
Decentralized Planning for Dynamic Motion Generation of Multi-link
Robotic Systems

Yuichi Tazaki, Hisashi Sugiura, Herbert Janssen and Christian Goerick

Abstract— This paper presents a decentralized planning
method for generating dynamic whole body motions of multi-
link robots including humanoids. First, a robotic system will
be modeled as a general multi-body dynamical system. The
planning problem of a multi-body system will then be formu-
lated as a constraint resolution problem. The problem will be
solved by means of an extended Gauss-Seidel method, which is
capable of handling multiple constraint groups with different
priorities. The method will be demonstrated in whole-body
motion generation tasks of a humanoid, both in numerical
simulations and in experiments using a real humanoid robot.

I. INTRODUCTION

Complex multi-link robots such as humanoid robots have a
potential for performing multiple tasks simultaneously under
various constraint conditions by making use of its large
degrees of freedom. However, to design a controller that
exploits this feature is extremely challenging. To date, several
methods have been proposed: Kuffner et al [1] proposed a
method that consists of two phases, in which a statically
stable and collision free trajectory is generated using a
randomized planner [2] in the first phase, and it is shaped
to be dynamically consistent using a filtering module in the
second phase. Two-phase approaches has also been taken by
Yamane et al [3] for creating computer animation of human
figures doing manipulation tasks, and by Yoshida et al [5],
Harada et al [4] for dynamic motion planning of humanoid
robots.

On the other hand, Sentis and Khatib [6] proposed a
framework based on task prioritization. They first categorize
the objectives of humanoid motion planning into three levels:
constraints, movements in operational spaces, and postures.
Each objective is expressed by means of a Jacobian matrix,
which decomposes a whole configuration space into a task-
space and a null-space, which are orthogonal to each other.
Motions of lower priority are then projected onto the null
space of higher priority objectives, so that they will never
interfere with the motions of higher priority.

Although the existing methods have been successful to a
certain extent, they seem to have limitations as well: First, the
task-prioritization-based method is purely reactive; it makes
no prediction into the future. There certainly are a class of
tasks that requires planning; such tasks include generation of
gait patterns, minimization of long-term energy consumption
and many others. On the other hand, randomized search
methods seem to suffer from a fundamental difficulty in

Y. Tazaki is with the Department of Mechanical Science and Engineering,
Nagoya University, Nagoya, Japan.tazaki@nuem.nagoya-u.ac.jp

H. Sugiura, H. Janssen and C. Goerick are with Honda ResearchInstitute
Europe, Offenbach, Germany.

sampling from the set of feasible configurations of the robot.
In many cases, the volume of feasible configuration space is
much smaller than that of the whole configuration space,
making the sampling of feasible configurations inefficient.
Currently, this problem is handled by introducing a low-
dimensional parametrization of the feasible region, whichis
highly problem-dependent.

Motivated by the above backgrounds, this paper presents a
decentralized planning method for robots with high degrees
of freedom that is based on constrained optimization. The
key idea underlying our method is that planning process
should make use of gradient-based techniques as much as
possible, and randomized techniques should be used to assist
the gradient-based method to avoid local optimal solutions.
In the proposed method, the robot is modeled as a collection
of rigid bodies connected by holonomic constraints. Unlike
conventional techniques that define decision variables in
joint coordinate space, all state variables of the multi-body
system (position and velocity of rigid bodies, constraint
forces and so forth) are directly used for planning. The
motion generation problem is then formulated as a large-
scale constrained optimization problem. A feasible gradient
descent direction subject to the constraints is obtained by
computing Lagrange multipliers using an extended Gauss-
Seidel method. Making use of the sparsity of the graph
structure, the computational complexity of one iteration of
the Gauss-Seidel method is linear with respect to the number
of rigid bodies and that of joints. One advantage of this
graph-based formulation is that it explicitly computes the
constraint forces and thus it is especially suitable for tasks
that involve interactions between different parts of the body
such as dynamic balancing. This feature will be demonstrated
in the body moment generation task of a humanoid robot,
in which the robot is required to generate a desired counter
moment on its body by swinging its arms. Moreover, the
proposed method is applicable not only to humanoids but in
principle to any type of multi-linked robotic systems.

