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Abstract: Optimal control and reachability analysis of continuous-state systems often require computa-
tional algorithms with high complexity. The use of finite abstractions of continuous-state systems reduces
such problems to path-planning problems on directed graphs with a finite number of nodes, which can be
computed efficiently. In this research, we discuss the design of finite abstractions of stabilizable discrete-
time linear systems based on approximately bisimulation. First, we focus our attention to a class of
finite-state system that are expressed bysthge-quantizationf the original system. Then, the original
problem reduces to the design of a quantization function, which is formulated as a kind of semidefinite
programming problem. Moreover, we show that a suboptimal solution to optimal control problems with
a known error bound is obtained by simulating the optimal path of an approximately bisimilar finite
abstraction.

1. INTRODUCTION nonlinear dynamical systems under so-called incremental sta-
bility assumption were addressed.

In most of the past researches, the application of bisimilar

Control problems and verification problems on complex Sygslbstractlon has _been limited to safety ver|f|qat|on problems.
tems require numerical methods, whose computational cor?Ur Problem of interest, on the other hand, is application to
plexity often grows rapidly as the state dimension and th@ptimal control problems. To date, this topic is not well ex-

number of time steps increase. Instead of computing the exdtpred. although some results are reported [8][9][10]. In this
solutions to such problems with the original complex modeP2apPer, we dlsc_uss the finite abstraction problem_ of ;tablllzab[e
one can think of creating a simpler model, that is much easigiScrete-time linear systems, as well as its application to opti-
to analyze and to control, while preserving the essential chdpal control problems. In general, it is quite difficult to obtain

acteristics of the original model. Such simplified models arE'e global optimal solution to optimal control problems with
called an abstraction of the original model. non-convex constraints and cost functions, even if the state-

dynamics is linear. In the past researches, this problem was
The notion of bisimulation is a powerful mathematical frametackled by the discretization of the state-space [11][12][13],
work for addressing systems abstraction. Bisimulation origbut the relation between the resolution of the discretization
nated in the field of labeled transition systems [1]. The majaind the performance of the approximate solution has not been
difference between labeled transition systems and dynamiggérified. The result of this paper provides an upper-bound of
systems in control theory is that while the former is purelthe performance of the approximate solution as a function of
discrete, the latter may consist of both continuous and dighe precision parameter of approximate bisimulation.
crete variables. In the latter case, the original definition of . . . .
bisimulation, which requires precise coincidence of observd € rest of this paper is organized as follows: In Section 2,
tions (measurement signals), are often too restrictive. In [2], t&e give a definition of approximate bisimulation for a class of
notion of bisimulation was extended to metric space and calléiscrete-time dynamical systems. In Section 3, at first we show
approximate bisimulation. Approximate bisimulation requiredhat @ discrete-time continuous state system is transformed into
the distance of measurement signals to be within a specifigdinite-state system by meansstéte-quantizatiomperation.
precision. Based on this notion, abstraction problems of varioJ$!€n. we derive a sufficient condition for a stabilizable discrete-
classes of dynamical systems were discussed [3][5]. time linear system and its state-quantized system to be ap-

proximately bisimilar with a desired precision. Based on this
Among various abstraction problems, the problem of deriving @ondition, we formulate the design of a quantization function
finite automaton that abstracts a given continuous-state systeghsidering the minimization of the number of discrete states
is called finite abstraction problem (or discrete/qualitative akas a kind of semidefinite programming problem. In Section 4,
straction). A finite-state system is suitable for abstraction singge show that a suboptimal solution to a class of finite-horizon
many control problems and verification problems can be solvegbtimal control problems is obtained by simulating the optimal
by numerical algorithms whose computational complexities atgajectory of approximately bisimilar abstraction of the original

in polynomial order. In [4], a procedure for constructing ammodel. Section 6 concludes this paper with some remarks for
approximately bisimilar finite abstraction of stable discretefuture works.

time linear systems was derived. In [6] and [7], a design of
approximately (bi-)similar finite abstraction of continuous-time



