
Graph-based Model Predictive Control of a Planar Bipedal Robot

Yuichi Tazaki and Jun-ichi Imura

Abstract— In this paper, we propose a new offline model
predictive control for a planar bipedal robot, which we call
here Graph-based Model Predictive Control. This method
consists of two phases : the graph construction phase and
the real-time control phase. The directed graph is constructed
off line by i) placing a certain number of nodes on the state
space of the robot, ii) computing the optimal path starting
from each of the graph nodes with respect to a given cost
function, and iii) creating a set of directed edges by taking the
first edge of each of the optimal paths. This means that one
can achieve receding horizon control in some sense by simply
tracing the edges of the directed graph and therefore the real-
time computational cost is dramatically reduced compared
with the ordinary MPC. In addition, by constructing multiple
directed graphs based on different cost functions, one can
design multiple motions and switching trajectories among
them in a uniform way. The proposed method is applied to
the speed changing control problem of a bipedal walker on
a two-dimensional plane and its effectiveness is verified by
numerical simulation.

I. I NTRODUCTION

Bipedal robots need to realize various motions for
adopting to a real environments; not only walking in a
constant speed, but also stopping, changing the walking
direction, and so on. Moreover, the robot must be able
to switch smoothly from one motion to another motion.
More precisely, when the robot is commanded to change
its motion, it has to generate a transient trajectory which
starts from its posture and velocity at that point of time,
and converges to the new motion.

For this purpose, a number of locomotion controllers and
motion planners has been proposed in the previous litera-
tures [1][2][3][4]. However, these do not take into account
optimality such as minimization of energy consumption.

Recently, a great deal of research interest has been paid
on Model Predictive Control (MPC for short) since it can
effectively cope with nonlinear dynamics and constraints
on the state and the input. The control law of MPC is quite
simple and therefore it is applicable to a wide range of
systems including bipedal robots. However, the usual MPC
requires to solve the finite-time optimal control problem in
real time and this requirement prevents MPC from being
applied to relatively high-dimensional systems.

Imura et al.[5][6] has proposed a new MPC strategy
in an obstacle avoidance problem of a vehicle. In their
method, the time axis and state space are discretized and

Y. Tazaki is with the Department of Mechanical and Environ-
mental Informatics, Tokyo Institute of Technology, Tokyo, Japan
tazaki@cyb.mei.titech.ac.jp

J. Imura is with the Department of Mechanical and Environ-
mental Informatics, Tokyo Institute of Technology, Tokyo, Japan
imura@mei.titech.ac.jp

Fig. 1. Model of a planar bipedal robot.

therefore the optimal control problem to be solved at
each sampling time in MPC is reduced to an optimal
path-finding problem over the candidates of waypoints.
However, since discretization and optimal path-finding are
computed in real time, there still remain computational
difficulties in the case of high-dimesional systems.

In this paper, we propose a new method, which we call
Graph-based MPC. In this method, the discretization and
the optimal path-finding are moved offline, which dramati-
cally decreases the real-time computational cost compared
with ordinary MPC and hence enables application to high-
dimensional systems such as bipedal robots. Furthermore,
by using multiple cost functions, this method provides a
uniform way to design multiple stationary motions and
transient motions among them. The effectiveness of Graph-
based MPC is presented in a variable speed control of a
planar bipedal walker.

This paper is organized as follows. In Section II, we
formalize a planar bipedal robot as a hybrid system model.
In Section III, the Graph-based MPC is discribed in
detail. Section IV shows numerial simulations. Concluding
remarks are made in section V.

II. A H YBRID SYSTEM MODEL OF A PLANAR BIPEDAL

ROBOT

Fig. 1 shows a planar bipedal robot. We make the fol-
lowing assumptions. Each foot is massless; the foot of the
swing leg therefore has no effect on the robot’s dynamics.
The actuator torque of the ankle joint of the swing leg is
always 0. The robot always stands on the entire area of
one of its feet; it does not stand on tiptoe nor on a heel.
Moreover, no slipping occurs at the contact face between
the foot and the ground. The collision between the swing
foot and the ground is completely inelastic; the velocity
of the swing foot always becomes0 immediately after the
collision.

