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Abstract—This paper proposes a simple controller for
bipedal locomotion that can stabilize three-axis (roll, pitch, and
yaw) rotation without relying on ground reaction moment ma-
nipulation. Extra acceleration of the CoM (center-of-mass) from
the nominal DCM (divergent component of motion) dynamics
generates moment around the CoM. Based on this principle, the
behavior of the desired DCM is modulated to carry signal for
rotation stabilization. A robust walking controller is synthesized
by combining the proposed rotation stabilizer with continuous
step adaptation. Simulation study shows that the proposed
controller is capable of robust disturbance rejection and yaw-
regulated walking of a point-foot robot.

I. INTRODUCTION
A. Need for Simple Model-based Balance Control

Maintaining balance using limited support is one of the
fundamental functionalities of humanoid robots that can
work in real environments. Unlike quadruped and other
multipeds that can create stable support regions using three
or more simultaneous contacts, bipedal robots including
humanoids need to balance on only two feet with limited
support area. Because of this fact, balance control of bipedal
robots has attracted tremendous research effort for decades
and remains challenging even today.

Recent years have seen significant advances of data-
driven approaches to locomotion controller synthesis that
can realize robust walking on rough and unmodeled terrain.
However, pure end-to-end learning is known to require mas-
sive amount of training data, and interpretation of acquired
control mechanism is difficult. To reduce the cost of training,
utilizing a model-based controller as a priori knowledge
for bootstrapping training has been actively investigated [1].
Model-based approaches to controller design directly based
on physical principle of bipedal locomotion will therefore
continue to attract both theoretical and practical interest.

B. Review of Existing Balance Control Methods

Balance control strategy of human is categorized into
ankle, hip, and stepping strategies. From a control theoretic
perspective, the ankle strategy is stabilization of the CoM by
manipulating the ZMP (zero tilting-moment point). Although
the ZMP can easily be manipulated by using the ankle joint
torque, stability margin created by this strategy alone is
limited because the ZMP is restricted inside the support
region. The hip strategy is interpreted as utilization of angular
momentum variation for expanding the stability margin of the
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CoM [2, 3, 4, 5, 6, 7, 8] (more detailed discussion follows
in the next subsection). The stepping strategy is adjustment
of the placement of footsteps to absorb the perturbation
of the CoM. Two types of step adaptation methods have
been investigated: step-to-step and continuous. Step-to-step
methods determine the next foot placement every time the
swing foot touches down [9, 10, 11]. An advantage of this
approach is that it can be combined with well-studied cap-
turability theory to realize multi-step prediction. Its drawback
is that recovery action againt disturbances applied during
the single support phase has to be delayed until the next
support exchange. On the other hand, continuous methods
monitor the centroidal state continuously during the swing
phase and adjust the next foot placement based on the
desired DCM offset at touch down [12, 13, 14]. Thanks
to its continuous nature, this method can swiftly respond
to disturbances applied at arbitrary timing. Recent studies
realized complex step adaptation considering crossing of legs
[15] and restriction of support regions [16]. Apart from the
above three strategies, utilizing variation of the CoM height
to expand the stabilizable margin has been investigated in
several studies [17, 18, 19, 5, 20, 7].

C. Treatment of Angular Momentum in Balance Control

As mentioned earlier, the most widely accepted way to
utilize angular momentum in balance control is to treat it as
extra control input to expand the stabilizable margin of the
CoM. For this purpose, the notion of Centroidal Moment
Pivot (CMP) [21] and eCMP [22] has been used as an
extension of the coventional ZMP. That is, the CMP can
be set outside the support region to generate greater lateral
acceleration of the CoM. The resultant angular momentum
variation is often considered as a side-effect.

Another way is to treat it as disturbance caused by the
nonlinearity of whole-body motion [23, 24, 25]. The rate
of change of angular momentum term is integrated into the
CoM dynamics to compensate for the nonlinear effect.

