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Trajectory Generation for Legged Robots Based on
a Closed-form Solution of Centroidal Dynamics

Yuichi Tazaki1

Abstract—This paper proposes a novel reduced-order model
of rigid body dynamics that can be used for versatile motion
generation of legged robots. It can express both linear CoM
movement and rotation of the base link, and it is applicable to
general multi-contact setup including flight. Moreover, its closed-
form solution enables optimization of long trajectories consisting
of more than 20 contact phases in less than 100ms. Various
trajectory optimization examples of biped and quadruped models
together with trajectory tracking simulation using whole-body
MPC are shown to demonstrate the flexibility and practical
applicability of the proposed model.

Index Terms—Legged Robots, Trajectory Generation, Cen-
troidal Dynamics, Closed-form Solution

I. INTRODUCTION

A. Importance of Compact and Expressive Models for Trajec-
tory Generation

Recent years have seen rapid development of humanoid
and legged robots and their application in various fields such
as logistics, security, and social robots. Since these types of
robots possess many degrees of freedom, generating motion in
real time using a full-DoF dynamics model requires large com-
putational resource. Therefore, various reduced-order models
(also known as template models) have been widely used in
combination with full models to reduce the computational
cost of trajectory optimization and model predictive control
methods [1, 2, 3].

B. Review of Reduced-Order Models for Trajectory Genera-
tion

The centroidal dynamics (CD) [4], which expresses the
relationship between the linear and angular momenta and
total contact wrench, is low-dimensional dynamics naturally
embedded in rigid body systems. Various reduced-order mod-
els of legged robots known in the literature are derived by
simplifying the CD in different ways. The linear inverted
pendulum mode (LIPM) [5] expresses the motion of the center-
of-mass (CoM) driven by the zero-moment point (ZMP). It
was originally limited to the horizontal movement but later
generalized to a 3D model named the Variable-Height Inverted
Pendulum (VHIP) [6] and to include angular momentum in
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roll and pitch directions [7, 8, 9]. In [10], planning of CoM
movement based on the VHIP was solved by decomposing
it into the vertical and horizontal components. The spring-
loaded inverted pendulum (SLIP) model [11] can express the
vertical motion of the CoM required for running. Because of its
nonlinearity, however, its closed-form solution is not known to
date. Combination of the LIPM and the SLIP was discussed in
[12, 13]. Reduced-order models are integrated into trajectory
optimization (TO) problems in various ways. Existing methods
for TO of CoM motion include: using the LIPM as the
state equation [14, 15], defining desired ZMP as a cost [16],
and defining a ZMP-based stability criterion as an output
constraint [17, 18, 19]. Existing approaches to optimization
of trajectories combining both CoM motion and base link
rotation include: using the centroidal dynamics as a constraint
or a state equation [20, 21, 22, 23, 24, 25], and imposing a
stability condition based on the ZMP support region or the
centroidal wrench cone (CWC) [26, 8]. Numerical integration
and collocation methods require small time step to achieve
acceptable accuracy, which generally results in a large number
of decision variables. Moreover, feasibility is guaranteed only
on discrete keypoints, although studies on feasibility between
sample points exist [27, 28]. If a closed-form solution of the
dynamical system model is available, rigorous solution trajec-
tories can be expressed by minimum number of decision vari-
ables, and moreover, as long as constraints on control inputs
(e.g., ZMP and contact wrench) are satisfied, the feasibility
of the trajectory at arbitrary time instant is guaranteed. Some
attempts to linearize or analytically integrate the CD have been
made in the past studies. It has been shown in [29] that CD
can be linearized by ignoring the rotational dynamics along
the vertical axis and assuming constant CoM height. Although
these restrictions may be acceptable in many practical scenes,
they prohibit application of this approach to planning of multi-
contact and acrobatic motion. One commonly adopted way
to analytically integrate the centroidal dynamics over a fixed
time interval is to apply the zero-order hold directly to the
contact wrench. However, piecewise-constant contact wrench
inevitably induces variation of angular momentum, which is
undesirable in many types of motion such as normal walking.
To limit variation within an acceptable range, the integration
time step must be set small enough. The multi-contact (mc-)
LIPM proposed in our previous study [30] expressed contact
force acting on each contact point in terms of stiffness and the
displacement between the contact point and the CoM. Thanks
to this formulation, the integration time step could be set as
large as a single contact phase without causing variation of
angular momentum. However, the model had limitation in the
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expressiveness of the rotational dynamics.

