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Abstract—In this paper, we propose a new offline model
predictive control for a planar bipedal robot, which we call
here Graph-based Model Predictive Control. This method
consists of two phases : the graph construction phase and
the real-time control phase. The directed graph is constructed
off line by i) placing a certain number of nodes on the state
space of the robot, ii) computing the optimal path starting
from each of the graph nodes with respect to a given cost
function, and iii) creating a set of directed edges by taking the
first edge of each of the optimal paths. This means that one
can achieve receding horizon control in some sense by simply
tracing the edges of the directed graph and therefore the real- ) )
time computational cost is dramatically reduced compared Fig. 1. Model of a planar bipedal robot.
with the ordinary MPC. In addition, by constructing multiple
directed graphs based on different cost functions, one can
design multiple motions and switching trajectories among

them in a uniform way. The proposed method is applied to therefore the optimal control problem to be solved at
the speed changing control problem of a bipedal walker on each sampling time in MPC is reduced to an optimal
a two-dimensional plane and its effectiveness is verified by path-finding problem over the candidates of waypoints.
numerical simulation. However, since discretization and optimal path-finding are
computed in real time, there still remain computational
) ) ) ) difficulties in the case of high-dimesional systems.

Bipedal robots need to realize various motions for | ihis paper, we propose a new method, which we call
adopting to a real environments; not only walking in graph-hased MPC. In this method, the discretization and
constant speed, but also stopping, changing the walkinge ontimal path-finding are moved offline, which dramati-
direction, and so on. Moreover, the robot must be ablg,)y gecreases the real-time computational cost compared
to switch smoothly from one motion to another motionyith ordinary MPC and hence enables application to high-
More precisely, when the robot is commanded to chang§mensional systems such as bipedal robots. Furthermore,
its motion, it has to generate a transient trajectory WhICBy using multiple cost functions, this method provides a
starts from its posture and velpcity at that point of time ieorm way to design multiple stationary motions and
and converges to the new motion. transient motions among them. The effectiveness of Graph-

For this purpose, a number of locomotion controllers ang,seq MPC is presented in a variable speed control of a
motion planners has been proposed in the previous litergrnar bipedal walker.

t““?s [1,][2][3][4]' HOW,eYeF' th.ese do not take into account Thjs paper is organized as follows. In Section I, we
optimality such as minimization of energy consumption. ¢, majize a planar bipedal robot as a hybrid system model.
Recently, a great deal of research interest has been pgif gection Ill, the Graph-based MPC is discribed in

on Model Predictive Control (MPC for short) since it cangeajl. Section IV shows numerial simulations. Concluding
effectively cope with nonlinear dynamics and constraints, arks are made in section V.

on the state and the input. The control law of MPC is quite
simple and therefore it is applicable to a wide range ofl. A HYBRID SYSTEM MODEL OF APLANAR BIPEDAL
systems including bipedal robots. However, the usual MPC RoBoOT

requires to solve the finite-time optimal control problem in Fig. 1 shows a planar bipedal robot. We make the fol-
real time and this requirement prevents MPC from beingwing assumptions. Each foot is massless; the foot of the
applied to relatively high-dimensional systems. swing leg therefore has no effect on the robot’s dynamics.
~ Imura et al.[5][6] has proposed a new MPC strategyrhe actuator torque of the ankle joint of the swing leg is
In an ObStaC|e aV0|dance problem Of a Veh|C|e. In the|é|ways()_ The robot a|WayS Stands on the entire area of
method, the time axis and state space are discretized a{ge of its feet; it does not stand on tiptoe nor on a heel.
Y. Tazaki is with the Department of Mechanical and Environ—Moreover' no slipping occurs at the contact face betW?en
mental Informatics, Tokyo Institute of Technology, Tokyo,pda the foot and the ground. The collision between the swing
tazaki @yb. nei . titech.ac.jp _ ___foot and the ground is completely inelastic; the velocity
J. Imura is with the Department of Mechanical and Environ- . : .
mental Informatics, Tokyo Institute of Technology, Tokyo,pda Of the swing foot always becomé@simmediately after the
inura@mei.titech.ac.jp collision.
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We definex = (g7, %qT)T as the state of the robot,
where the vectoly denotes the robot's posture given as
q = (Gbody,Ghipl,Ghipr,Gknccl,GknCCr)T. There exists an
actuator on each joint of the robot, and hence the input of
the robot is defined as a vector of all actuator torques writ-

ten asu = (Thipla Thip,» Tkneels Tkneers Tanklels Tankler)T'
The components of andw are as follows.