Yet another way, which is quite different from the other
two, is to view angular momentum regulation as a pri-
mary objective and utilize extra acceleration of the CoM
to generate recovery moment to regulate the angular mo-
mentum. Pioneering works in this direction are Nagasaka’s
Body Compliance Control [26] and Takenaka’s Model ZMP
Control [27], but unfortunately, this approach seems to
be less recognized in the research community. The author
believes combining this approach with modern continuous
step adaptation techniques can realize a simple yet robust
balance controller.



Lastly, coupling of yaw rotation and CoM movement
has long been recognized but poorly studied, because yaw
moment generated by CoM movement can be naturally can-
celled by torsional friction moment assuming strong enough
grip between the support foot and the ground. In case of
low ground friction and small support area, however, it could
cause slipping of the support foot and instability of walking.
Controlling yaw rotation by means of CoM movement is
therefore an important topic to explore.

D. Contribution of This Paper

The main goal of this study is to reformulate the idea of
stabilizing body rotation by extra horizontal CoM accelera-
tion based on the modern DCM-based theoretical foundation
and further extend it to enable yaw regulation. Concrete
contributions are summarized as follows.

o The relationship between angular momentum variation
and deviation of the DCM from the nominal DCM
dynamics is derived. Based on this knowledge, a simple
feedback control law that regulates roll, pitch, and
yaw rotation without using ground reaction moment is
presented.

o A simple and robust bipedal walking controller that
combines the proposed rotation stabilizer and contin-
uous step adaptation strategy is developed.

o The performance of the proposed controller is evalu-
ated in dynamical simulation including yaw-regulated
walking of a point-foot robot.

The organization of this paper is as follows. In Section
II, the relationship between the angular momentum and
the linear CoM movement is reviewed, and in Section III,
a control method based on this principle is presented. In
Section IV, the proposed controller is evaluated in dynamical
simulation. Concluding remarks are given in Section V.

II. ANALYSIS ON THE RELATIONSHIP BETWEEN
ROTATIONAL AND THE DCM DYNAMICS

We start from the well-known centroidal dynamics equa-
tion, which describes the relationship between the linear and
angular momenta and the contact wrench.

(1a)
(1b)
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Here, m is the total mass, g is the acceleration of gravity, p is
the center of mass (CoM), and L is the angular momentum.
Moreover, the zero tilting-moment point (ZMP) c is chosen
as a point of application of the contact force f, which means
that the contact moment has the vertical component 7 only,
where e, is a unit vector pointing to the positive z direction.
By substituting (1a) into (1b), we obtain

L=en—(p—c)xm(p+g) ()

Now, consider the well-known Linear Inverted Pendulum
Mode (LIPM) given by

lﬂp—d—g
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Fig. 1.

Tllustration of extra acceleration and resultant recovery moment.

Here, T" may generally be time varying, but in this context
we consider it to be a positive constant. By substituting
(3) into (2), we obtain L= e,n. This means that as long
as the motion of the CoM is governed by the LIPM, the
linear dynamics of the CoM and the rotational dynamics
of the angular momentum are completely decoupled. This
convenient characteristic has been extensively utilized in con-
ventional trajectory generation and balance control methods.
From a more general perspective, one can also say that
deviation of the CoM from the LIPM causes variation in
the angular momentum. More concretely, let us define § as
extra acceleration of the CoM, with which the CoM motion
is now governed by the following equation.

1
(p—c)—g+9o

p= T2 4)
By substituting (4) into (2), we obtain
L=em—mp—c)xé ®)

This equation implies, in addition to 7 (the vertical compo-
nent of the contact moment), one can utilize § to manipulate
the angular momentum over a cross product with p —c. Note
that extra acceleration defined above is closely related to the
notion of CMP (centroidal moment pivot); in fact, the CMP
is given by c—1"24. Although the remaining discussion could
be made based on the CMP, we prefer the notion of extra
acceleration with which the idea of the proposed rotation
stabilization control can be explained more naturally. Extra
acceleration & can also be seen as deviation from the DCM
dynamics. The Divergent Component of Motion (DCM) is
defined by & = p + T'p. The equation (4) can be rewritten
using the DCM as