C. Contribution of This Letter

The main contributions of this letter is summarized as
follows.
• The stiffness-based centroidal dynamics (SBCD) is pro-

posed as a generalization of the mc-LIPM that can express
both translational and rotational dynamics. Moreover, the
SBCD is shown to include existing linear models as special
cases.

• Closed-form solutions of the centroidal dynamics based on
two types of parametrization of contact wrench, stiffness-
based and direct, are derived to be utilized in trajectory
optimization.

• Various trajectory optimization examples of bipedal and
quadruped locomotion are presented to demonstrate the
flexibility of the proposed model. Moreover, trajectories
generated with the stiffness-based and direct formulation are
compared.

• To verify that reference trajectories generated with the
proposed model can be tracked under realistic kino-dynamic
constraints, trajectory tracking using whole-body MPC is
implemented and tested in rigid-body simulation.
The organization of this letter is as follows. In Section II, the

derivation of the SBCD and its relationship with conventional
models is shown. In Section III, an optimal control problem for
trajectory generation is formulated and its solution strategy is
discussed. In Section IV, several trajectory generation results
are presented together with results of whole-body trajectory
tracking control in simulation. Concluding remarks are given
in Section V.

II. CENTROIDAL DYNAMICS

A. Stiffness-based Centroidal Dynamics

Let us start from the well-known centroidal dynamics [31]
equation, which describes the dynamical relationship between
the linear and angular momenta and the total external wrench.

mp̈ = f −mg, (1a)

L̇ = η (1b)

Here, p is the position of the CoM, L is the angular momen-
tum around the CoM, and f and η are the translational and
rotational component of the total external wrench, respectively.
Moreover, m is the total mass and g is the gravitational
acceleration. We assume that all external forces are contact
forces acting between the robot and the environment. The
robot can make contact with the environment with ne ends.
We use the term end to refer to a part of the robot that makes
contact with the environment. Let us denote the translational
and rotational components of the contact wrench applied to the
l-th end (l = 1, 2, . . . , ne) by fl and ηl, respectively. Then the
total contact wrench is expressed as follows.

f =
∑

l fl, η =
∑

l [(pl − p)× fl + ηl] (2)

Here, pl denotes the position of the l-th end.

The centroidal dynamics fall into the class of bilinear
systems because of the cross product included in (2). One way
to derive a closed-form solution of the centroidal dynamics
is to apply the zero-order hold to contact wrenches, as is
commonly done in the literature. In this letter, we propose
another approach, which is to parametrize contact wrenches
in a different form and apply the zero-order hold to the
parameters. To this aim, let us express the contact wrenches
in the following form.

fl = mλ2
l (p− (pl + rl)), ηl = mλ2

l η̂l (3)

Here, λl is the stiffness and it expresses the strenth of the
contact wrench. Since contact forces are repulsive, the stiffness
must satisfy λl ≥ 0. Moreover, rl expresses a shift in the
direction of the contact force; the contact force points from
pl towards p − rl. It is conceptually similar to the CMP
(centroidal moment pivot) [32] and eCMP [33] ; the difference
is that it is defined separately for each end. Hereafter we call
rl the CMP offset of the l-th end. As a result, we obtain the
following equations of motion, which we call the stiffness-
based centroidal dynamics (see Appendix for step-by-step
derivation).

p̈ = λ̄2(p− (p̄+ r̄)), (4a)

L̇ = m(p̈× r̄ + η̄) (4b)

where

λ̄ =
√∑

l λ
2
l + ϵ2, p̄ =

∑
l λ

2
l pl + g

λ̄2
, r̄ =

∑
l λ

2
l rl

λ̄2
,

η̄ = λ̄2p̄× r̄ +
∑

l λ
2
l (η̂l − pl × rl).

(5)

Here, ϵ ≥ 0 is a small constant inserted to avoid dividing
by zero in the case of a flight-phase (i.e., λl = 0 ∀l). If
flight phases need not be considered, then ϵ can be set as 0
and (4a) and (4b) hold precisely. Otherwise the equalities hold
approximately.

Remark 1. Similar stiffness-based (or force-to-point [33])
parametrization has been explored in the literature. The main
difference is that our model directly parametrizes the contact
wrench of each end, whereas existing models apply similar
parametrization to the total contact wrench. The stiffness,
CoP (center-of-pressure), and eCMP in the conventional sense
appear as weighted averages: λ̄, p̄, and p̄+ r̄, respectively.