The rest of this paper is organized as follows: Section II
gives a brief explanation to the mathematical model of multi-
body systems. Next, in Section III, the decentralized planning
technique is explained in detail. In Section IV, numerical
simulations and demonstrations using a real humanoid robot
are shown. Finally, Section V summarizes this paper with
comments on further extensions.

II. M ULTI -BODY SYSTEMS

In this section, we introduce a multi-body system, which is
composed of a collection of multiple rigid bodies connected

TABLE I

L IST OF VARIABLES

States of rigid bodyi at time t:
pi,t ∈ R

3 : position qi,t ∈ Q : orientation
vi,t ∈ R

3 : velocity ωi,t ∈ R
3 : angular velocity

fi,t ∈ R
3 : force τi,t ∈ R

3 : moment

States of joint(i, j) at time t:
θi,j,t ∈ R : joint angle
fi,j,t ∈ R

3 : constraint force
τi,j,t ∈ R

3 : constraint moment

together by holonomic constraints. Table I lists all the vari-
ables use for modeling the time-evolution of a multi-body
system. The symbolQ denotes the set of unit quaternions.
All the above variables are expressed with respect to the
global coordinate frame. The kinematics and dynamics of
the i-th rigid body are described by the following rules:

pi,t+1 = pi,t + h vi,t, (1)

qi,t+1 = q(hωi,t) qi,t, (2)

mi vi,t+1 = mi vi,t + h fi,t, (3)

Ii,t+1 ωi,t+1 = Ii,t ωi,t + h τi,t. (4)

Here,h ∈ R denotes the step size of the Euler stepping. The
function q(ω) returns a quaternion representing a rotation
along the vectorω/‖ω‖ with the rotation angle‖ω‖. See
Appendix for a concrete definition. Moreover,mi and Ii,t

denote the mass and the inertia matrix of thei-th rigid
body, respectively. All variables related to rigid bodies are
expressed with respect to the global coordinate frame.

Now, let us denote byΘ a set of pairs of indices indicating
which pair of rigid bodies are connected by a joint. Here we
assume for any(i, j) ∈ Θ, i < j. Let pJ

i,j , qJ
i,j (pJ

j,i, qJ
j,i) be

the displacement and the orientation of the joint expressedin
the local coordinate frame of thei-th (j-th) rigid body. Then
the holonomic constraint expressing the joint(i, j) ∈ Θ is
expressed as follows:

pi,t + qi,t pJ
i,j = pj,t + qj,t pJ

j,i,

(qi,t qJ
i,j)

−1(qj,t qJ
j,i) = q(ez θi,j,t)

(5)

where ez = [0, 0, 1]T is a unit vector which determines
the joint axis direction. Here we assume that joints are
of revolutive type, but other various joint types including
prismatic joints and spherical joints can be expressed in
similar forms.

On the other hand, the total force(moment) applied to the
i-th rigid body is the sum of all constraint forces(moments)
and external forces(moments), thus the following hold:

fi,t = f ext
i,t +

∑

j : (i,j)∈Θ

qJ
i,j,t fi,j,t −

∑

j : (j,i)∈Θ

qJ
i,j,t fi,j,t,

(6)

τi,t = τ ext
i,t +

∑

j : (i,j)∈Θ

(pJ
i,j,t × (qJ

i,j,t fi,j,t) + qJ
i,j,t τi,j,t)

−
∑

j : (j,i)∈Θ

(pJ
i,j,t × (qJ

i,j,t fi,j,t) + qJ
i,j,t τi,j,t)

(7)

where pJ
i,j,t = qi,t pJ

i,j and qJ
i,j,t = qi,t qJ

i,j . The symbols
f ext

i andτ ext
i denote the external force and moment; the sum

of forces acting on the rigid body except constraint forces,
which usually includes the gravity force.