Obody body inclination

Onip; (2 € {l,r}) hip joint angle

Oxneei (1 € {l,1}) knee joint angle

Thip; (¢ € {1,1}) hip joint torque

Tknee; (2 € {l,1}) knee joint torque

Tankle; (1 € {1,1}) ankle joint torque

(‘)1 and (-), denote symbols related to the left and right
leg of the robot, respectively.

The dynamics of the robot consists of four different
modes (i.e., discrete states) : L, R, LR, and RL. Mode
L corresponds to the case when the robot stands on its left
foot, and mode R to the case of the right foot. When the
system is in mode L and the swing foot (which is the right
foot) hits the ground, an impulsive force acts on the right
foot and the velocity of the robot changes instantaneously.
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Fig. 2. Controller architecture.

Consequently, the stance leg switches from the left leg

the right leg, which indicates the mode that is about t

posture and a velocity) of the robot. By considering
§eaquences of nodes (i.e., a path) of the graph, one can

change to R. We call this event mode LR. Similarly, mod&°MPOse a variety of motion trajectories that pass through

RL corresponds to the case from mode R to mode L.

each node as a waypoint. Besides, the directed graph is

The behavior of the system is discribed by the following?®MPosed of multiple subgraphs that share the nodes. Each

ordinary differential equations and algebraic equations.

4(t)=FL(q(t))uL(t)+GL(q(t),4(t))

I(t)=L it (q(t),q(t),u(t))ESL

d(H)=Fr(q(t))ur (t)+Gr(a(t).4(1))

I(t)=R it (q(t),d(t),u(t))ESr

q(t)T=Hrr(q(t))q(t)

I(t)=LR it (g(t),4(t))€SLr

q(t) T =Hrw(q(t)q(t)

I(t)=RL it (q(t),q(t))ESrL

)

The symbolg(t)™ denotes the value af(t) immediately
after the instantaneous jump. The symbel (ug) is

subgraph is responsible of realizing a certain motion of
the robot; for instance, the subgraph drawn in solid lines
in Fig. 2 may correspond to low-speed walking while the
ones drawn in dashed lines may correspond to high-speed
walking. Observe that each subgraph consists of a cyclic
path, which will generate a cyclic motion, and of switching
paths, which will bring the state onto the cyclic path. On
the other hand, one subgraph is selected to be "active” at
any time instance in the real-time control phase. Then, the
real-time controller drives the state of the robot so as to
trace the directed edges of the active subgraph. The desired
motion is realized by simply switching the active subgraph.
As mentioned in Section |, we shall design two diffirent
kinds of motions: principal motions and switching motions.
The principal motion is a cyclic motion such as steady-state

obtained by removing the ankle joint torque of the swingvalking. The switching motion is a transient motion de-

leg (which is alway<) from the assumption) fronax. The
symboli(t)is the mode of the system in timteThe set of
(g, g, u) whose modes ark andR are denoted by, and
Sr, respectively. Similarly, the set @f;, ¢) whose modes
areLR andRL are denoted by r andSgy,, respectively.

Ill. GRAPH-BASED MODEL PREDICTIVE CONTROL
A. Brief Discription of the Method

scribing a transition from one principal motion to another.
Taking this in mind, the procedure for the design of the
directed graph is decomposed into the following steps.
Step 1: Design path cost functions for each motion to be
realized.

Step 2: Design a set of waypoints and a set of transition
times

Step 3: Construct sets of directed edges.