Remark 2. If all ends are off-contact, the movement of the
CoM becomes ballistic (p̈ = −g) and the angular momentum
is conserved (L̇ = 0). In fact, by setting λl = 0 ∀l, we obtain
p̈ = ϵ2p− g ≈ −g, L̇ = 0. Therefore, (4a) and (4b) express
centroidal dynamics in general multi-contact configurations
including flight.

Remark 3. By setting rl = 0 ∀l, we obtain p̈ = λ̄2(p −
p̄), L̇ = η and thus the linear and rotational dynamics are
decoupled. In this case, the linear dynamics is equivalent to
the VHIP [6].
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Remark 4. By assuming pl,z = rl,z = 0 ∀l, eliminating r̄, ig-
noring the z-component and rearranging the x, y components,
we obtain

p̈x = λ̄2

(
px − p̄x −

L̇y − ηy
m(p̈z + g)

)

p̈y = λ̄2

(
py − p̄y +

L̇x − ηx
m(p̈z + g)

)
which is essentially the same as the VIP [7] and the NIPFM
[8].

B. Closed-form Solutions and Discrete-time Equations

Consider a finite interval of time [0, T ] which is further split
into N sub-intervals. The k-th interval is given by [tk, tk+1]
(tk+1 = tk + τk). During each interval, the contact state of
each end does not change. In other words, contact states may
change only at discrete time instants tk.

1) Direct Formulation: By applying the zero-order hold to
fl and ηl, we obtain the following discrete-time equations.

p(t) = pk + (t− tk)vk +
(t− tk)

2

2

(
1

m

∑
l fl,k − g

)
(6a)

v(t) = vk + (t− tk)

(
1

m

∑
l fl,k − g

)
(6b)

L(t) = Lk + (t− tk)
∑

l [(pl − pk)× fl,k + ηl,k]

+ (
∑

l fl,k)×
(
(t− tk)

2

2
vk − (t− tk)

3

6
g

)
(6c)

Although this method is close to those used in [1][34], there is
a difference in the treatment of the moment arm p−pl =: rl;
namely, existing methods approximate rl to be fixed during the
integration interval, whereas our method integrates p without
approximation.

2) Stiffness-based Formulation: In the stiffness-based for-
mulation, the zero-order hold is applied to λl, rl, and η̂l to
obtain the following.

p(t) = p̄k + r̄k + Ck(t− tk) (pk − (p̄k + r̄k))

+
Sk(t− tk)

λ̄k
vk (7a)

v(t) = λ̄kSk(t− tk)(pk − (p̄k + r̄k)) + Ck(t− tk)vk (7b)
L(t) = Lk +m((v(t)− vk)× r̄ + (t− tk)η̄k) (7c)

where

Ck(t) = cosh
(
λ̄kt
)
, Sk(t) = sinh

(
λ̄kt
)

and λ̄k, r̄k, and η̄k are given by substituting
{λl,k,pl,k, rl,k, η̂l,k} into (5).

C. Integration of Base Link Rotation

The discrete-time dynamics derived in the previous section
does not express rotation explicitly in terms of orientation and
angular velocity. This could be inconvenient if desired rota-
tional movement is to be specified in trajectory optimization.
In a general multi-body system, the relationship between the

total angular momentum and the angular velocity of the base
link is expressed as follows.

L = (RIRT)ω +RL̂ (8)

where R is the rotation of the base link, RIRT is the
composite rigid body inertia of the system and L̂ is angular
momentum genereted by motion relative to the base link. Note
that (8) is essentially the same as the rotational component of
(7)-(9) in [35]. Because I and L̂ depend on the whole-body
kinematics and mass distribution of the robot, some form of
approximation is necessary in trajectory planning based solely
on the centroidal dynamics. In the following, we assume that
reference values of these quantities, denoted by Iref and L̂ref ,
are given. Based on this information, the angular velocity of
the base link is given by

ω = RI−1
ref (R

TL− L̂ref) (9)

Note that this formulation includes the commonly adopted
single rigid-body approximation, in which case L̂ref ≡ 0
and Iref is a constant matrix. If reference whole-body mo-
tion is known in advance, this information can be reflected
to Iref and L̂ref to generate centroidal trajectories that are
more compatible with the whole-body dynamics. Analytical
integration of 3D rotation is difficult in general, except for a
special case in which the axis of rotation is fixed during the
integration interval. Thus, we resort to approximate stepping
scheme such as Euler stepping, following the line of [36]. Let
us subdivide the interval [tk, tk+1] into ndiv even subintervals
[t′i, t

′
i+1] (i = 0, 1, . . . , ndiv), where t′i = tk + τ ′ki, τ

′
k = τk

ndiv
.

