
Robust Posegraph Optimization Using Proximity Points

Paper: Rb*-**-**-****:

Robust Posegraph Optimization Using Proximity Points
Yuichi Tazaki, Kotaro Wada, Hikaru Nagano, and Yasuyoshi Yokokohji

Graduate School of Engineering, Kobe University, Rokkodai-cho, Nada-ku, Kobe, Hyogo, Japan
E-mail: [tazaki] at mech.kobe-u.ac.jp

[Received 00/00/00; accepted 00/00/00]

This paper proposes a robust posegraph optimization
(PGO) method for posegraphs with keypoints. In the
conventional PGO formulation, a loop constraint is de-
fined between a pair of nodes, whereas in the proposed
method, it is define between a pair of keypoints. In this
manner, robust PGO based on switch variables can
be realized in a more fine-grained manner. Loop con-
straint is defined based on the unique geometric prop-
erty of proximity point, and implemented as a new
edge type of the g2o solver. The proposed method is
compared with other robust PGO methods using real
world data recorded in Nakanoshima Robot Challenge
2021.

Keywords: Mobile Robot, Proximity Points, Robust
Posegraph Optimization

1. Introduction

In recent years, rapid aging of the society and rising
cost of human labor have been strongly pushing many
fields of industry and service towards automation. The
SLAM technology, which enables a robot to build a map
of the working environment, localize itself in the map,
and navigate itself in the environment, is one of the key
building blocks of autonomous robots [1]. One funda-
mental technical issue that arises when a robot operates
in a large-scale environment for a long duration of time is
how to build and maintain a map in a concise and usable
form.

Posegraph is a graphical map representation in which
places are represented by nodes and traversability be-
tween places are expressed by edges. It is considered
more suitable to large-scale mapping compared to grid-
based maps, whose data size increases proportionally with
the covered area. Two important techniques related to the
posegraph SLAM is loop closure detection and posegraph
optimization. The former technique is used for detect-
ing loops; matches between different portions of recorded
data with high similarity. The latter is used for correcting
erroneous travel data by using loops as constraints to ob-
tain a posegraph with higher accuracy [2, 3, 4, 5, 6, 7, 8,
9]．

The g2o (General Graph Optimization) solver was pro-
posed in [3] as a powerful computational tool for pose-

graph optimization. It implements several iterative meth-
ods for nonlinear least square problems such as the Gauss-
Newton method and the Levenberg-Marquardt method. In
addition to its computational efficiency, a major advan-
tage of g2o is its extensibility; new types of vertices and
edges can be added by minimum amount of additional
programming. One widely studied extension is robusti-
fication of the posegraph optimizer. Because of errors
of loop detection, any posegraph optimization problem
based on real data may include spurious loop constraints,
which may cause catastrophic error in optimization re-
sults. Robust posegraph optimization is a technique to
handle posegraphs including such outliers. In [4, 5] the
idea of switch variables was proposed, and this idea was
implemented as an extension of g2o. This method defines
a switch variable for each loop constraint. By simulta-
neously optimizing loop constraints and switch variables,
loop constraint do not agree with other constraints are au-
tomatically supressed. In [6], another method base on
M-estimators was proposed. This method realizes robust
posegraph optimization without introducing extra vari-
ables.

One shortcoming of existing robust PGO framework is
that suppression of erroneous loop constraints can only
be performed on a node-pair basis; that is, even if an er-
roneous constraint is caused by only partial mismatch of
observation data, the loop constraint must be suppressed
entirely. The contribution of this paper is to propose a ro-
bust posegraph optimization method for keypoint-based
posegraphs and evaluate its effectiveness using real-world
data. Proximity point was proposed in the authors’ previ-
ous work as a type of keypoints with several useful prop-
erties. A loop-closure detection algorithm that measures
the similarity of two locations based on proximity-point
matching was proposed in [10]. Moreover, a real-time de-
tection algorithm of proximity points from 3D pointcloud
and a particle-filter based self-localization method that
utilizes proximity points were proposed in [11]. However,
posegraph optimization based on proximity points, and its
robustification, in particular, has not been discussed in the
previous studies.