As shown in Fig.2, the architecture of Graph-baseth Step 1, we design a cost function of a path (which
MPC consists of a directed graph constructed on thwe call a path cost function) for each principal motion.
state space and a real-time controller. The directed grafihe path cost function measures the desirability of a path
is constructed offline, which we call graph constructioraccording to the corresponding motion. In Step 2, we
phase, while the real-time controller performs MPC in reallesign a set of waypoints and a set of transition times
time, based on the directed graph. In the graph constructiéor each principal motion by optimization with respect
phase, each node of the directed graph expresses a stat¢he corresponding path cost function. In Step 3, using



each path cost function, we create a set of directed edgéken, one obtains the following double integrator system.
by means of the dynamic programming and the receding 0 I 0

horizon policy. In this step, not only the directed edges T=Ax +Bv A= [O 0] B= M (6)

for principal motions but also those for switching motions

are obtained at the same time. The above three steps @@ghstituting (5) into (2) yields

detailed in Section IlI-C, 1ll-D, and IlI-E, respectively. I

Beforehand, in the next section, we will discuss how t0 7 (4. p,) :/ v (7) —YI(q(T%d(T))||§:gI(q)dT )
generate a continuous-time control input which drives the 0

state from a initial waypoint to a target waypoint in certain Ri(q) = XI(q)*Tf%XI(q)*1

amount of time in the real-time control. o _ .
which is a cost function ob. Here,||z||3, = T Mz andR

B. Inter-waypoint Control is obtained by removing a row and a column corresponding
One of the building blocks of Graph-based MPC is @o the ankle torque of the swing leg frof. Since the
control law, which generates a trajectory between givegost function (7) has nonlinear terms qifr) and g(7),
i 7 7\T T 7 \T . . )
waypointszy, = (qf,q¢f)” andxi41 = (q},,4},.,) . We approximate the cost function by replacipgr) and
If ;. is an element o6y r or Sry,, it jumps instantaniously ¢(7) with (gx + gx+1)/2 and (gx + gr+1)/2, respectively.
to the next state independent of control inputs according to

hy
equation (1). Hence, we concentrate on the caseathas Jo(v; @, Tppr, hy) = / k lo(1) = Yil| %, dr (8)
an element ofS;, or Sg. Then, the problem is formalized 0 '
as follows. Y1 = Yi((gk + qr+1)/2, (4 + dr+1)/2)
[Problem 1] Ri = X1((qk + qr41)/2) " RX1((qk + qre1)/2) 7"

Suppose the initial state(0) = =z, the final statery1,
hi > 0, and R > 0 are given. Then for the system (1),Thus, Problem 1 is approximately transformed into the
find a control inputu that minimizes the cost function ~ following fixed-terminal optimal control problem of a
ha double integrator system.
J(w; h) :/ u(T)TRu(T)dT (2) [Problem 2]

0 For the system (6), find a control inputthat minimizes the
satisfying x(hy) = xr11. This problem, which is an cost function (8) subject t@(0) = xj, (hy) = Tr41.
optimal control problem of a hybrid system, is difficult[Theorem]
to solve in a straightforward manner. For this reason, wéroblem 2 has an analytical solution and the optimal input
consider solving this problem approximately. We assume®, the optimal state trajectory:* and the minimum value
the following condition, which will be guaranteed in IlI-D. of the cost function/,, are given as follows.

[Mode Invariance Condition] .
No mode change occurs during each sampling time™ (5 ®p, Bhyr, hy) =

. T
interval. o N _ (q*(t; zp, Thrr, )T Lq*(t; @p, g1, hi)T)
While the above condition is satisfied, the behavior of the 9)
system during each sampling time interval is described by 2
the following equation of motion. v (t; Tk, Tpgr, hi) = @q*(t; Tk, Thot1, hk) (10)
G = Fi(q)ur + Gi(q, g) () @ ey Teg1, i) =
3 2
In the above equation of motiof,is one of {L,R} and 10 —5 n3 1
it is determined by the initial state and the target state . . 0 1 —5 h% t
according to the following rules. [ak dx ari1 diia] 00 2 _% £2
. kl 1 k t3
_ )L i py(gr) <pr,(ar), P, (@) < Pr,(Qrin) 00 -5 52
R it pi,(ar) > pr, (@), 21, (@) = pr, (Gri1) (11)
(4)