Notations: The symbolv;;wvs;...;vy] denotes the vertical
concatenation of vectors or that of matrices, which is equivalent L» . B

' Ia . .h
to [vf v} ... v§]T. Throughout the paper, the symbol || L J z

denotes th&-norm. Moreover, the symbdv|| », is defined as

vIMuv. Fig. 1. system with state quantizer
3. FINITE ABSTRACTIONS OF DISCRETE-TIME
2. APPROXIMATE SIMULATIONS AND LINEAR SYSTEMS
BISIMULATIONS OF DISCRETE-TIME DYNAMICAL

SYSTEMS 3.1 Problem setting

In this section, we introduce the definition of approximate (bim this section, we consider the problem of finding a finite
)simulation on a class of discrete-time dynamical systems.  3utomaton that is approximately bisimilar with a given discrete-
Definition 1. Discrete-time dynamical system time linear system. Discrete-time linear systems are denoted by
A discrete-time dynamical system is a 5-tuglé, U, Y, f, h), SL(X,U,Y, A, B,C), ()
where X C R™ is the set of stated/ C R™ is the set of

inputs,Y” C R! is the set of outputsf : X x U — X is the where the state transition and the measurement are expressed as

state transition function, and : X — Y is the measurement follows.

function. The state, input, and output of the system at time Ti11 = Az + Buy, ®)

t € T = {0} UN are expressed ag; € X, u; € U, and y; = Cxy.

y: € Y, respectively. The state transition and the measuremenh the other hand, finite automata are expressed as

at timet are expressed as A(SUY.U, V). ©)
Tyy1 = f(@e, ur), (1) The state seb = {1,2,...,[S|} is a finite set of symbols,

yr = h(x), and the state at time is denoted bys;. The symboll/ =
respectively. {Ui;} (@ €S, j e S)is acollection of subsets ifl, where,

for eachi € S, {U;;};cs forms a partition ofU. The symbol
Throughout this paper, we use the symbglX, U, Y, f,h) or Y = {y;} (¢ € S)is a finite set composed of points af
simply X to express a discrete-time system. The state transition and the measuremenf\adire defined as

Let us introduce the notion of approximate simulation angip”OWS'
approximate bisimulation on the class of systems just defined.
Definition 2. Approximate simulation

Let (X, U,Y, f,h) andS(X, U, Y, f, h) be discrete-time sys-
tems, and let,, ande, be positive constants. A binary relation
R C X x X is called an(e,, ¢,)-approximate simulation

St =1 A Uy € qu = St41 :j (7)
St=1 = Yr=1Y;
Clearly, the set(;; consists of control inputs that moves the

state fromi to j. Since{l;;};cs is a partition ofU, the state
transition is deterministic.

relation if and only if for everyz, z) € R, Roughly speaking, our purpose is to design, for a given plant
. model X1, and a set of precision parametets ande,, an
[h(z) — h(@)]| < €y, ) approximately bisimilar finite automatah. Note that in order
and for anyu € U, there existsi € U such that for the finite abstraction to be applicable to optimal control
. A problems (and verification problems), an extra condition should
[u—af < e, (f(z,u), f(2,4) € R. (3)  be imposed to the approximate bisimulation relatigrthat is,
Moreover, if such anR exists, 3 is said to be(e,,e,)- for any possible initial statey of ¥y, there should exist its
approximately similar t& with respect taR. ' approximately bisimilar paig, in the states ofA. Under the

Definition 3. Approximate bisimulation assumption that the initial stat®, is chosen arbitrarily orX,

PO PO ) . this condition is written as
LetX(X,U,Y, f,h) andX(X,U,Y, f, h) be discrete-time sys- x
tems, and let,, ande, be positive constants. A binary relation ™ (R) =X (8)
R C X x X is called an(e,, ¢,)-approximate bisimulation Wherer*(.) denotes natural projection of a subsetofx S
relation betweersX and 3 if and only if R is an (e,,¢,)- °MOX-

approximate simulation relation frofto 3. and its inverse re- Based on the above considerations, the problem of concern is
lation R~ = {(&,z) | (z,2) € R} is an(e,, ¢,)-approximate stated as follows.