In physics simulation, which is a typical application of
multi-body systems, we calculate the time-evolution of rigid
bodies in a single time step; that is, given states (posturesand
velocities) of rigid bodies at timet, we calculate constraint
forces with which the state of rigid bodies at timet + 1,
determined by (1)-(4) and (6)(7), satisfy (5). On the other
hand, in the planning method described in the next section,
the goal is to compute a sequence of postures, velocities
and constraint forces in a prediction horizon with multiple
time steps satisfying (1)-(7) with some additional constraints
encapsulating joint limits and desired values.

III. D ECENTRALIZED PLANNING

A. Overview of the proposed method

In this section, the proposed decentralized planning frame-
work will be explained in detail. At first, we discuss a
general constraint resolution problem. The core of solving
this problem is the computation of Lagrange multipliers. For
this purpose, we employ the projected Gauss-Seidel method.
Next, a planning method for robotic systems will be derived
from this general framework. From a conceptual point of
view, the proposed method is decentralized in the sense that
there is no single, high-level decision making element in the
planner. Instead, at first a task objective will be imposed by
means of a constraint on a task-relevant variable. Then this
constraint information will in some sense be propagated to
other variables by the Gauss-Seidel iteration. After a certain
number of iterations, a motion that achieves the objective
making use of all the variables in the kinematic graph will
be produced. In this sense, each variable in the graph can be
seen as a single agent and the whole graph can be seen as a
multi-agent system, in which the agents negotiate each other
through Gauss-Seidel iterations.

B. General constrained optimization problems

In this subsection, we formulate a general constraint
resolution problem. Letx ∈ R

n and let c : R
n 7→ R

m

be a smooth function. Moreover, lety = c(x). The variable
y is constrained in the following manner:

yi = 0 if 1 ≤ i ≤ neq,

y
i
≤ yi ≤ yi otherwise.

(8)

The firstneq elements ofy are subject to equality constraints,
and other elements are subject to range constraints. This
defines a constraint manifold inRn; M := {x | y =
c(x) satisfies (8)}. Our purpose is to find a value ofx that
lies in M. To this aim, we first choose an initial value ofx;

x0. Next, we generate a sequence of points that converges
to the constraint manifoldM by the following formula:
xτ+1 = xτ +J(xτ)Tλτ . Here, the subscriptτ is the index of
points in the sequence. Moreover,J(x) is the Jacobian matrix
of c(x); J(x) = ∂c/∂x(x) and λτ ∈ R

m is the Lagrange
multiplier. The multiplier λτ should be chosen in such a
way thatx moves towards the constraint manifold at every
iteration. Such a multiplier is obtained in the following way:
Let x be a point in the sequence and letλ be a multiplier
(subscripts are omitted). The change ofx in one step is given
by δx = J(x)Tλ. Moreover, by linear approximation, the
change ofy is expressed asδy ≈ J(x)δx = J(x)J(x)Tλ.
Here we impose the following constraints onδy andλ: for
1 ≤ i ≤ neq, δyi = −µyi, and forneq < i ≤ m,































δyi ≥ −µ(yi − y
i
), λi ≥ 0, (δyi + µ(yi − y

i
))λi = 0

if yi < yi,

δyi ≤ −µ(yi − yi), λi ≤ 0, (δyi + µ(yi − yi))λi = 0

if yi > yi,

λi = 0 otherwise.
(9)

Here 0 < µ < 1. Notice that with aλ satisfying these
conditions, the amount of constraint violation will be reduced
with the rate(1 − µ). Thus the sequence will exponentially
converge to the constraint manifoldM. The rate of con-
vergence is determined by the constantµ. The problem of
finding λ satisfying the conditions given in (9) is a class of
so-calledlinear complementarity problems (LCP in short).
Today, the projected Gauss-Seidel method is known as a
powerful iterative method for solving large-scale LCP. The
reader is referred to [7] for theoretical background of LCP
and introduction of projected Gauss-Seidel method. In the
following, we present a specialized projected Gauss-Seidel
method for constraint resolution problems.