We definex =
(

q
T , d

dt
q

T
)T

as the state of the robot,
where the vectorq denotes the robot’s posture given as
q = (θbody, θhipl, θhipr, θkneel, θkneer)

T . There exists an
actuator on each joint of the robot, and hence the input of
the robot is defined as a vector of all actuator torques writ-
ten as u = (τhipl, τhipr, τkneel, τkneer, τanklel, τankler)

T .
The components ofq andu are as follows.

θbody body inclination
θhipi

(i ∈ {l, r}) hip joint angle
θkneei (i ∈ {l, r}) knee joint angle
τhipi

(i ∈ {l, r}) hip joint torque
τkneei (i ∈ {l, r}) knee joint torque
τanklei (i ∈ {l, r}) ankle joint torque

(·)l and (·)r denote symbols related to the left and right
leg of the robot, respectively.

The dynamics of the robot consists of four different
modes (i.e., discrete states) : L, R, LR, and RL. Mode
L corresponds to the case when the robot stands on its left
foot, and mode R to the case of the right foot. When the
system is in mode L and the swing foot (which is the right
foot) hits the ground, an impulsive force acts on the right
foot and the velocity of the robot changes instantaneously.
Consequently, the stance leg switches from the left leg to
the right leg, which indicates the mode that is about to
change to R. We call this event mode LR. Similarly, mode
RL corresponds to the case from mode R to mode L.

The behavior of the system is discribed by the following
ordinary differential equations and algebraic equations.


























































q̈(t)=FL(q(t))uL(t)+GL(q(t),q̇(t))

I(t)=L
if (q(t),q̇(t),u(t))∈SL

q̈(t)=FR(q(t))uR(t)+GR(q(t),q̇(t))

I(t)=R
if (q(t),q̇(t),u(t))∈SR

q̇(t)+=HLR(q(t))q̇(t)

I(t)=LR
if (q(t),q̇(t))∈SLR

q̇(t)+=HRL(q(t))q̇(t)

I(t)=RL
if (q(t),q̇(t))∈SRL

(1)

The symbolq̇(t)+ denotes the value oḟq(t) immediately
after the instantaneous jump. The symboluL(uR) is
obtained by removing the ankle joint torque of the swing
leg (which is always0 from the assumption) fromu. The
symbolI(t) is the mode of the system in timet. The set of
(q, q̇,u) whose modes areL andR are denoted bySL and
SR, respectively. Similarly, the set of(q, q̇) whose modes
areLR andRL are denoted bySLR andSRL, respectively.

III. G RAPH-BASED MODEL PREDICTIVE CONTROL

A. Brief Discription of the Method

As shown in Fig. 2, the architecture of Graph-based
MPC consists of a directed graph constructed on the
state space and a real-time controller. The directed graph
is constructed offline, which we call graph construction
phase, while the real-time controller performs MPC in real
time, based on the directed graph. In the graph construction
phase, each node of the directed graph expresses a state

High Level Controller

Route Switching

Directed Graph

Current State

Next Target State

Realtime Controller
x(t)

u(t)

x(t)

Control Target

Choose from and

Fig. 2. Controller architecture.

(a posture and a velocity) of the robot. By considering
sequences of nodes (i.e., a path) of the graph, one can
compose a variety of motion trajectories that pass through
each node as a waypoint. Besides, the directed graph is
composed of multiple subgraphs that share the nodes. Each
subgraph is responsible of realizing a certain motion of
the robot; for instance, the subgraph drawn in solid lines
in Fig. 2 may correspond to low-speed walking while the
ones drawn in dashed lines may correspond to high-speed
walking. Observe that each subgraph consists of a cyclic
path, which will generate a cyclic motion, and of switching
paths, which will bring the state onto the cyclic path. On
the other hand, one subgraph is selected to be ”active” at
any time instance in the real-time control phase. Then, the
real-time controller drives the state of the robot so as to
trace the directed edges of the active subgraph. The desired
motion is realized by simply switching the active subgraph.