The organization of the rest of this paper is as follows.
In Section 2, the definition and geometric characteristics
of proximity points are reviewed. In Section 3, robust
posegraph optimization based on proximity points is de-
scribed. In Section 4, experimental results using real-
world data are presented. Concluding remarks are given

Journal of Robotics and Mechatronics Vol.0 No.0, 200x 1

Yuichi Tazaki et al.

x

y

Fig. 1. : A top-view of an environment. Multiple
proximity-points (black dots) are detected on different
surrounding objects (gray shapes) from a single observa-
tion point (hollow circle)

x

y

convex

object

(a)

x

y

convex

object

x

y

convex

object

(b) (c)

Fig. 2. : Geometric relationship of a pair of proximity-
points detected on a single convex object from different
observation points

in Section 5.

2. Definition and Geometric Properties of
Proximity Points

In the following, the basic definition and geometric
characteristics of proximity points are briefly reviewed.
Let P = {rrr1, . . . ,rrrN} be a 3D pointcloud where each
rrri ∈ R3 denotes the position of a point expressed in a 3D
coordinate frame whose origin is located at the observa-
tion point. Moreover, let us define the following functions
that transform a given rrr = [rx ry rz]

T into spherical coor-

dinates.

d(rrr) = ∥r∥,
θ(rrr) = atan2(ry,rx),

ϕ(rrr) = atan2(rz,
√

r2
x + r2

y)

As illustrated in Fig. 1, a proximity point is a point that is
locally nearest to the observation point. More precisely,
a point rrr is a proximity point if the following condition is
satisfied.

rrr = arg min
rrr′∈N(rrr)

d(rrr′) (1)

Here, N (rrr) is the set of neighboring points of rrr, defined
as follows.

N (rrr) = {rrr′ ∈ P |
|θ(rrr′)−θ(rrr)|< σθ , |ϕ(rrr′)−ϕ(rrr)|< σϕ}

(2)

Here, σθ and σϕ are parameters that determine the size of
the neighborhood. Theoretically, if one could assume that
the pointcloud is infinitely dense, then σθ and σϕ could
be infinitesimal; in practice, however, these parameters
should be chosen carefully considering the actual spatial
resolution of the pointcloud.

Proximity points have some useful geometric proper-
ties that can be utilized for loop-closure detection and
posegraph optimization. Consider a convex object and
two different observation points whose poses in the global
coordinate frame are given by xxx1 = (ppp1,θ1) and xxx2 =
(ppp2,θ2), respectively, as illustrated in Fig. 2(a)-(c). More-
over, let rrr1 and rrr2 be two proximity points detected on
the surface of the convex object from these observation
points, each expressed in the local coordinate frame of the
corresponding observation point. The convexity of the ob-
ject implies that the following inequality generally holds.

eee(xxx1,xxx2,rrr1,rrr2)

:=
[
(R(θ1)ηηη1)

T((ppp2 +R(θ2)rrr2)− (ppp1 +R(θ1)rrr1))
(R(θ2)ηηη2)

T((ppp1 +R(θ1)rrr1)− (ppp2 +R(θ2)rrr2))

]
≥ 000

(3)

Here, ηηη i = rrri/∥rrri∥, and the vector inequality is evaluated
componentwise.

The implication of the inequality above is the follow-
ing. Consider a tangent plane of the object at the proxim-
ity point rrr1. Then, because of the convexity of the object,
the other proximity point rrr2 must be on this tangent plane
or in the opposite side of the plane from the observation
point ppp1. The same relationship holds with the indices
1 and 2 swapped. Examples are shown in Figs. 2(a)-(c).
In special cases where the curvature of the object is ex-
tremely small (e.g., a wall) or extremely large (e.g., a rect-
angular corner of an object), these inequalities approxi-
mately hold with equality. In fact, in cases illustrated in
Fig. 2(b)(c), eee = 000 holds.