Her.e., p, and p. indicate the vertical components of jv*(wk,mk+1,hk) _
position vectors from the center of the robot's body to w2 RS —R12 RS0
the left and right ankles, respectively. ax mt  md gt opr om|[o
Remark. For the pair(gx, gr+1) such that neither of the | | | p'h %% paf 0% |0
conditions (4) holds, the mode invariance condition may | gs+: Fili’;k’ éllhk, 71{% Rlihk g | | e
not in general be satisfied with any input. In this sense, L N " o e el BT
such a pair is said to be uncontrollable and ignored in this (12)

subsection.

X . . The solution to Problem 1 given by the above theorem
Let us introduce an input transformation as follows.

combined with the input transformation (5) is suboptimal
u; = Fi(q) (v — Gi(q, q)) (5) since the cost function is approximated in (8). However, it



has the following useful aspects: i) it guarantees the termi
nal conditionz(hy) = xx1, and ii) the solution is given in

a explicit form. These aspects plays an fundamental role in
the optimization of the waypoints and the transition times
discussed in 1lI-D. It will also be utilized to improve the
robustness of the real-time controller, which is discussed
in IlI-F.

C. Design of Path Cost Functions

For Step 1, let us consider /&-step path starting from
a certain waypointeg

(CUO, L1, ", LN, h07 h17 R hN—l) (13) xg
. . . ’ . awaypoint for stand-still motion
where by, is a transition time betweem; and xy;. We xo
introduce the following cost function as a measure of the g ™ . xf xad
. . . 23 iz ) h
desirability of a givenN-step path. ‘x\\»gﬂ’/,»’»f“-"r’m;,&{",’ ,,,,, waypoints for low-speed walking
‘ """" ----- waypoints for high-speed walking
Jpatn (o, 1, -+ N, hoy hay oo A -15y) = R
N-1
~ %
Z {Jv (g, k11, hi) — YPre(xy, mk+1)} (14) Fig. 4. Waypoints for a stand-still motion and steady-stateking
=0 motions.

In (14), jv*(:ck,:ckﬂ,hk) expresses the transition cost

between waypoints. On the other hanfly®(xy, xx11) At first, we shall discuss the case of steady-state walk-
is a function which returns a horizontal displacement ofng, where~ > 0. The following assumptions are made
the body of the robot when the state moves framto  for simplicity of discussion.

a1 1. Although the state variable does not include the [Assumption]

displacement of the robot’s body with respect to the origin (a) The sequence of the mode in a steady-state walking
of the inertial frame, one can calulater®(xy,xr4+1) isL-LR—-R—-RL—-L—---.

from the change of the posture in conjunction with the (b) The optimal gait of a steady-state walking is sym-
assumption that no slipping occurs between the stance foot  metrical about the left and the right leg.

and the ground; that is, Based on Assumption (a), Fig. 3 illustrates an arrangement
_ if I =L of waypoints and transition times for steady-state walking
Pri(zy, xp1) = {plw ((qk)) Pl <(qk+1)) it Ik _Rr The lower part of the figure shows the trajectory of the
Pro\Qk) = Pro \Qkt1 k= (15) state in the steady-state walking. The upper part shows

. he posture of the robot on the corresponding time instant.
Here, q; represents the posture corresponding to the st . : . ”
) or guaranteeing the mode invariance condition, when a
x; and I, is the mode when the state moves fram

{0 @x41, which is determined by (4). The functions, mode boundary is crossed, the state must pass a waypoint

. .. on the boundary. The waypoint,, x., x4, and x; are
and p,_ expresses the horizontal components of position .
e . placed for this purpose. On the other hamg,andx. are

vectors from the body center to the left and right ankle .
Ifa\ced to ensure a certain amount of clearance between

respectively. Hence, the objective represented by the cc%e swing foot and the ground to avoid "ground scuffing”.