As mentioned in Section I, we shall design two diffirent
kinds of motions: principal motions and switching motions.
The principal motion is a cyclic motion such as steady-state
walking. The switching motion is a transient motion de-
scribing a transition from one principal motion to another.
Taking this in mind, the procedure for the design of the
directed graph is decomposed into the following steps.
Step 1: Design path cost functions for each motion to be
realized.
Step 2: Design a set of waypoints and a set of transition
times
Step 3: Construct sets of directed edges.
In Step 1, we design a cost function of a path (which
we call a path cost function) for each principal motion.
The path cost function measures the desirability of a path
according to the corresponding motion. In Step 2, we
design a set of waypoints and a set of transition times
for each principal motion by optimization with respect
to the corresponding path cost function. In Step 3, using

each path cost function, we create a set of directed edges
by means of the dynamic programming and the receding
horizon policy. In this step, not only the directed edges
for principal motions but also those for switching motions
are obtained at the same time. The above three steps are
detailed in Section III-C, III-D, and III-E, respectively.
Beforehand, in the next section, we will discuss how to
generate a continuous-time control input which drives the
state from a initial waypoint to a target waypoint in certain
amount of time in the real-time control.

B. Inter-waypoint Control

One of the building blocks of Graph-based MPC is a
control law, which generates a trajectory between given
waypointsxk =

(

q
T
k , q̇T

k

)T
and xk+1 =

(

q
T
k+1, q̇

T
k+1

)T
.

If xk is an element ofSLR or SRL, it jumps instantaniously
to the next state independent of control inputs according to
equation (1). Hence, we concentrate on the case thatxk is
an element ofSL or SR. Then, the problem is formalized
as follows.
[Problem 1]
Suppose the initial statex(0) = xk, the final statexk+1,
hk > 0, and R > 0 are given. Then for the system (1),
find a control inputu that minimizes the cost function

J(u ; hk) =

∫ hk

0

u(τ)T Ru(τ)dτ (2)

satisfying x(hk) = xk+1. This problem, which is an
optimal control problem of a hybrid system, is difficult
to solve in a straightforward manner. For this reason, we
consider solving this problem approximately. We assume
the following condition, which will be guaranteed in III-D.
[Mode Invariance Condition]

No mode change occurs during each sampling time
interval.
While the above condition is satisfied, the behavior of the
system during each sampling time interval is described by
the following equation of motion.

q̈ = FI(q)uI + GI(q, q̇) (3)

In the above equation of motion,I is one of{L,R} and
it is determined by the initial state and the target state
according to the following rules.

I =

{

L if ply (qk) < pry
(qk), ply (qk+1) ≤ pry

(qk+1)

R if ply (qk) > pry
(qk), ply (qk+1) ≥ pry

(qk+1)
(4)

Here, ply and pry
indicate the vertical components of

position vectors from the center of the robot’s body to
the left and right ankles, respectively.
Remark. For the pair(qk, qk+1) such that neither of the
conditions (4) holds, the mode invariance condition may
not in general be satisfied with any input. In this sense,
such a pair is said to be uncontrollable and ignored in this
subsection.

Let us introduce an input transformation as follows.

uI = FI(q)−1(v − GI(q, q̇)) (5)

Then, one obtains the following double integrator system.

ẋ = Ax + Bv A =

[

0 I
0 0

]

B =

[

0
I

]

(6)

Substituting (5) into (2) yields

Jv(v ; hk) =

∫ hk

0

||v(τ) − YI(q(τ), q̇(τ))||2RI(q)dτ (7)

RI(q) = XI(q)−T R̂XI(q)−1

which is a cost function ofv. Here,||x||2M = xT Mx andR̂
is obtained by removing a row and a column corresponding
to the ankle torque of the swing leg fromR. Since the
cost function (7) has nonlinear terms onq(τ) and q̇(τ),
we approximate the cost function by replacingq(τ) and
q̇(τ) with (qk +qk+1)/2 and(q̇k + q̇k+1)/2, respectively.