2 Journal of Robotics and Mechatronics Vol.0 No.0, 200x

Robust Posegraph Optimization Using Proximity Points

(a) First visit (b) Second visit

(c) Relative pose obtained by
scan matching

(d) Proximity point matching
constraints

Fig. 3. : Comparison of scan matching and proximity-
point matching

3. Robust Posegraph Optimization Based on
Proximity Points

In general, posegraph optimization is formulated as a
large-scale nonlinear optimization problem in which the
poses of the vertices are optimized to minimize the sum
of costs defined on the edges. In the conventional formu-
lation, each edge cost is defined as a cost function that pe-
nalizes the deviation of the relative pose of the connected
two vertices from the desired relative pose. A major dif-
ference of our formulation is that each edge cost penalizes
the geometric error of a matched pair of proximity points.
The loop-detection algorithm proposed in our previous
study [10] outputs a series of matched proximity points
M = {mi}. Here, the i-th match is a 4-tuple (ji, j′i,ki,k′i),
which indicates that the ki-th proximity point of the ji-th
vertex and the k′i-th proximity point of the j′i-th vertex is
a matching pair. It defines a constraint between the two
poses xxx ji and xxx j′i

based on (3).
Another major difference is in how robust posegraph

optimization is realized. In the conventional formulation,
a switch variable is defined for each edge cost defined
between a pair of vertices. In this manner, the weight
of edges could only be adjusted in a per-vertex-pair ba-
sis. This means, even if only a small portion of point-
cloud is causing the mismatch, the entire edge cost has
to be weakened. On the other hand, we introduce one
switch variable for each proximity-point pair. Consider-
ing that generally several matched proximity-point pairs
are defined between every pair of vertices, even if a few
wrongly matched proximity-point pairs get suppressed,
the remaining (correct) pairs could be used to correct the
relative pose of the vertices.

Figures 3(a)-(d) illustrate the advantage of proximity-
point-based loop constraints over conventional relative-
pose-based constraints. Consider that a robot visited
the same place twice (Figs. 3(a),(b)), and pointcloud and
proximity points were detected. Here, in the second visit,
the objects shown in light gray either changed its position
or disappeared completely. Clearly, the relative pose con-
straint computed by scan matching between (a) and (b)
will be erroneous (Fig 3(c)). This constraint could be sup-
pressed by setting the switch variable as zero, but in any
case, this constraint will be useless at best. On the other
hand, matched proximity points are shown in Fig. 3(d).
Here, valid matches (the ones surrounded by solid cir-
cles) will be used for constraining the vertex poses, while
the erroneous match (the one surrounded by a dashed
circle) will be suppressed, and the unmatched proximity
point (the crossed one) will be simply ignored. In this
manner, the proximity-point-based method enables selec-
tion of valid and invalid (suppressed) matches with higher
flexibility.

In this study, the general graph optimizer (g2o) [3]
is used as a basic framework of posegraph optimiza-
tion. One of the useful features of g2o is its extensibil-
ity; that is, one can add a new definition of edge type
while utilizing pre-defined vertex and edge types and
powerful optimization functionality of g2o. To implement
proximity-point-based PGO in the framework of g2o, a
new vertex named VERTEX PROX is defined. Similar
to VERTEX SE2, which is one of the predefined vertex
types, VERTEX PROX parametrizes a pose in SE(2) as

xxx j =

[
ppp j
θ j

]
(4)

where j is the vertex index. xxx j expresses the pose of the
robot at the j-th observation point in the global coordi-
nate frame. In addition, each VERTEX PROX vertex is
assigned a set of proximity points R j = {rrr j,1, . . . ,rrr j,n j}.
Note that while xxx j is a decision variable, proximity points
in R j are used as parameters that define proximity-point-
based edge constraints. For expressing relative pose
constraints based on odometry, a predefined edge type
EDGE SE2 defined below is used.

Jse2,i = (xxx j′i
− xxx ji −∆xxxi)

TΩse2,i(xxx j′i
− xxx ji −∆xxxi) (5)

Here, ji and j′i are the index of the connected vertices, ∆xxxi
is the desired relative pose, and Ωse2,i is the covariance
matrix.

Moreover, a new edge type named EDGE PROX is
defined to implement loop constraints between proxim-
ity points. The i-th edge has a 4-tuple of indices mi =
{ ji, j′i,ki,k′i} whose definition has been given previously.
Moreover, it has a switch variable si. The cost function of
EDGE PROX is defined as follows.