The update of orientation is expresses as follows.

qk+1 = q
(
ω(t′ndiv−1)τ

′
k

)
· . . . · q (ω(t′0)τ

′
k) · qk (10)

Here, ω(t) is given by (9). The resolution of rotation ndiv must
be selected by the designer. Note that the value of ndiv does
not affect the number of decision variables of the trajectory
optimization problem described in the next section. Selecting
greater ndiv, however, will increase the cost for computing the
gradient of (10) used inside the optimization algorithm.

III. FORMULATION OF TRAJECTORY OPTIMIZATION
PROBLEM

1) State Equation: Let us define the state variable as

xk =



pk

qk
vk

Lk

tk
{pl,k}l∈1,...,ne

{ql,k}l∈1,...,ne


(11)

and the control input (depending on the type of parametrization
used) as

uk =


τk

{vl,k}l∈1,...,ne

{ωl,k}l∈1,...,ne

{fl,k}l∈1,...,ne

{ηl,k}l∈1,...,ne

 uk =


τk

{vl,k}l∈1,...,ne

{ωl,k}l∈1,...,ne

{λl,k}l∈1,...,ne

{rl,k}l∈1,...,ne

{η̂l,k}l∈1,...,ne

 (12)
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The reason why we define the end velocities as control inputs
and not end poses is that in this way we can impose contact
complementarity by simply assigning large cost to the velocity
of the in-contact ends, as described later. Moreover, tk denotes
the absolute time instant at the beginning of the k-th contact
phase and τk denotes the duration of the k-th phase, for which

tk+1 = tk + τk (13)

holds. The movement of each end is expressed as

pl,k+1 = pl,k + vl,kτk, ql,k+1 = q(ωl,kτk) · qk (14)

where pl,k and ql,k denote the position and orientation of the
l-the end with respect to the global coordinate frame, while
vl,k and ωl,k denote its linear and angular velocity.

The equations defined above are integrated into the follow-
ing state transition equation.

xk+1 = f(xk,uk) (15)

Here, v(t) that appears in the right hand side of (7c) is
eliminated by substituting (7b).

A. Task-related Costs

The following task-related cost function is defined.

Ltask,k =
1

2
∥W x

k (xk − xref
k )∥2 + 1

2
∥Wu

k (uk − uref
k )∥2

(16)

Here, (∗)ref are desired values. We consider a waypoint-
tracking task where a series of intermediate configurations
(waypoints) are specified for the CoM, the base link, and
the ends. Desired position and velocity values are given by
values along spline curves connecting these waypoints. The
desired stiffness values are determined by analytically solving
the following least squares problem for each k:

min
∥∥∑

lλ
2
l,k

∥∥2 subject to
∑

lλ
2
l,k(p

ref
k − pref

l,k) = g

This subproblem gives the stiffness distribution that supports
the CoM against gravity. The desired values of the CMP offset
and the moment of each end are both set as 0 by default, but
they could be assigned non-zero values to generate certain
characteristic motion. The weight parameters of each term,
w∗, must be specified by the designer. For variables defined
as quaternions, the difference between the variable and the
reference value is defined as q− qref := ω(qref−1 · q), where
ω(·) transforms a unit quaternion into an equivalent angle-axis
vector.

B. Inequality Constraints

In Subsections III-B and III-C, the subscript k is omitted for
simplicity of notation. The following box constraint is imposed
on the position of each end relative to the CoM and the base
link:

pl,min ≤ q−1(pl − p) ≤ pl,max ∀ l (17)

In addition, simple range constraints are imposed on the
duration and the stiffness of each end.

τmin ≤ τ ≤ τmax (18)
0 ≤ λl ≤ λmax ∀ l (19)

The contact wrench that acts on each end must satisfy the non-
slip condition and the limitation of moment. First, the non-slip
condition is expressed as√

f2
l,x + f2

l,y ≤ µfl,z (20)

where µ is the static friction coefficient. Moreover, constraints
on the contact moment are defined as follows.

