2010 IEEE Interna-
tional Conference on Robotics and Automation, pages 3398–3405,
2010.

[3] E. Dantec, R. Budhiraja, A. Roig, et al. Whole body model predictive
control with a memory of motion: experiments on a torque-controlled
talos. In 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 8202–8208, 2021.

[4] C. Khazoom, S. Hong, M. Chignoli, et al. Tailoring solution accuracy
for fast whole-body model predictive control of legged robots. IEEE
Robotics and Automation Letters, 9(12):11074–11081, 2024.
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