Algorithm compute multiplier
Inputs

x constrained variable
λ0 initial value of Lagrange multiplier

Outputs
δx change of constrained variable
λ Lagrange multiplier

Initialization
y := c(x), λ := λ0, δx := J(x)Tλ.
for i = 1 to m

if i ≤ neq

ri := −µyi

else
ri := −µ(yi − y

i
) if yi < y

i

ri := −µ(yi − yi) if yi > yi

ri := 0 otherwise
end
Ai,i := i-th diagonal element ofJ(x)J(x)T

end
r := r − J(x)δx

Iteration
loop

if convergence condition is satisfied, terminate.
for i = 1 to m

λ̂i := λi + ri/Ai,i

if i > neq

λ̂i := max(0, λ̂i) if yi < y
i

λ̂i := min(0, λ̂i) if yi > yi

end
δλi := λ̂i − λi

λi := λ̂i

δδx := J(x)rowi
T
δλi

δx := δx + δδx
r := r − J(x)δδx

end
end

In this algorithm, at first, the Lagrange multiplierλ is initial-
ized asλ0, and then the constraint residualr is calculated. In
each iteration, for eachi-th element starting fromi = 1 up to
m, a new value ofλi, λ̂i, is calculated using the residualri

and thei-th diagonal element ofA = J(x)J(x)T, which can
be precomputed. If thei-th constraint is an range constraint,
then λ̂i is projected to0 according to the state of constraint
violation (whether the variable is hitting the upper limit or
the lower limit) and the sign of̂λi. SinceA is symmetric
positive definite, this projection ensures that thei-th linear
complementarity condition is preserved. Finally, the change
of variableδx and the residualr is updated accordingly. The
symbolJ(x)rowi denotes thei-th row vector ofJ(x).

Using the above algorithm as a sub-routine, the next
algorithm generates a sequence of points that converges to
the constraint manifoldM.

Algorithm executeplanning
Inputs

x0 initial value of constrained variable
Outputs

{xτ} sequence of constrained variable
λ := 0

for τ = 0, 1, . . .
if convergence condition is satisfied, terminate.
(δxτ , λ) := compute multiplier (xτ , kλ)
xτ+1 := xτ + δxτ

end

Remark: Each time compute multiplier is called in
executeplanning, the previous value of the Lagrange
multiplier multiplied by a constantk is passed as an
initial value. This is because in most case the value of
Lagrange multiplier changes continuously, meaning that
the value computed in the previous iteration serves as a
good initial guess for the next iteration. The constantk
is normally chosen from[0, 1]. However, settingk as 1
sometimes causes a long-period oscillatory behavior. A
good compromise between speed and stability should be
found by tuning.

(a) target in front (b) target behind

Fig. 1. Target reaching task

C. Constraints with priorities

Robotic planning is in general multi-objective. In multi-
objective planning, it is not always possible to accomplish
all objectives at the same time. One practical solution is
to introduce priorities; if not all objective are achievable,
those with lower priorities are neglected or only partially
achieved. We will show in this subsection that a slight
modification to the conventional projected Gauss-Seidel
method enables us to handle multiple constraint groups with
different priorities. Let us considerL different constraint
groups, in which groups with larger indices are assigned
higher priorities. The basic idea is that when we calculate
the Lagrange multiplier of thel-th constraint group, we take
into account the effect of the multipliers of lower priorities
(1st up to(l− 1)-th constraint groups), while ignoring those
of higher priority groups ((l + 1)-th up toL-th). The actual
modification needed to implement this prioritization is quite
simple; we split the whole Gauss-Seidel loop into multiple
loops according to the constraint groups, and execute these
loops in the ascending order with respect to the constraint
priority. The modified algorithm is shown below:

Algorithm executeplanning with priority
λl := 0 for l ∈ [1, L]
for τ = 0, 1, . . .

if convergence condition is satisfied, terminate.
x̂τ := xτ

for l = 1 to L
(δxτ

l , λl) := compute multiplier group(l, x̂τ , kλl)
x̂τ := x̂τ + δxτ

l

end
xτ+1 := x̂τ

end

The algorithm compute multiplier group is almost
the same ascompute multiplier except that compute
multiplier group only treats a constraint group with an

index specified by the inputl.