function (14) is to increase the walking distance whilqzrom Assumption (b), the following relations hold
decreasing the energy consumption. Note that so lorlg as ’ '

is fixed, the walking distance and the energy consumption qq=0Cq,

is in a trade-off. The point of balance between these 4qa = Cq, (1) 8 (1) 8 8

guantities is determined by the scalar parameter 0; as q. = Cqp c=10 10 0 0 (16)
~ is larger, the walking distance is made more important. d. =Cqp 000 0 1

In particular, wheny is set to0, the walking distance is qr = Cq. 000 1 0

no longer taken into account and this setting is utilized to g = Cq.

obtain a stand-still motion. Here,@; — (q7,dT)T i € {a,b,---,f}. In addition,

D. Design of Waypoints and Transition times from (1), the following relations hold.

In Step 1, we have related a path cost function to each dd = 4o, Ga = Hir(ge)de
of the motions that is to be realized. In Step 2, we design
a set of waypoints and a set of transition times, which
form the cyclic path of each principal motion, based orConsequently, the waypoinis,, ., and the length of time
the corresponding path cost function. interval T} andT are the independent variables. Here, it is

4o = 45, 4o = Hri(qy)qy



natural to measure the desirability of the gait realized by //"“\\\

the above set of variables with the path cost function in  ~.-——o=~ = T

one cycle of the gait. Moreover, by Assumption (b), one o b @ % o ¥ e

cycle of the gait costs exactly twice as much as half a o o

cycle. Hence, we shall define the following cost function o o

for the optimization: (i) Candidate paths starting (i) The optimal path start-

chcle(wlnwchlvT; ’YZ) = Jpath(waa Lp, wc>TlaT - T1§%‘) from Laz- g from .mag under  the
(17) 3 cost functionJpaen (- ;70)-

wherez, = ((Cq.)”, (HrL(Cq.)Cq4.)")T. We employ

Downhill-Simplex method for optimization [7]. At this e o o o

point, there still remains a possibility that an unexpected
mode change will occur during a sampling time interval,
for instance, there might exist € (0,77) such that
x*(t,x,, xp) € SLr, Which physically implies a "ground
scuffing”. In order to get rid of this case, each time a
candidate(xy, ., 71, T) is evaluated in the iteration of
Downhill-Simplex method, we give an sufficiently large

(iii) Mark the first edge of (iv) Repeating Step i-iii for

the optimal path as a di- every other waypoints re-

rected edge of the graph. sults in a subgraph corre-
sponding toJpath (- ;Y0)-

penalty when the corresponding trajectory breaks the mode RO T
invariance condition. This check can be efficiently com- R N ol N
puted since the intermediate trajectory is available in the ’i‘i o0 Gk “15,; &2, Lo g‘%‘
explicit form expressed in (11). ' O¢ \velo” S
On the other hand, the stand-still motion is generated by e \\\ﬂ/

a cyclic trajectory that passes through a single waypoint.
Here, no special optimization is taken for the waypoint
of the stand-still motion. Instead, it is specified by the
designer. Fig. 5. Procedures of the design of subgrapisis given by 3.

Let us denote byX; and 7; the set of waypoints and
the set of transition times optimized with cost function
Jeyele(+;7i), respectively. In addition, we defin® := that is actually traced in real time. This corresponds to the
UAx;, 7 := UT7;. receding horizon policy of the usual MPC.

Fig.4 shows X projected and plotted onto a two- Observe that each of the directed graphs is composed
dimensional plane. Two sets of waypoints for low-speedf a cyclic path and one or more paths that connect
and high-speed steady-state walking and a waypoint for the the cyclic path. The cyclic path is constructed onto
stand-still motion are drawn in the figure. The projection othe set of waypoints that has been designed in Step 2
a stater to a two-dimensional vector is done by calculatingusing the corresponding path cost function. On the other
a position vector which points from the left ankle to thehand, each of the paths connecting to the cyclic path
right ankle in a given state. works as a switching path, which connects the waypoint
outside the cyclic path to the waypoint on the cyclic
path. Note that such switching paths are determined based