J̃v(v ; xk,xk+1, hk) =

∫ hk

0

||v(τ) − ȲI||
2
R̄I

dτ (8)

ȲI = YI((qk + qk+1)/2, (q̇k + q̇k+1)/2)

R̄I = XI((qk + qk+1)/2)−T R̂XI((qk + qk+1)/2)−1

Thus, Problem 1 is approximately transformed into the
following fixed-terminal optimal control problem of a
double integrator system.
[Problem 2]
For the system (6), find a control inputv that minimizes the
cost function (8) subject tox(0) = xk, x(hk) = xk+1.
[Theorem]
Problem 2 has an analytical solution and the optimal input
v
∗, the optimal state trajectoryx∗ and the minimum value

of the cost functionJ̃v

∗
are given as follows.

x
∗(t ; xk,xk+1, hk) =
(

q
∗(t ; xk,xk+1, hk)T d

dt
q
∗(t ; xk,xk+1, hk)T

)T

(9)

v
∗(t ; xk,xk+1, hk) =

d2

dt2
q
∗(t ; xk,xk+1, hk) (10)

q
∗(t ; xk,xk+1, hk) =

[

qk q̇k qk+1 q̇k+1

]











1 0 − 3
h2

k

2
h3

k

0 1 − 2
hk

1
h2

k

0 0 3
h2

k

− 2
h3

k

0 0 − 1
hk

1
h2

k



















1
t
t2

t3









(11)

J̃v

∗
(xk,xk+1, hk) =







qk

q̇k

qk+1

q̇k+1

ȲI







T











R̄I
12

h3
k

R̄I
6

h2
k

−R̄I
12

h3
k

R̄I
6

hk
0

R̄I
6

h2
k

R̄I
4

hk
−R̄I

6

h2
k

R̄I
2

hk
R̄I

−R̄I
12

h3
k

−R̄I
6

h2
k

R̄I
12

h3
k

−R̄I
6

h2
k

0

R̄I
6

h2
k

R̄I
2

hk
−R̄I

6

h2
k

R̄I
4

hk
−R̄I

0 R̄I 0 −R̄I R̄Ih

















qk

q̇k

qk+1

q̇k+1

ȲI







(12)

The solution to Problem 1 given by the above theorem
combined with the input transformation (5) is suboptimal
since the cost function is approximated in (8). However, it

has the following useful aspects: i) it guarantees the termi-
nal conditionx(hk) = xk+1, and ii) the solution is given in
a explicit form. These aspects plays an fundamental role in
the optimization of the waypoints and the transition times
discussed in III-D. It will also be utilized to improve the
robustness of the real-time controller, which is discussed
in III-F.

C. Design of Path Cost Functions

For Step 1, let us consider aN -step path starting from
a certain waypointx0

(x0,x1, · · · ,xN , h0, h1, · · · , hN−1) (13)

wherehk is a transition time betweenxk and xk+1. We
introduce the following cost function as a measure of the
desirability of a givenN -step path.

Jpath(x0,x1, · · · ,xN , h0, h1, · · · , hN−1; γ) =
N−1
∑

k=0

{

J̃v

∗
(xk,xk+1, hk) − γPrx(xk,xk+1)

}

(14)

In (14), J̃v

∗
(xk,xk+1, hk) expresses the transition cost

between waypoints. On the other hand,Prx(xk,xk+1)
is a function which returns a horizontal displacement of
the body of the robot when the state moves fromxk to
xk+1. Although the state variablex does not include the
displacement of the robot’s body with respect to the origin
of the inertial frame, one can calulatePrx(xk,xk+1)
from the change of the posture in conjunction with the
assumption that no slipping occurs between the stance foot
and the ground; that is,

Prx(xk,xk+1) =

{

plx(qk) − plx(qk+1) if Ik = L

prx
(qk) − prx

(qk+1) if Ik = R
.