D. Constraint resolution for robotic planning

In this subsection, we will specialize the general constraint
resolution framework described in the previous subsections
for robotic planning problems. All variables listed in Table I
in Section II are directly used as planning variables. First,
we will formulate the kinematic and physical laws described
in Section II as constraints. The constraint variable and its

amount of change for the position update law (1) are written
as

yp
i,t = pi,t+1 − pi,t − h vi,t,

δyp
i,t = δpi,t+1 − δpi,t − h δvi,t.

(10)

For the orientation update law (2), we cannot simply define
the change of orientation in the same domain as orientation
itself, since orientation is defined in the domain of unit
quaternions. Instead, we express the change of orientationby
means of a vector inR3. Let Ωi,t ∈ R

3 be a rotation vector
expressing the change ofqi,t. The orientation after rotation
is given byq(Ωi,t)qi,t. Using this formulation, a constraint
expressing the orientation update law is derived as

yq
i,t = q(hωi,t) qi,t Ω(q−1

i,t q(hωi,t)
−1 qi,t+1),

δyq
i,t = Ωi,t+1 − q(hωi,t)Ωi,t − h δωi,t.

(11)

The proof is omitted. See Appendix for the definition of the
function Ω(·). For the velocity update law (3), we have

yv
i,t = mi vi,t+1 − mi vi,t − h fi,t,

δyv
i,t = mi δvi,t+1 − mi δvi,t − h δfi,t.

(12)

For the angular velocity update law (4), although the inertia
matrix Ii,t is a function of the orientationqi,t, it is difficult to
take this dependency into account. Here, we simply ignore
this dependency and regard (4) as a constraint on angular
velocities and moments:

yω
i,t = Ii,t+1 ωi,t+1 − Ii,t ωi,t − h τi,t,

δyω
i,t = Ii,t+1 δωi,t+1 − Ii,t δωi,t − h δτi,t.

(13)

For joint constraints (5), we have

yp
i,j,t = pi,t + pJ

i,j,t − pj,t − pJ
j,i,t,

δyp
i,j,t = δpi,t + Ωi,t × pJ

i,j,t − δpj,t − Ωj,t × pJ
j,i,t,

(14)

yq
i,j,t = (qJ

i,j,t)
−1 (qJ

j,i,t)Ω(qJ
j,i,t

−1
qJ
i,j,t) q(ez θi,j,t),

δyq
i,j,t = ez δθi,j,t + qJ

i,j,t

−1
Ωi,t − qJ

i,j,t

−1
Ωj,t.

(15)

These are derived based on a discussion similar to the case
of (11). Finally, for force and moment constraints, we obtain

yf
i,t = fi,t − f ext

i,t

−
∑

j : (i,j)∈Θ

qJ
i,j,t fi,j,t +

∑

j : (j,i)∈Θ

qJ
i,j,t fi,j,t,

δyf
i,t = δfi,t −

∑

j : (i,j)∈Θ

qJ
i,j,t δfi,j,t +

∑

j : (j,i)∈Θ

qJ
i,j,t δfi,j,t,

(16)

yτ
i,t = τi,t − τ ext

i,t −
∑

j : (i,j)∈Θ

(pJ
i,j,t × qJ

i,j,t fi,j,t + qJ
i,j,t τi,j,t)

+
∑

j : (j,i)∈Θ

(pJ
i,j,t × qJ

i,j,t fi,j,t + qJ
i,j,t τi,j,t),

δyτ
i,t = δτi,t −

∑

j : (i,j)∈Θ

(pJ
i,j,t × qJ

i,j,t δfi,j,t + qJ
i,j,t δτi,j,t)

+
∑

j : (j,i)∈Θ

(pJ
i,j,t × qJ

i,j,t δfi,j,t + qJ
i,j,t δτi,j,t).