Jprox,i = s2
i eeeTi Ωprox,ieeei +ξ (1− si)

2,

eeei = eee(xxx ji ,xxx j′i
,rrrki ,rrrk′i

)
(6)

Here, eee is the proximity point matching error defined in
(3), and Ωprox,i is the covariance matrix. The switch vari-
able si, by definition, is an unconstrained real variable,

Journal of Robotics and Mechatronics Vol.0 No.0, 200x 3

Yuichi Tazaki et al.

0

5

-5 0 5

quadratic

Huber

Geman-
McClure

Fig. 4. : Profile of cost functions: quadratic, Huber, and
Geman-McClure

but the optimal value of si is always between 0 and 1 (it
is clear from (6) that si outside the range [0,1] can never
be optimal). When the switch variable si is close to zero,
the weight of the error term eeeTi Ωieeei becomes small, and
this loop constraint is effectively suppressed. The second
term, ξ (1− si)

2, is a penalty that must be paid for making
si close to zero. This penalty term is needed to avoid a
trivial solution with all switch variables set as zero. The
value of the parameter ξ , which control the strength of
this penalty term, must be determined manually.

The overall posegraph optimization problem is formu-
lated as follows.

find xxx j (j ∈ V), si (i ∈ Eprox)

minimize ∑
i∈Eprox

Jprox,i + ∑
i∈Ese2

Jse2,i (7)

Here, V is the set of VERTEX PROX vertices, Ese2 is
the set of EDGE SE2 edges, and Eprox is the set of
EDGE PROX edges. Note that the node poses xxx j and
the switch variables si are optimized simultaneously in the
single optimization problem (7). As a result of optimiza-
tion, outlier edges that do not agree with other edges are
suppressed, and node poses that minimize the total error
of unsuppressed edges are computed.

As described in Section 2, the matched proximity
points should satisfy the inequality (3). In other words,
it is no problem if the components of eee take positive val-
ues. In this sense, penalizing the magnitude of eee as de-
fined in (6), which essentially require eee to be zero, may
seem inappropriate. In practice, however, many objects
appear in the environment have either very small curva-
ture or very large curvature, in which case eee become close
to zero. Moreover, it is technically difficult to handle in-
equality constraints in numerical optimization, especially
when we do no want to modify the core optimization rou-
tine of g2o. For this reason, we consider that cost defini-
tion (6) is practically acceptable.

For comparison, we also consider robust optimization
based on the M-estimators: the Huber method and the
Geman-McClure method. The essential idea of the M-
estimator-based methods is to filter the original cost func-
tion so that the gradient of the filtered cost function satu-
rates to a certain limit as the error becomes greater than
the specified threshold. Consider a quadratic edge cost de-
fined as J = eeeTΩeee. The Huber method defines the filtered

x

y

x

z

105deg

5deg

35deg0.8m

3
5
m

20m

10m

75deg 4
5
d
e
g

(a) Photo (b) Position and sensing range of
3D LiDAR

Fig. 5. : Mobile robot used for data recording

cost as

ρH(J) =

{
J if J ≤ σ2

2σ
√

J−σ2 otherwise
(8)

while in the Geman-McClure method, it is defined as

ρG(J) =
Ji

σ2 + J
. (9)

The profile of these functions are shown in Fig. 4 for a
scalar quadratic cost J(x) = x2. An advantage of M-
estimator-based robustification is that there is no need to
introduce extra decision variables. Its shortcoming is poor
convergence caused by small gradient of ρ function. An-
other shortcoming is that it can weaken but cannot com-
pletely nullify the influence of spurious edges.

4. Experimental Results

4.1. Experimental Setup
Experiments were conducted to evaluate the proposed

robust posegraph optimization method. Figure 5(a) shows
the mobile robot Omnia3 used for data recording. It
is equipped with a 3D-LiDAR (Hokuyo YVT-35LX-F0),
whose installation position and sensing range are illus-
trated in Fig. 5(b). At a period of 500ms, the 3D-LiDAR
measures a 3D pointcloud consisting of 20,000 points,
and from this pointcloud, proximity points are detected
by the algorithm described in detail in [11]. An example
of 3D pointcloud and proximity points detected from it
is shown in Fig. 6. Statistically, the number of proxim-
ity points detected from a single set of pointcloud is 8 in
average and 20 at most.