−cmax,xfl,z ≤ ηl,x ≤ −cmin,xfl,z (21a)
cmin,yfl,z ≤ ηl,y ≤ cmax,yfl,z (21b)
−µzfl,z ≤ ηl,z ≤ µzfl,z (21c)

Here, cmin and cmax define rectangular admissible range of
the center-of-pressure, and µz is the coefficient of friction
torque.

Inequality constraints defined above can be expressed in a
general form g(xk,uk) ≥ 0, where g is a differentiable vector-
valued function and ≥ is evaluated componentwise. This
inequality constraint is integrated into the overall optimization
problem as the following log-barrier cost.

Llimit(xk,uk) =
∑ng

i=1 − logmax(ϵ, gi(xk,uk))

where ng is the dimension of g. Clearly, Llimit becomes
greater as gi approaches 0. Taking max with a small constant
ϵ ensures that the infeasibility of log is avoided if gi becomes
negative during optimization.

C. Contact-dependent Costs

Let σl,k denote the contact state of the l-th end at the k-th
step; namely, σl,k = i if the l-th end is in contact with the i-th
contact face during [tk, tk+1], and σl,k = ∅ if it is off contact.
The following cost is used to impose the complementarity of
the end velocity and contact wrench.

Jcompl,k = w2
compl

∑
l

[∑
i

(
δ[σl,k = i](ηT

i (pl,k − oi))
2
)

+ δ[σl,k ̸= ∅](∥vl,k∥2 + ∥ωl,k∥2) + δ[σl,k = ∅]λ2
l,k

]
(22)

Here, δ[∗] takes 1 if the condition inside the bracket is true, and
0 otherwise. The first term requires that the distance between
the l-th end and the i-th contact face in the normal direction
must be zero if they are in contact. Here, oi and ηi are the
origin and the normal of the i-th contact face, respectively.
The second term requires that the end velocity must be zero
if it is in contact with one of the contact faces. The third
term requires that the end stiffness must be zero if it is not in
contact with any of the contact faces. Note that constraining
the stiffness to zero enforces the corresponding contact wrench
to zero by definition. The weight wcompl must set large enough
in order to make the error of the complementarity conditions
acceptably small after optimization.
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D. Formulation of Optimal Control Problem and Solution
Method

The overall cost function is defined as

J [σ] =
∑

k [Ltask,k + Llimit,k + Lcompl,k[σk]] (23)

and the planning problem is formulated as the following
optimal control problem:

find x,u that minimizes J [σ](x,u)

subject to xk+1 = f(xk,uk)
(24)

Because the inequality constraints are integrated in to the
cost function as a barrier function as described earlier, the
overall optimal control problem is unconstrained and therefore
differential dynamic programming (DDP) can be used for
computing its locally optimal solution. Methods proposed in
[37, 38] could be used for more strict treatment of inequality
constraints. At initialization, the decision variables are reset
to their desired values described in Section III-A. Here, the
initial trajectory does not necessarily satisfy the state equation.
A technique proposed in F-DDP [39] was used to correct
the error of the state equation iteratively in the course of
optimization. The error contraction rate was set as 0.5. The
gradient of the dynamical model and the cost function was
derived analytically and implemented in the program code.
Automatic differentiation techniques could be used to reduce
the manual effort of this step.

The variables are scaled based on their physical dimensions
so that all variables fall within the range of the same order
of magnitude. As a result of proper scaling of variables, the
convergence of iterative optimization is improved, and more-
over, setting all weights of the cost fuction to one becomes a
good starting point for weight adjustment. In fact, for examples
shown in the next section, all diagonal elements of the weight
matrice Wx and Wu are set as 1 unless otherwise noted. The
only exception is the complementarity weight wcompl, which
was set as 1000.

IV. TRAJECTORY OPTIMIZATION AND TRACKING
EXAMPLES

A. Common Setup

For both planning and simulation, a laptop computer with
Intel Core-i7 1280P CPU was used. The proposed trajectory
optimization method was implemented in custom C++ code
without using any off-the-shelf solvers and run in a single
thread.