(15)
Here,qi represents the posture corresponding to the state
xi and Ik is the mode when the state moves fromxk

to xk+1, which is determined by (4). The functionsplx

and prx
expresses the horizontal components of position

vectors from the body center to the left and right ankle,
respectively. Hence, the objective represented by the cost
function (14) is to increase the walking distance while
decreasing the energy consumption. Note that so long asN
is fixed, the walking distance and the energy consumption
is in a trade-off. The point of balance between these
quantities is determined by the scalar parameterγ > 0; as
γ is larger, the walking distance is made more important.
In particular, whenγ is set to0, the walking distance is
no longer taken into account and this setting is utilized to
obtain a stand-still motion.

D. Design of Waypoints and Transition times

In Step 1, we have related a path cost function to each
of the motions that is to be realized. In Step 2, we design
a set of waypoints and a set of transition times, which
form the cyclic path of each principal motion, based on
the corresponding path cost function.

L

RL

R

LR RL

x

T1
T

x

a
xb

xc

xd
xe

xf

xa

xf

Fig. 3. Arrangement of waypoints and transition times.

a waypoint for stand-still motion

waypoints for low-speed walking

waypoints for high-speed walking

xa0
xa1

xf1

xb1

xc1

xd1
xe1

xa2

xb2

xc2

xd2

xe2

xf2

Fig. 4. Waypoints for a stand-still motion and steady-state walking
motions.

At first, we shall discuss the case of steady-state walk-
ing, whereγ > 0. The following assumptions are made
for simplicity of discussion.
[Assumption]
(a) The sequence of the mode in a steady-state walking

is L → LR → R → RL → L → · · · .
(b) The optimal gait of a steady-state walking is sym-

metrical about the left and the right leg.
Based on Assumption (a), Fig. 3 illustrates an arrangement
of waypoints and transition times for steady-state walking.
The lower part of the figure shows the trajectory of the
state in the steady-state walking. The upper part shows
the posture of the robot on the corresponding time instant.
For guaranteeing the mode invariance condition, when a
mode boundary is crossed, the state must pass a waypoint
on the boundary. The waypointxa,xc,xd, and xf are
placed for this purpose. On the other hand,xb andxe are
placed to ensure a certain amount of clearance between
the swing foot and the ground to avoid ”ground scuffing”.
From Assumption (b), the following relations hold.

qd = Cqa

q̇d = Cq̇a

qe = Cqb

q̇e = Cq̇b

qf = Cqc

q̇f = Cq̇c

C =













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0













(16)

Here, xi = (qT
i , q̇T

i)T i ∈ {a, b, · · · , f}. In addition,
from (1), the following relations hold.

qd = qc, q̇d = HLR(qc)q̇c

qa = qf , q̇a = HRL(qf)q̇f

Consequently, the waypointsxb, xc, and the length of time
intervalT1 andT are the independent variables. Here, it is

natural to measure the desirability of the gait realized by
the above set of variables with the path cost function in
one cycle of the gait. Moreover, by Assumption (b), one
cycle of the gait costs exactly twice as much as half a
cycle. Hence, we shall define the following cost function
for the optimization:

Jcycle(xb,xc, T1, T ; γi) = Jpath(xa,xb,xc, T1, T − T1; γi)
(17)

where xa = ((Cqc)
T , (HRL(Cqc)Cq̇c)

T)T . We employ
Downhill-Simplex method for optimization [7]. At this
point, there still remains a possibility that an unexpected
mode change will occur during a sampling time interval;
for instance, there might existt ∈ (0, T1) such that
x
∗(t,xa,xb) ∈ SLR, which physically implies a ”ground

scuffing”. In order to get rid of this case, each time a
candidate(xb,xc, T1, T) is evaluated in the iteration of
Downhill-Simplex method, we give an sufficiently large
penalty when the corresponding trajectory breaks the mode
invariance condition. This check can be efficiently com-
puted since the intermediate trajectory is available in the
explicit form expressed in (11).

On the other hand, the stand-still motion is generated by
a cyclic trajectory that passes through a single waypoint.
Here, no special optimization is taken for the waypoint
of the stand-still motion. Instead, it is specified by the
designer.