(6)
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Now, let us focus more closely on the cross product term
(p—c) x4 to clarify the relationship between the direction of
extra acceleration and that of moment. Let us write » = p—c.
Then (5) can be rewritten as

)

L, = m(+r,0y — ry0,) (8a)
Ly = m(—r,0x + 1x6;) (8b)
L,= m(—rxdy + Ty0x) + 1 (8¢)
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Note that r, expresses the height of the CoM from the
ground, while 7, and ry express lateral offsets of the CoM
from the ZMP. Eqgs.(8a) and (8b) indicate that the vertical
deviation ¢, influences the roll and pitch angular momentum.
However, this influence is not so reliable because the moment
arms 7y and ry are much smaller than r,, and also because
the vertical movable range of the DCM (or that of the
CoM) is kinematically limited. Moreover, 1 is useful for
controlling L,, but its range is limited by maximum static
torsional friction. The relationship between extra acceleration
and moment generated by it is summarized as follows.

1) § in positive x direction generates negative pitch mo-
ment (Fig. 1(a)).
2) ¢ in positive y direction generates positive roll moment
(Fig. 1(b)).
3) 4 in the perpendicular direction of (ry,ry) generates
positive yaw moment (Fig. 1(c)).
One essential difficulty is that, since cross product with r
has rank 2, controlling all three components of L using 9§
is impossible. In fact, if 7 = 0 we have 7L = 0. This
means that the angular momentum can only be changed in
directions that satisfy this one-dimensional constraint.

III. ANGULAR MOMENTUM REGULATION CONTROL
BASED ON DCM MODULATION

A. Overall Flow of Control System

The diagram of the proposed control system is illustrated
in Fig.2. The control system consists of two main com-
ponents: rotation stabilizer and continuous step adaptation.
They operate in continuous time to react swiftly to distur-
bances. One of the main advantages of the proposed method
is that it requires rotation of the base link as its sole sensory
input and estimation of the real DCM of the robot is not
necessary. The reason why this holds can be explained as
follows. Let us assume that the following conditions hold: i)
the support foot does not slip, ii) the leg joints are fully
actuated and position tracking error is sufficiently small,
and iii) errors in kinematic and mass parameters are also
sufficiently small. Under these assumptions, the only source
of error between the desired and real DCM are base link
rotation. Thus, by regulating the base link rotation, the real
DCM will naturally converge to its desired value without
explicit DCM tracking control.

B. Rotation Stabilization by DCM Modulation

This section describes rotation stabilization by DCM mod-
ulation, which is the main contribution of this paper. Let 6
be a vector of Euler angles expressing the rotation of the
base link and w be the angular velocity of the base link
expressed in its local coordinate frame. Under the assumption
that the roll and pitch angles are small enough, 0 = w
holds approximately. As discussed earlier, it is impossible
to control rotation in all three axes independently by using &
alone. The basic strategy behind the method described below
is to assign higher priority to yaw regulation and encode yaw
regulation signal into desired roll/pitch rotation angles. First,

desired yaw angular acceleration is determined by a simple
PD control law as follows.

9Z) + KD,Z (wref,z - wz) (9)

Here, 0, and w, are measured yaw angle and angular
velocity of the base link, while 8¢ . and wy.f, . are reference
values input to the controller. Moreover, Kp , and Kp . are
proportional and differential gains. Next, desired roll/pitch
angular accelerations are determined as the least-squares
solution satisfying 7T (Iwqes) = O:

wdes,z = KP,Z (gref,z -

. IZT.XTZ
Wdes,x = — 2 oy Wdes,z — klgdes,x - kQWdes,x
IX(TX + Ty)
Iryr (10)
wdes,y = _%Wdes,z - kledes.y - k2wdes,y
Iy (Tx + ry) ’

Here, we make a simplifying assumption that L ~ [w holds,
where I = diag(ly, Iy, I,) is the nominal inertia around the
CoM. Moreover, (10) includes feedback terms with weak
gains k; and ko to prevent desired roll/pitch angles from
deviating too much from zero. By integrating (10), desired
angle and angular velocity in the roll/pitch directions (8 es x,
Odes,y> Wdes,x» and wWdesy) are updated. Now that desired
roll/pitch angles are obtained, desired moment is determined
by the following PD control law:

Ldes,x = IX(KP,X(ades,x - 9)() + KD,x(wdes,x - wx))
Ldes,y = Iy(KP,y(edes,y - ey) + KD,y(Wdes,y - wy))

where 0y, 0y, wy, and w, are measured roll/pitch angle and
angular velocity of the base link. The DCM modulation
signal é that generates this moment is given by

1 1.
6)(: - Les 3
m( Ty d ’y>

1 1.
Oy = — — Ldes x ’
Y m(rzd’)
6,=0

which input to the DCM dynamics equation (7) to update
the desired DCM as follows.

: 1
édes = T(Sdes - cdes) - Tg +T6

Let us call this technique DCM modulation because the
desired DCM is modulated to carry rotation correction signal.
Here, the desired ZMP cg4os is given by the following
feedback law.

(1)

(12)

13)

Cdes = projsup(cref - chm (gdes - Sref)) (14)

Here, c,¢ is the reference ZMP, which is typically located
at the center of the support foot, and &, is the reference
DCM given by

t
&rof = Crer + €Xp <T> Eoffset

where ¢ is the elapsed time from the previous support foot
exchange and &gt is the nominal DCM offset. Here,
Kgem 1s a feedback gain used to make the desired DCM
track the reference DCM. Similar DCM tracking control

5)
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was used in [28] and [29], although a main difference in
our case is that we regulate the desired DCM instead of
the real (estimated) one. Moreover, projg,, is an operator
that projects the desired ZMP inside the support region.
Although more sophisticated constraint handling by means
of constrained optimization could be considered, we resort
to projection for ease of implementation.

C. Step and Timing Adaptation

The step and timing adaptation strategy used in this study
is conceptually similar to the work of Khadiv [12]. One
notable difference is that a useful notion of DCM-induced
time is introduced for natural derivation of timing adaptation.
Another difference is that simple projection operation is used
instead of constrained optimization to handle restriction of

of the DCM dynamics is written as

€0 =c+ow (1) (€0) - )

where ¢ denotes the ZMP, which is assume to be fixed during
each walking phase. By solving this for ¢ we obtain

e (IO el
tTlg(mw»—&)

=Tlog [[£(t) — || — T'log [|£(0) — <]

= taem(&(t) — €) — taem (£(0) — )
Here, t4em(& — ¢) = Tlogl||€ — c|| is interpreted as
virtual time parametrized by the horizontal distance be-
tween the DCM and the ZMP. Let us call it DCM-induced
time or DCM-time. For later use, let us define ¢y (t) =
taem (€des(t) — Crer), which gives the DCM-time from the
desired DCM at time ¢. At every instant of support foot
exchange, at which ¢ is reset to 0, the timing of the next
scheduled support foot exchange is determined as follows.

(16)

a7)

tikand = maX(Tnominal + tdcm(&oﬂ”set); Tmin T tnow (O))

(18)
In nominal walking, &qes(0) — Cref & Eoffset holds. In this
case, t,,q4 1s scheduled Thominal (nominal step duration)
ahead of ¢,,y,. When walking is disturbed, however, ],
calculated this way could be too close or even smaller than
thow(0). To avoid this situation, ¢}, , is set at least Tin
(minimum step duration) ahead of the DCM-time at support
foot exchange. landing time is continuously adjusted during
the swing phase as illustrated in Fig. 3 to take limitation of
foot placement into account. Let tiang € [tnow (£), t,q] e
adjusted landing time. Given t},,4, remaining time to landing
is given by

Titl = tland — tnow (t) (19)
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Predicted DCM at landing can be calculated as follows.

Tttl

&(tiand) = Cref + €xp (—) (Edes(t) — Cref)

T (20)

To achieve a predefined DCM offset right after landing, the
landing position of the swing foot is given by
Pland = g(tland) - Rz (oland)goﬁset (21)
where I, denotes a rotation matrix about the z axis. Finally,
landing position is projected inside admissible landing re-
gion. Based on the procedure described above, the adjusted

landing time is given by the solution of the following one-
dimensional optimization problem:

min w|[Pland — PrOJjjand (Pland)ll

tland S [tnow (t) 7trand]

(22)
+ |t1and - tikand|

Here, w is a weight that prioritizes landing position error
over timing error.