(17)

1 2

3 4

Fig. 2. Moment generation alongx-axis

1 2

3 4

Fig. 3. Moment generation alongz-axis

Here, we again ignore the dependency of orientations on
these constraints. Using the above relations, we can construct
the function c(x) and its JacobianJ(x). Moreover, the
JacobianJ(x) is highly sparse; by an appropriate imple-
mentation, the computational complexity of a single iteration
in compute multiplier [group] becomes proportional to the
number of constraints. Furthermore, although not described
here, various limits (joint movable ranges, velocity limits,
torque limits) can be expressed as range constraints. More-
over, desired values of variables can be encapsulated as con-
straints as well. However, it is clear that if we treat desired
value constraints equally with other constraints, it will lead
to over-constrained situation and consequently no feasible
solution will be produced (for an example, specifying an
unreachable hand position may violate joint constraints).To
cope with this problem, we assign lower priorities to the
desired value constraints than those of other constraints.By
doing this, the planner will produce a solution that tries to
accomplish the desired values as much as possible, while
fulfilling the kinematic / physical constraints precisely.

(a) x-moment (b)z-moment

Fig. 4. Desired and generated moments

IV. EXPERIMENTS

A. Implementation of the method for humanoid upper body

We have implemented the proposed method to the upper
body control of the humanoid robot ASIMO. The upper body
of the robot is fixed to the global coordinate frame. Here,x-
axis points to the front,y-axis upward andz-axis to the right
with respect to the robot. Each hand is regarded as a single
rigid body. Moreover, the head movement is not considered.
Therefore, the whole upper body is modeled as a multi-body
system composed of11 rigid bodies and10 hinge joints. In
the following experiments, we set the step sizeh as 0.1[s]
and the prediction step lengthN as25. The planning method
is implemented in C++ programming language and executed
in a computing environment composed of 2.4GHz CPU and
2GB memory. The simulation environment is constructed
using Springhead physics simulation library [8].

B. Target reaching task

We first consider a simple target reaching task, in which
the robot moves its hand position towards a specified target
position. To specify this objective, we impose a desired-
position constraint on the right hand. Fig. 1(a)(b) show
simulation results with two different target positions, one in
front of the robot and one behind. Planned trajectories are
visualized with small dots depicting the centers of mass of
rigid bodies connected by solid lines. A relatively large dot
depicts the target position. The robot in each figure is in the
posture after executing the plan. Thanks to the prioritization
mechanism, even when a target is specified in an unreachable
position, the hand is moved to the nearest possible position
to the target while not violating the kinematic constraints.

C. Body moment generation task

Next, we consider a body moment generation task, in
which the robot should move its whole body to generate
a specified amount of counter moment on its body in a
specified direction. To implement this objective, we impose
a desired-moment constraint on the robot’s body during the
latter half (t ∈ [N/2, N)) of the prediction horizon. Let us
emphasize that this task is much more difficult than the target
reaching task, because the rigid body to which a desired-
moment constraint is imposed on (the body) and those whose
motions actually generate a desired moment are different.
This means that the effect of the desired-moment constraint
should be transmitted from the center to the tip of the

kinematic tree, in order to generate an appropriate motion.
Fig. 2 and Fig. 3 show the simulation results. We can observe
that each motion is basically composed of three distinct
phases; i) the robot moves its arms to a good starting posture
(preparation), ii) the robot accelerates the arms in a certain
direction (forward acceleration), and then iii) accelerates
them in the opposite direction (backward acceleration). Note
that the planner is not given any a priori knowledge about
how it should swing the arms in order to generate a desired
counter moment. Fig. 4 shows the comparison between the
desired moment and the actually generated moment. Desired
moments are drawn in dashed lines while genereted moments
are drawn in solid lines.