B. Trajectory Optimization Results

Trajectory optimization results of bipedal and quadrupedal
locomotion with the stiffness-based and direct parametrization
are shown in Fig. 1. Contact patterns used to generate these
motions are listed in Table I. Each contact pattern is shown as
a matrix whose (l, k) component indicates the contact state of
the l-th end at the k-th step. A numeral indicates the contact
face index whereas the symbol ‘-’ indicates the off-contact
state. The biped model has two ends: the right foot (1) and
the left foot (2), while the quadruped model has four ends: the

TABLE I
CONTACT SEQUENCES

Task N contact sequence

Walk 24 000-000-000-000-000-000-0
0-000-000-000-000-000-000

Run 24 00---0---0---0---0---0--0
0--0---0---0---0---0---00

Long-jump 6 000-000
000-000

Back-flip 6 000-111
000-111

Trot 24

000-000-000-000-000-000-0
0-000-000-000-000-000-000
0-000-000-000-000-000-000
000-000-000-000-000-000-0

Pace 24

000-000-000-000-000-000-0
0-000-000-000-000-000-000
000-000-000-000-000-000-0
0-000-000-000-000-000-000

right front, the left front, the rear right, and the rear left (IDs
are assigned in this order). The continuous trajectory of each
end while it is in the off-contact state is defined as a cycloid-
like curve. It is for visualization and for providing desired
values to the trajectory-tracking controller described later.

For Walk and Run, the weights on the CoM velocity and
the angular momentum were raised to 10. As demonstrated in
Run, the SBCD can express flight phases together with other
contact phases seamlessly, and it can generate vertical CoM
movement by varying the end stiffness. In Long Jump, to re-
alize small launch angle under the friction constraint, the CMP
offset was utilized to shift the direction of the contact force
away from the CoM. As a result, a linear CoM trajectory with
long horizontal jump distance (1.0m) with low vertical jump
height (0.13m) together with rotational movement about the y
(pitch) axis consistent with the dynamics was generated. The
CMP offset was also utilized in Trot and Pace to satisfy the
friction constraint. In Back-flip, desired orientation (−45deg
and +45deg resp.) and angular velocity (−10rad/s) of the base
link at lift-off and landing were specified to create rotation
exceeding 180 degrees. Note that these reference values are
used mainly for initialization of the trajectory, and optimized
values were different. Similar to Long Jump, the CMP offset
was utilized to generate required angular momentum for back-
flip. The landing position was set 0.5m behind and 0.3m below
the lift-off position.

C. Comparison of Contact Wrench Parametrization

Overall, both formulations (stiffness-based and direct) could
be used to generate feasible trajectories of all demonstrated
examples. However, trajectories generated with the direct
parametrization showed oscillation of angular momentum as
shown in Fig. 2. This oscillation is inevitable in the direct
parametrization because the contact wrench is fixed through-
out each integration step. The magnitude of oscillation may
be reduced by subdividing each contact phase into smaller
intervals, but this will increase the computation cost. Similar
oscillation was observed in the Run and Pace examples too.
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Fig. 1. Trajectory optimization results. Each figure shows stiffness-based (top) and direct (bottom). The CoM trajectory is depicted by a black curve with
sticks indicating the base link rotation. The swing-foot trajectories are depicted by cyan (right) and magenta (left) curves. The ground reaction force is depicted
by red sticks.
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Fig. 2. Angular momentum profile of walk and run , stiffness-based (dashed)
and direct (solid).

From this we consider that the stiffness-based formulation is
more useful for trajectory generation with long time steps.

D. Computational Characteristics

Computation time for one iteration (average of 100 itera-
tions) is summarized in Fig. 3(a). The total computation time
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Fig. 3. Computational characteristics

is further broken down into preparation, backward pass of
DDP, and line search. The preparation phase mainly consists
of computation of the gradient of the state equation and the
gradient and Hessian of the cost function. The backward pass
of DDP consists of computation of the gradient and Hessian



TAZAKI : TRAJECTORY GENERATION FOR LEGGED ROBOTS BASED ON A CLOSED-FORM SOLUTION OF CENTROIDAL DYNAMICS 7

0

1

2

3
px

-0.1

-0.05

0

0.05

0.1

py

0

0.5

1

pz

-10

-5

0

5

10

Lx

-10

-5

0

5

10

Ly

-10

-5

0

5

10

Lz

-150
-100

-50
0

50
100
150

fx

-150
-100

-50
0

50
100
150

fy

-100
0

100
200
300
400
500

fz

-40

-20

0

20

40

0 1 2 3 4 5 6 7

m
x

time [s]

-40

-20

0

20

40

0 1 2 3 4 5 6 7

m
y

time [s]

-40

-20

0

20

40

0 1 2 3 4 5 6 7

m
z

time [s]