Data recording was conducted in two environments
shown in Fig. 7. The first one is the course of
Nakanoshima Robot Challenge 2021 Extra Challenge.

4 Journal of Robotics and Mechatronics Vol.0 No.0, 200x

Robust Posegraph Optimization Using Proximity Points

Fig. 6. : An example scene (left), 3D pointcloud (right,
black dots), and detected proximity-points (right, red
square markers)

Start

Goal

A

B

C

D

E

F

(a) Nakanoshima Robot
Challenge 2021 Extra Chal-
lenge Course (excerpt from
the challenge proposal)

(b) Kobe University engi-
neering department building

Fig. 7. : Test environment

Three data-recording runs were conducted, and recorded
time-series were labled NC2021-A to NC2021-C. In each
run, the mobile robot was manually operated from the
starting point along the course to the goal point, and re-
turned to the starting point. Since many pedestrians and
other participating robots are in the scene, there are many
sources of observation noise that cause erroneous loop-
closure detection. The second environment is the engi-
neering department building of Kobe University. In this
environment, the mobile robot was manually operated to
drive along several difference cyclic routes as shown in
Fig. 7(b), and the recorded data were labeled KU-A to
KU-F. In the next section, we evaluate posegraph opti-
mization results obtained by different methods in terms
of the magnitude of error. Here, error refers to the value
of the cost function used for optimization, and it does not
refer to error from some kind of ground truth.

4.2. Posegraph optimization results
4.2.1. NC2021

Figure 8(a)(b) show the posegraph of NC2021 be-
fore and after posegraph optimization. Trajectory points
and proximity points that belong to different time-series

-200

-150

-100

-50

0

50

-100 -50 0 50 100 150

y
 [
m

]

x [m]

NC2021-A

NC2021-B

NC2021-C

(a) before

-150

-100

-50

0

50

-50 0 50 100 150

y
 [
m

]

x [m]

NC2021-A

NC2021-B

NC2021-C

(b) after

Fig. 8. : Before and after PGO (NC2021Ex)

(NC2021-A to NC2021-C) are depicted in different col-
ors. We can see in Figure 8(a) that large odometry error is
present before optimization. Loop constraints that are de-
tected by the loop detection method presented in [10] are
depicted by pale red lines connecting matched proximity
points. Loops are mainly detected between regions near
the start and the goal of the same time-series, and between
close regions of different time-series. Figure 8(b) shows
the posegraph after the application of the proposed robust
PGO. We can see that error is greatly reduced. There
are some remaining loop constraints shown as red lines,
but they are mostly spurious loops that were suppressed
thanks to robust optimization technique.

Different robust PGO methods were applied to
NC2021. All compared methods could successfully re-
duce large odometric error that were observed before op-
timization. Nevertheless, small but notable differences are

Journal of Robotics and Mechatronics Vol.0 No.0, 200x 5

Yuichi Tazaki et al.

-40

-30

-20

-10

0

70 80 90 100 110

y
 [

m
]

x [m]

NC2021-A

NC2021-B

NC2021-C

-40

-30

-20

-10

0

70 80 90 100 110

y
 [

m
]

x [m]

NC2021-A

NC2021-B

NC2021-C

flower bed

(a) loop constraints by rela-
tive pose

(b) loop constraints by
proximity-point pair

-40

-30

-20

-10

0

70 80 90 100 110

y
 [

m
]

x [m]

NC2021-A

NC2021-B

NC2021-C

-40

-30

-20

-10

0

70 80 90 100 110

y
 [

m
]

x [m]

NC2021-A

NC2021-B

NC2021-C

(c) Huber M-Estimator (d) Geman-McClure M-
Estimator

Fig. 9. : Comparison of robust PGO methods

ABC

Fig. 10. : Difference of routes taken around the flower bed

observed in some regions. One example of such regions
is shown in the close-up images Figs. 9(a)-(d). A photo
of the same region is shown in Fig. 10. A flower bed was
located in the middle of the walkway, and in NC2021-A,
the robot avoided to the right, whereas in NC2021-B and
NC2021-C, it avoided to the left. This small difference of
travel route caused relatively a large number of erroneous
loop detections around this region. In the relative-pose-
based formulation, the switch variable corresponding to
loop constraints defined between nodes in this region was
weakened uniformly, and there remained large error as
shown in Fig. 9(a). In the result of proximity-point-based
formulation is shown in Fig. 9(b). Wrong proximity-point
matches were weakened, while correct ones remained in
effect, and as a reult, a better optimization result was
achieved. The results of M-estimator methods, Huber