In Step 3, we generate subgraphs onto the set of wayn the optimality with respect to the path cost function
points X' designed in Step 2. Each stage in Step 3 igorresponding to the cyclic path they connect to, and the
illustrated in Fig. 5. In this step, the following procedsire receding horizon policy.
are processed using each path cost functigfs (-;7:)- It is noteworthy to point out that théV-step optimal

For each waypointz € X, at first, the optimalN-  path has the following recursive characteristics:
step path among theéV-step paths starting fromx is

determined (Fig. 5(i, ii)). Next, the first edge of the optima/patn (Zo; N,7) =
path is marked as a directed edge, which composes a min {Jpath(aco,azl,h; 'y)—I—J;;ath(ml;N—l,’y)}.
resultant subgraph (Fig. 5(iii)). Thus we obtain a subgraph (*o-®+-"€€ 18
composed of directed edges, each of which is the first (18)
edge of the optimal path starting from the correspondinglere,J;ath(mo;N, ) is a cost of theV-step optimal path
waypoint (Fig. 5(iv)). Repeating the above procedures fastarting from the waypointcy. Besides,£ is defined as
every path cost function, we obtain multiple subgrapha set of every tuple$xzg,z,,h) € X x X x 7 that the
(Fig. 5(iv, v)). trajectoryx*(t; o, x1, h) fulfills the mode invariance con-

In the real-time control phase, the system is driven so alition. Taking advantage of this recursive charactesstic
to trace the directed edges of a specific set. In other wordtie computation of théV-step optimal path starting from
it is only the first edge of each of th€-step optimal paths each waypoint can be carried out efficiently by means of

(v) Process Step i-iv with respect to other cost func-
tions (Jpaen(-371) @nd Jpaen (- ;72))-

E. Construction of Subgraphs



TABLE | Kinetic energy
PHYSICAL PARAMETERS 35

30
body mass | 20.00 [kg] 2
shank mass | 10.00 [kg] || thigh mass 10.00 [kqg] 15
body length | 050 [m] "
shank length| 0.40 [m] thigh length 0.40 [m] 0
ankle to toe 0.15 [m] ankle to heel| 0.15 [m]
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Fig. 6. Gait of bipedal walker.
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Fig. 7. A phase curve in variable speed locomotion.

stand-still motion, the low-speed walking, and the high-
speed walking are set @ 6000, and 12000, respectively.
Prediction lengthV is given by100. Fig. 6 shows the gait
of the robot. At the initial time, the state is set onto the
waypoint of the standing-still motion and the subgraph of

dynamic programming. First, compute lastep optimal the standing—§till mot_ion is sel_ectgd to be gctive. Then,
path for every waypoint. This takes the computational tim&€ robot begins walking by switching the active subgraph
propotional to|€| (the number of elements ifi). Next, (© low-speed-walking subgraph. Afterwards, the active
compute a2-step optimal path for every waypoint. SinceSuPgraph is switched to high-speed-walking, low-speed-
the 1-step optimal paths have been already obtained in t¥é2lking, stand-still subgraph in that order on each three
preceding step, this step also takes the computational tiriteP Of the walking. Fig. 7 shows a projected phase portrait
propotional to|€| using (18). Repeating this procedureOf the state in thg same example. Here, the vertical axis
until the length of the path reachés results in the total ePresents the kinetic energy. The horizontal and depth
compuational time propotional t&y|£|. axes represent andy component of the position vector
from the left ankle the right ankle, respectively.
F. Real-time Control

. A V. CONCLUSION
In this paper, we assume that the state at the initial ) . .
time ¢, is set onto one of the waypoints of the directed_!n this research, a new offline MPC which we call

graph. As mentioned in Section Ill-A, at any time instance,Gr""ph'based MPC is presented and is applied to a variable

one of the multiple directed graphs is selected as activépeed control of a planar blpgdal walker. So far, we have
Then, at each sampling timg, in the real-time control introduced a graph-construction scheme for steady-state

phase, the real-time controller looks up the directed ed alking. For future works, the method should be ext_ended
(4, 141, hy,) Of the selected directed graph in order tol0 handle more complex tasks such as obstacle avoidance.
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