(a) Run

0

1

2

3

px

-0.1

-0.05

0

0.05

0.1

py

0

0.5

1

pz

-10

-5

0

5

10

Lx

-10

-5

0

5

10

Ly

-10

-5

0

5

10

Lz

-150
-100

-50
0

50
100
150

fx

-150
-100

-50
0

50
100
150

fy

-100
0

100
200
300
400
500

fz

-40

-20

0

20

40

0 1

m
x

time [s]

-40

-20

0

20

40

0 1

m
y

time [s]

-40

-20

0

20

40

0 1

m
z

time [s]

(b) Long-jump

Fig. 4. Comparison of reference trajectory (red) and simulation (black). From
top to bottom: CoM position, angular momentum, contact force, and contact
moment of the right foot.

of the value function. Line search is needed to ensure stable
convergence and it includes the forward pass of DDP. The
computation cost of DDP is cubic to the state dimension nx

and the input dimension nu, and proportional to the number
of steps N . The computation time of the quadruped examples
were greater than the biped ones because the quadruped model
has greater state and input dimensions that the biped model.
Direct comparison of computation time with other existing
studies is difficult because of differences in nx, nu, and
N . Generally speaking, existing studies that reported small
computation time used models with small dimensions. Similar
dimensionality reduction may also be done in the present
formulation by assuming point contact instead of surface
contact. Fig. 3(b) shows curves of optimized cost against
number of iterations. For all examples, the cost decreased very
close to a local minimum in less than five iterations. Some
examples showed slower convergence speed in the vicinity
of a local minimum, and took up to 10 to 20 iterations for
convergence. The total computation cost is well below 100ms.

E. Trajectory Tracking Using Whole-body MPC

To test if reference trajectories generated by using the SBCD
can be tracked under realistic kino-dynamic constraints, trajec-
tory tracking control using a full-DoF model was performed in
rigid-body simulation. Whole-body model predictive control
was used to implement reference trajectory tracking. The
detail of the whole-body MPC controller used here is not
described in detail due to limited space; it is based on the
centroidal dynamics and full kinematics formulation similar
to [40]. Choreonoid with the AIST Simulator was used for
simulation environment. The humanoid robot model used for
simulation has 30 joints and its total mass is 44[kg]. To
work around the difficulty of whole-body state estimation,
the full state of the robot was directly obtained from the
simulator. Figures 4(a)(b) show plots of the time-series of
representative variables for Run and Long Jump. The robot
could successfully perform both motions. See the attached
video for more simulation results. For both examples, the
reference CoM trajectory as well as the reference ground
reaction force could be tracked accurately. For Run, weak
oscillation of Ly was observed. This is because variation
in angular momentum caused by leg swinging could not be
compensated completely by whole-body motion such as arm
swinging. For Long Jump, large error in Ly immediately after
landing was observed. This was caused by large deviation of
the lateral component of the ground reaction force (fx) after
landing. Although tracking performance could be improved
by implementing better reaction force control, it is beyond the
scope of this letter. In both cases, variation of contact moment
to reduce the error of angular momentum was observed.

V. CONCLUSION

This paper proposed a trajectory generation method for
legged robots based on a closed-form solution of the lin-
ear centroidal dynamics model. It has been demonstrated in
several examples that the proposed method can be used to
generate trajectories that involve both linear and rotational
movement of centroidal dynamics. Our future work includes
application of the proposed model to capturability analysis
including angular momentum and synthesis of fall avoidance
controllers.
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A. Derivation of Stiffness-based Centroidal Dynamics

By substituting (2)(3) into (1a) and assuming that ϵ is small
enough, we obtain

p̈ =
∑

lλ
2
l (p− (pl + rl))− g

≈
∑

lλ
2
l (p− (pl + rl))− g + ϵ2p

=
(∑

lλ
2
l + ϵ2

)
p−

(∑
lλ

2
l (pl + rl) + g

)
= λ̄2(p− p̄− r̄)

The rotational dynamics is derived as follows. Substituting
(2)(3) into (1b) yields

L̇ =
∑

l((pl − p)×mλ2
l (p− pl − rl) +mλ2

l η̂l)

=
∑

l(p− pl)×mλ2
l rl +

∑
lmλ2

l η̂l

= p×mλ̄2r̄ +
∑

lmλ2
l (η̂l − pl × rl)

≈ (p̈+ λ̄2(p̄+ r̄))×mr̄ +
∑

lmλ2
l (η̂l − pl × rl)

= m(p̈× r̄ + η̄)