-200

-160

-120

-80

-40

0

40

80

120

-80 -40 0 40 80 120

y
 [

m
]

x [m]

KU-A

KU-B

KU-C

KU-D

KU-E

KU-F

-200

-160

-120

-80

-40

0

40

80

120

-80 -40 0 40 80 120

y
 [
m

]

x [m]

KU-A

KU-B

KU-C

KU-D

KU-E

KU-F

(a) Before (b) After rotation-only opti-
mization

-160

-120

-80

-40

0

-40 0 40 80 120

y
 [
m

]

x [m]

KU-A

KU-B

KU-C

KU-D

KU-E

KU-F

(c) After full optimization

Fig. 11. : Posegraph optimization results of KU

and Geman-McClure, are shown in Figs. 9(c) and (d), re-
spectively. Here, the value of the parameter σ was hand-
tuned to obtain the best result. Compared to the proposed
method, average error remained large. From this result, it
was found that the M-estimator method was not as good
as the switch-variable method in rejecting spurious loops.

4.2.2. KU
Six series of data, KU-A to KU-F were recorded and

used for map construction. Loop detection were per-
formed on every pair with overlapping routes. Figs. 11(a)-
(c) show the posegraphs before and after optimization.
Before optimization, the first node of each data was set
to the origin and its orientation angle was zero. When
PGO was directly applied to this initial configuration, it
was hard to avoid converging to an erroneous local mini-
mum. To avoid this problem, PGO was performed in two

6 Journal of Robotics and Mechatronics Vol.0 No.0, 200x

Robust Posegraph Optimization Using Proximity Points

0

500

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
e
q
u
e
n
c
y

value

(a) Histogram of si

0

250

-6 -5 -4 -3 -2 -1 0 1 2 3

fr
e

q
u

e
n

c
y

log error

robust

non-robust

(b) Histogram of log(∥eeei∥)

Fig. 12. : Comparison of error distribution

0

500

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
e
q
u
e
n
c
y

value

(a) Histogram of si

0

250

-6 -5 -4 -3 -2 -1 0 1 2 3

fr
e

q
u

e
n

c
y

log error

robust

non-robust

(b) Histogram of log(∥eeei∥)

Fig. 13. : Comparison of error distribution of KU

steps; in the first step, the orientation of nodes were opti-
mized while the position was fixed, and in the second step,
full optimization was computed. A set of erroneous loops
were detected between KU-B and KU-F. Thanks to robust
optimization, these loops were suppressed and made little
influence to the result.

4.3. Effect of Switch Variables
For NC2021, histograms of the switch variables and the

edge costs after optimization are shown in Figs. 12(a) and
(b), respectively. In Fig. 12(b), the error distribution of
two cases are shown: one is when the switch variables
were optimized (labeled robust) and the other is when
all switch variables were fixed to 1 (labeled non-robust).
Fig. 12(a) shows that most switch variables are concen-
trated around the two extremes, 0 and 1, where the cluster
around 1 is much larger. As shown in Fig. 12(b), the error
distribution without switch variable optimization (i.e., all

Table 1. : Number of iterations and total computation
time of each method

Method NC2021 KU2022
iter time[s] # iter time[s]

switch vars 11 2.50 36 6.06
Huber 11 1.55 - -

Geman-McCLure 10 1.44 50 5.79

si fixed to 1) has a single great peak, while the distribu-
tion with switch variable optimization shows two peaks.
Here, the smaller peak on the right consists of suppressed
edges, while the greater peak on the left consists of unsu-
pressed ones. We can see that the latter peak is shifted to
the left, indicating that the average error of unsupressed
edges where reduced greatly thanks to the supression of a
smaller number of outlier edges. Fig. 13(a),(b) show the
same statistics for KU, in which similar observations can
be made.