Next we show the results obtained using real humanoid
robot ASIMO (Fig. 5). In this case, the robot consecutively
plans and executes moment generation motions for three
different directions (x, z, and y axes). A key difference
between the previous example is that the whole motion is
required to be continuous; the robot should use the terminal
state of the previous motion as the initial state of the next
motion. To efficiently generate body-moments under this
condition, the planner effectively makes use of the former
half of the prediction horizon, on which no desired moment
constraint is imposed, to generate a preparation motion for
the next moment generation.

V. CONCLUSION

In the current implementation, the convergence speed of
the Gauss-Seidel iteration is not fast enough, making the
method unable to be executed in real-time. In the future,
further speed-up of the method, analytical study of computa-
tional complexity as well as comparison with other existing
planning methods are required. One of the interesting ex-
tensions would be to incorporate contact constraints, which
enables more complex and various motions such as walking,
object manipulation and so forth. We believe such complex
motions involving discontinuity and non-convexity can still
be treated in a decentralized framework. However, the current
gradient descent formalism is obviously not enough; we
will need to incorporate more sophisticated mechanism for
communication among planning agents in order to generate
globally optimal motions.

VI. ACKNOWLEDGMENTS

This research has been funded by Japan Society for the
Promotion of Science.

APPENDIX

Quaternion is a convenient mathematical tool for repre-
senting rotation in 3D space. A unit quaternionq is a vector
with four elements:q = [w vT]T = [w [x y z]]T, ‖q‖ =
1. A quaternion representing a rotation along a unit vectorη
with a rotation angleθ is given as

q(η, θ) =

[

cos(θ/2)
sin(θ/2)η

]

.

Further, we defineq(ω) = q(ω/‖ω‖, ‖ω‖). Conversely, the
function Ω(q) returns a vector that represents a rotation

(a) x-axis moment

(b) z-axis moment

(c) y-axis moment

Fig. 5. Motion replay on the real humanoid

equivalent to a given quaternionq; for q = q(η, θ), Ω(q) =
θη. A product of two quaternions is defined as

q1 · q2 =

[

s1s2 − vT
1 v2

s1v2 + s2v1 + v1 × v2

]

,

and it represents a rotation equivalent to the composition of
two rotations. The inverse of a quaternionq = [w vT]T is
given byq−1 = [w − vT]T. A rotation transformation of a
vectorv ∈ R

3 is defined as

qv := v̂,

[

∗
v̂

]

= q ·

[

∗
v

]

q−1

where∗ indicates the value does not matter.

REFERENCES

[1] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba and H. Inoue;
Dynamically-stable Motion Planning for Humanoid Robots, Au-
tonomous Robots, vol.12, no.1, pp.105-118, 2002.

[2] J. J. Kuffner and S.M. LaValle, RRT-connect: An efficientapproach
to single-query path planning, Proceedings of IEEE International
Conference on Robotics and Automation, 2000.

[3] K. Yamane, J. Kuffner and J.K. Hodgins; Synthesizing Animations of
Human Manipulation Tasks, ACM International Conference on Com-
puter Graphics and Interactive Techniques (Siggraph 2004), pp.532-
539, 2004.

[4] K. Harada, M. Morisawa, K. Miura, S. Nakaoka, K. Fujiwara,
K. Kaneko and S. Kajita; Kinodynamic Gait Planning for Full-Body
Humanoid Robots, IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France, Sept. 22-26, 2008.

[5] E. Yoshida, I. Belousov, C. Esteves and J.P. Laumond; Humanoid Mo-
tion Planning for Dynamic Tasks, IEEE-RAS International Conference
on Humanoid Robots, Tsukuba, Japan, 2005.

[6] L. Sentis and O. Khatib; A Whole-Body Control Framework for
Humanoids Operating in Human Environments, Proceedings of the
IEEE International Conference in Robotics and Automation, Orlando,
USA, May, 2006.

[7] R. W. Cottle, J. Pang, R. E. Stone; The Linear Complementarity
Problem, Academic Press, 1992.

[8] Springhead physics simulation engine,
http://springhead.info