Let us denote byXi and Ti the set of waypoints and
the set of transition times optimized with cost function
Jcycle(·; γi), respectively. In addition, we defineX :=
∪Xi, T := ∪Ti.

Fig. 4 showsX projected and plotted onto a two-
dimensional plane. Two sets of waypoints for low-speed
and high-speed steady-state walking and a waypoint for the
stand-still motion are drawn in the figure. The projection of
a statex to a two-dimensional vector is done by calculating
a position vector which points from the left ankle to the
right ankle in a given statex.

E. Construction of Subgraphs

In Step 3, we generate subgraphs onto the set of way-
points X designed in Step 2. Each stage in Step 3 is
illustrated in Fig. 5. In this step, the following procedures
are processed using each path cost functionJpath(·; γi).
For each waypointx ∈ X , at first, the optimalN -
step path among theN -step paths starting fromx is
determined (Fig. 5(i, ii)). Next, the first edge of the optimal
path is marked as a directed edge, which composes a
resultant subgraph (Fig. 5(iii)). Thus we obtain a subgraph
composed of directed edges, each of which is the first
edge of the optimal path starting from the corresponding
waypoint (Fig. 5(iv)). Repeating the above procedures for
every path cost function, we obtain multiple subgraphs
(Fig. 5(iv, v)).

In the real-time control phase, the system is driven so as
to trace the directed edges of a specific set. In other words,
it is only the first edge of each of theN -step optimal paths

xa2
xa2

(i) Candidate paths starting
from xa2.

(ii) The optimal path start-
ing from xa2 under the
cost functionJpath(· ; γ0).

xa2

(iii) Mark the first edge of
the optimal path as a di-
rected edge of the graph.

(iv) Repeating Step i-iii for
every other waypoints re-
sults in a subgraph corre-
sponding toJpath(· ; γ0).

(v) Process Step i-iv with respect to other cost func-
tions (Jpath(· ; γ1) andJpath(· ; γ2)).

Fig. 5. Procedures of the design of subgraphs.N is given by 3.

that is actually traced in real time. This corresponds to the
receding horizon policy of the usual MPC.

Observe that each of the directed graphs is composed
of a cyclic path and one or more paths that connect
to the cyclic path. The cyclic path is constructed onto
the set of waypoints that has been designed in Step 2
using the corresponding path cost function. On the other
hand, each of the paths connecting to the cyclic path
works as a switching path, which connects the waypoint
outside the cyclic path to the waypoint on the cyclic
path. Note that such switching paths are determined based
on the optimality with respect to the path cost function
corresponding to the cyclic path they connect to, and the
receding horizon policy.

It is noteworthy to point out that theN -step optimal
path has the following recursive characteristics:

J∗
path(x0;N, γ) =

min
(x0,x1,h)∈E

{

Jpath(x0,x1, h; γ) + J∗
path(x1;N − 1, γ)

}

.

(18)

Here,J∗
path(x0;N, γ) is a cost of theN -step optimal path

starting from the waypointx0. Besides,E is defined as
a set of every tuples(x0,x1, h) ∈ X × X × T that the
trajectoryx

∗(t;x0,x1, h) fulfills the mode invariance con-
dition. Taking advantage of this recursive characteristics,
the computation of theN -step optimal path starting from
each waypoint can be carried out efficiently by means of

TABLE I

PHYSICAL PARAMETERS

body mass 20.00 [kg]
shank mass 10.00 [kg] thigh mass 10.00 [kg]
body length 0.50 [m]
shank length 0.40 [m] thigh length 0.40 [m]
ankle to toe 0.15 [m] ankle to heel 0.15 [m]

Fig. 6. Gait of bipedal walker.

dynamic programming. First, compute a1-step optimal
path for every waypoint. This takes the computational time
propotional to|E| (the number of elements inE). Next,
compute a2-step optimal path for every waypoint. Since
the1-step optimal paths have been already obtained in the
preceding step, this step also takes the computational time
propotional to |E| using (18). Repeating this procedure
until the length of the path reachesN results in the total
compuational time propotional toN |E|.