D. Swing foot control

The swing foot movement is parametrized DCM-time
instead of real time. In this manner, the movement of the
swing foot is synchronized with that of the desired DCM.
More concretely, the position and turning angle of the swing
foot is expressed as follows.

Dswing (Tet1) = Plite + Cn(Tee1) (Pland — Puite) + Cv (Tee1) Pswing

(23)
Oswing (Tee1) = Onige + cn(Tee1) (Grand — Orige) 24)
Here, (Pswing, Oswing) denote the position and yaw angle
of the swing foot, and 7 is given by (19). Similarly,
(puitt, Drige) and (Prand, G1ana) denote the swing foot pose at
lift-off and landing, respectively, and hgwing is the swing
height. Moreover, ¢, and ¢, are sigmoidal functions illus-
trated in Fig.4. The first part of the period is specified as
the double-support phase (DSP) during which both ¢, and
¢y are zero. During the last part, on the other hand, ¢, is
fixed to 1, meaning that the horiontal and turning movement
completes earlier than the vertical movement. This helps to
reduce the risk of ground-scuffing right before touch down.

TABLE I
TABLE OF CONTROL PARAMETERS

roll  pitch  yaw

Kp 200 400 10 |[ Toominal 1 045
K1 120 120 0 || Tmin 0.30
Kp 40 40 10 Rswing 0.10
Kdcm 2

Fig. 5. Robot model used for simulation. Entire view (left) and different
foot geometries (right, from top to bottom, large, small, and point).

IV. SIMULATION RESULTS

A. Common Setup

The performance of the proposed controller was tested
in dynamical simulation. See the attached video for better
visualization of simulation results. A C++ implementation
of the proposed controller is publicly available in an open-
source software library vnoid '. Choreonoid with AIST
simulator [30] was used for testing. A 30-DoF humanoid
robot model shown in Fig.5 was used for simulation. Al-
though its appearance is unrealistic, its kinematic parameters
and mass distribution resemble those of real humanoids. It
has two DoFs in the torso, two in the neck, seven in each
arm, and six in each leg. The total mass is m = 43kg. Each
arm and each leg weighs 4.5kg and 5.0kg, respectively. The
nominal inertia was set as (I, Iy, I,) = (2.5,2.5,0.2)kg-m?.
These values are based on numerically computed composite
rigid-body inertia of the robot in a neutral pose. A rate
sensor (a gyroscope) and an accelerometer are attached to
the base link to measure its three-axis rotation. A 6-axis
force sensor is attached to each foot, although it is used
for touch-down detection only. The nominal CoM height
was set as h = 0.7m, and the constant 7' was set as
T = /h/g = 0.27, where g ~ 9.8 is the gravitational
acceleration. The controller parameters are set as shown in
Table I.
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B. Evaluation of robustness under disturbances

The robustness of the proposed controller against impul-
sive disturbances was evaluated. While the robot stepped in
place, horizontal force with varying magnitude and direc-
tion was applied to the CoM at controlled timing during
the right support phase for a fixed duration of 50ms. For
each direction, the maximum magnitude of disturbance after
which the robot could continue stepping without falling
down was measured. The result is summarized in a radar
chart shown in Fig.6(a),(b). In the figure, the magnitude
of disturbance is expressed by the equivalent instantaneous
shift of the DCM in meters. The test was conducted using
different foot geometries: large foot (a box-shaped foot with
a dimension of X x Y = 0.15m x 0.075m, small foot
(X xY =0.1m x 0.05m), and point foot (a sphere-shaped
foot with a radius of 0.025m). With small foot support
area, angular velocity in the yaw direction was likely to be

'https://github.com/ytazz/vnoid
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Fig. 7. Response of real DCM (black) and desired DCM (blue) after

forward impulsive disturbance.

generated as a result of disturbance injection. For this reason,
even small difference in the direction of disturbance resulted
in notable difference in tolerable disturbance magnitude.
The result shown above is comparable to similar benchmark
results reported in [12] and [13].