4.4. Computation Cost
Table 1 summarizes the number of iterations and total

computation time of three methods: switch variables, Hu-
ber, and Geman-McClure, all based on proximity-point
matching constraints. Computation was performed on a
Windows computer with AMD Ryzen 9 5950X CPU with
16 cores and 32 parallel threads.

For NC2021, all three methods converged after al-
most the same number of iterations. Note that close-up
images of optimization results are shown in Figs. 9(b)-
(d). The switch-variable-based method required slightly
greater computation time because of the increased dimen-
sionality of the problem. Nevertheless, the overall com-
putation is completed in a matter of seconds, therefore it is
considered to be little problem in practice. For KU2022,
the switch variable-based method converged successfully
although a greater number of iterations was required com-
pared to NC2021. On the other hand, the M-estimator
methods performed poorly. Huber, in particular, failed
to converge within 500 iterations. Geman-McClure con-
verged, but large error remained in the output poseg-
raph. The above results indicates the switch-variable-
based method can achieve better convergence than the
M-estimator methods. Although the computation time of
each iteration increases, the total computation cost is re-
duced thanks to faster convergence.

5. Conclusion

This paper proposed a robust keypoint-based posegraph
optimization method that can be used for large-scale map-
ping of outdoor environments. By assigning a switch vari-
able to each keypoint pair, the proposed method was able
to perform robust PGO in a more fine-grained manner
compared to conventional methods that assign a switch

Journal of Robotics and Mechatronics Vol.0 No.0, 200x 7

Yuichi Tazaki et al.

variable to each node pair. One limitation of our method
in the present form is that the generated posegraph retains
the serial structure of recorded data it is based on. Our
next goal is to extend the current framework to incremen-
tal topological map building that is capable of capturing
the topological structure of the environment in the map.

References

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D.
Scaramuzza, J. Neira, I. Reid, and J. J. Leonard.
Past, present, and future of simultaneous localiza-
tion and mapping: toward the robust-perception
age. IEEE Transactions on Robotics, 32(6):1309–
1332, 2016.

[2] D. M. Cole and P. M. Newman. Using laser range
data for 3d slam in outdoor environments. In IEEE
International Conference on Robotics and Au-
tomation (ICRA), pages 1556–1563, 2006.

[3] R. Kümmerle, G. Grisetti, H. Strasdat, K. Kono-
lige, and W. Burgard. g2o: a general framework
for graph optimization. In IEEE International
Conference on Robotics and Automation (ICRA),
pages 3607–3613, 2011.

[4] N. Sünderhauf and P. Protzel. Switchable con-
straints for robust pose graph slam. In IEEE In-
ternational Conference on Intelligent Robots and
Systems (IROS), pages 1879–1884, 2012.

[5] N. Sünderhauf and P. Protzel. Towards a robust
back-end for pose graph slam. In IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), pages 1254–1261, 2012.

[6] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stach-
niss, and W. Burgard. Robust map optimization us-
ing dynamic covariance scaling. In 2013 IEEE In-
ternational Conference on Robotics and Automa-
tion, pages 62–69, 2013.

[7] G. Hu, K. Khosoussi, and S. Huang. Towards a re-
liable slam back-end. In IEEE International Con-
ference on Intelligent Robots and Systems (IROS),
pages 37–43, 2013.

[8] G. Agamennoni, P. Furgale, and R. Siegwart.
Self-tuning m-estimators. In IEEE International
Conference on Robotics and Automation (ICRA),
pages 4628–4635, 2015.

[9] F. Wu and G. Beltrame. Cluster-based penalty
scaling for robust pose graph optimization. In
IEEE International Conference on Intelligent
Robots and Systems (IROS), pages 6193–6200,
2020.

[10] Y. Tazaki, Y. Miyauchi, and Y. Yokokohji. Loop
detection of outdoor environment using proxim-
ity points of 3d pointcloud. In IEEE/SICE Inter-
national Symposium on System Integration (SII),
pages 411–416, 2017.

[11] Y. Tazaki and Y. Yokokohji. Outdoor autonomous
navigation utilizing proximity points of 3d point-

cloud. Journal of Robotics and Mechatronics,
32(6):1183–1192, 2020.

8 Journal of Robotics and Mechatronics Vol.0 No.0, 200x