F. Real-time Control

In this paper, we assume that the state at the initial
time t0 is set onto one of the waypoints of the directed
graph. As mentioned in Section III-A, at any time instance,
one of the multiple directed graphs is selected as active.
Then, at each sampling timetk in the real-time control
phase, the real-time controller looks up the directed edge
(xk,xk+1, hk) of the selected directed graph in order to
determine the next target waypoint. In each sampling time
intervalt ∈ [tk, tk+1], the controller applies a feedforward,
continuous-time input by which the state will arrive at the
waypoint xk+1 at the next sampling timetk+1. Such an
input is obtained by (10) in conjunction with real-time
inverse dynamics computation given in (5).

So far, the real-time control law is a feedforward
type of controller; it assumesx(tk) = xk. However,
in practice, it is likely that this assumption will break
due to disturbances or model errors; as a consequence,
the above control law will become useless. In order to
overcome this problem, consider replacingxk with x(tk)
in v

∗. Then, using inputv∗(t ; x(tk),xk+1, hk) instead of
v
∗(t ; xk,xk+1, hk), gives some sort of feedback effect to

the controller.

IV. N UMERICAL RESULT

In this section, the effectiveness of the proposed method
is verified by numerical simulations. Physical parameters
of the bipedal robot are listed in Table I. Values of the
weight parameterγ of the path cost functions for the

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

 0

 5

 10

 15

 20

 25

 30

 35

foot_x

foot_y

kinetic energy

Fig. 7. A phase curve in variable speed locomotion.

stand-still motion, the low-speed walking, and the high-
speed walking are set to0, 6000, and12000, respectively.
Prediction lengthN is given by100. Fig. 6 shows the gait
of the robot. At the initial time, the state is set onto the
waypoint of the standing-still motion and the subgraph of
the standing-still motion is selected to be active. Then,
the robot begins walking by switching the active subgraph
to low-speed-walking subgraph. Afterwards, the active
subgraph is switched to high-speed-walking, low-speed-
walking, stand-still subgraph in that order on each three
step of the walking. Fig. 7 shows a projected phase portrait
of the state in the same example. Here, the vertical axis
represents the kinetic energy. The horizontal and depth
axes representx and y component of the position vector
from the left ankle the right ankle, respectively.

V. CONCLUSION

In this research, a new offline MPC which we call
Graph-based MPC is presented and is applied to a variable
speed control of a planar bipedal walker. So far, we have
introduced a graph-construction scheme for steady-state
walking. For future works, the method should be extended
to handle more complex tasks such as obstacle avoidance.

REFERENCES

[1] M. Okada, K. Osato, and Y. Nakamura : “Motion Emergence of
Humanoid Robots by an Attractor Design of a Nonlinear Dynam-
ics” Proc. of the IEEE International Conference on Roboticsand
Automation (ICRA’05), pp.18-23, 2005.

[2] S. Kajita, F. Kanehiro, K. Kaneko, et al. : “The 3D Linear Inverted
Pendulum Mode : A simple modeling for a biped walking pattern
generation”, Proc. of 2003 IROS, pp.239-246, 2001.

[3] L. Kovar, M. Gleicher, and F. Pighin, “Motion Graphs”, InProceed-
ing of SIGGRAPH 02, 2002, pp. 473-482

[4] K. Yamane, Y. Nakamura : “Dynamics Filter - Concept and Imple-
mentation of On-Line Motion Generator for Human Figures”, Proc.
of IEEE ICRA, pp688-695, 2000

[5] J. Imura : “Optimal control of sampled-data piecewise affinesys-
tems”, Automatica, Vol.40, No.4, pp.661-669, 2004.

[6] H.L. Hagenaars, J. Imura, and H. Nijmeijer: “Approximate
continuous-time optimal control in obstacle avoidance by time/space
discretization of non-convex state constraints”, Proc. ofIEEE Conf.
on Control Applications, pp.878-883, 2004

[7] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: “Nu-
merical Recipes in C The Art of Scientific Computing Second
Edition”, Cambridge University Press.