Figure 7 shows responses of the real DCM computed
from states directly obtained from the simulator and the
desired DCM computed inside the controller when a forward
impulsive push with an equivalent DCM shift of 0.2m was
applied. While the real DCM changed instantaneously after
disturbance injection, the desired DCM changed linearly at
approximately 0.5m/s. Different combination of gains of the
rotation stabilization control (11) had little effect in the rate
of change. This result indicates that the proposed controller
has certain limitation in its responsiveness to impulsive
disturbances due to the fact that it updates the desired DCM
in response to inclination of the base link. The responding
speed could be improved by taking horizontal acceleration
of the base link into account.

C. Yaw-regulated walking of a point-foot robot

For demonstration of yaw control without using ground
reaction moment, the proposed controller was tested with
a robot model with point foot. In this setup, the torsional
friction coefficient is practically zero, meaning that the robot
must maintain balance based purely on DCM modulation
and step adaptation. The robot was commanded to walk
along a polygonal reference path composed of 1m straight
line segments (0.2m maximum stride length) and 120deg
corners (8.6deg maximum turning angle per step). As shown
in Fig. 8(a), the heading direction of the robot was completely
out of control without yaw regulation although the robot did
not fall down. By contrast, with yaw regulation turned on,
the robot could precisely track the reference path as shown
in Fig. 8(b). A certain degree of tracking error was inevitable
because no absolute position feedback was implemented.
Plots of desired and simulated base link rotation with yaw
regulation control are shown in Fig.9. One can observe that
periodic variation of desired roll/pitch angles was generated
to regulate the yaw angle during forward walking, whereas
pitch angle variation was mainly generated to create yaw
moment required for turning on the spot. Although this result
may have little direct impact on practical application, it
is considered to have notable theoretical value because no
similar result has been reported in the literature.
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Fig. 8. Trajectory of a point-foot robot walking along a polygonal path.
Simulated CoM (black), desired CoM (blue), desired DCM (green), desired
ZMP (magenta).

V. CONCLUSION

This paper presented a simple walking controller that can
stabilize three-axis rotation without relying on ground reac-
tion moment. One shortcoming of the presented controller,
which encodes desired yaw angular acceleration into desired
roll/pitch rotation, is that the yaw feedback gain cannot be
set very high for fear of disrupting the stability of walking.
Predictive control methods could be used to control rotation
along three axes in a more unified manner.
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APPENDIX

A. Determining DCM Offset Based on Gait Parameters

As illustrated in Fig.10, let dy, dy, w, ¢, and 7 be
stride length, lateral sway per step, lateral spacing of the
feet, turning angle per step, and nominal step duration,
respectively. Define a coordinate frame in which the right
foot at the O-th step is located at its origin. Moreover, let the

Fig. 10. DCM offset of stationary walking including swaying and turning

position of the next left and right foot placement be p; and
p2, respectively. From the figure, we have

P = [r +0w/2} +R.(0/2) {—r + w/02 + dy/2]
P2 =p1+ R,(6/2) [r _010/2} + R, (0) [_T ) w/02 s
(25)

where r = dy/¢. From the stationarity of the gait, the DCM
at the beginning of the 0-th step and the 2nd step (both right
support) relative to the respective support foot must be the
same. Let this be &.. Moreover, let the DCM offset of the
1st step (left support) be &;. From the DCM dynamics, we
have

pP1 = O‘ér - Rz(¢/2)€13
P2 = + (a - 1)RZ(¢/2)£1 - RZ(¢)£r~

where o = exp(7/T'). Solving these for the DCM offsets
gives

(26)

& = (a1 — R,(¢)) " ((a — )p1 + p2),
61 = Rz(¢/2)—r(a£r - pl)

where [ is the 2 x 2 identity matrix. Substitute (25) into (27)
to obtain the DCM offsets.

27)

|