simulation relation fronk: to ¥. Moreover, if such arR exists, Problem 1. Finite abstraction of a discrete-time linear system
¥ andX are said to bde,, ¢, )-approximately bisimilar with For a given discrete-time linear system (4) and a pair of positive
respect taR. constants,,, ¢,, find a finite automatori6) and a binary rela-
S o tion R C X x S that is an(e,, €,)-approximate bisimulation
The major difference between the above definitions and thoggtweers;, andA satisfying the condition (8).
introduced in the literature is that our definitions require not
only measurements but also control inputs of both systems Esom now on, we assunié = R™. Now, let us mention that it
be close enough to each other. This extra condition is neededsajuite unrealistic to regard all the parameter&\ofS, ¢/, and
apply bisimilar abstractions to optimal control problems with)) as independent design parameters, meaning that we should
input-dependent criteria, such as input constraints and inpugstrict our attention to smaller class of finite automata. For this
energy minimization. purpose, we focus on the following facstate-quantization of



i1 = Az + Buy, (12)
(i:t+1 = Ait + B('u,t + 'Ut) + dt. (13)
) Here, the variabld, is a quantization error signal given by
1y l [ i d?:Q(Aﬁj't“‘B(ut‘F'vt))_(A-it‘FB(ut""%’t))- (14) '
o Taking the difference of the above state equations, we obtain
the following error system;

Q(X1) "l Q(XL)
() Q(Xr) simulatingXy, (b) X1, simulating@(X1,)

€it1 = Aet + B’Ut + dt (15)
Whereet = it — I¢.
Fig. 2. Two systems simulating one another Now, let us define an invariant set of the error system (15) as a

. . - setFE C R” satisfying the following conditions.
a continuous-state system results in a finite state systetrus

consider a quantization function defined by Ve c B, [|Ce|| < ey A (16)
0:X >x Fvst(||v]] <e, A (Vd €D, Ae+ Bv+d € E))
Qz) ==, if €S, ©)  Here, the seD is defined aD = (J . x(Q(z) — ). In the
: . i case of Fig. 2(b), following the same line as above results in the
whereX = {x;,s,...,zN} is a finite set of points o' g oy system
andS = {51,8....,8n} is a partition of X. Using @, we
introduce the following new state equation. _ G = fflet - B + dy. . _ (.17)
i1 = Q(Ax; + Buy) (10) It is easy to verify that an invariant set of (15) is an invariant set

of (17) and vice versa. Here, the following lemma holds.

Notice that, in this state equation, the state transition is cIosEgmma 1.ConsiderE c R” andR X x X related by

on X as long as the initial state is chosen framThis leads us

to define a finite automaton induced by state quantization of a (-—z)e L & (z, &) € R (18)
continuous-state system: If the setF is an invariant set (16) of the error system (15), then
AX,U YU, Y), the relationR is an(e,, €, )-approximate bisimulation relation
Z/{ij = {’U, ceU | Q(A.’Bl + B’LL) = .’I)j}, (11) betweerEL andQ(EL)'
yi = Cz;. Now, let us assume that the control input difference is given in
We denote byQ(X1) the finite automaton obtained by statethe following explicit form.
quantization of¥;, with Q. Note that, by state quantization, F(d; — ;
: ! 4 : ) o +—x) (whenQ(Xy) simulatesty,)
= X 19
the control input is also discretized (in the sense of partitioning v {F(wt _ &) (wheny, simulates)(Sy.)) (19)

of the control input space) without introducing explicit control

input quantization. This characteristics differs from existingfere, F' is a matrix making A + BF') =: Ap asymptotically

researches (like [4][6]), where explicit input quantization ostable. Then the error system becomes an asymptotically stable

originally discrete input systems are considered. In the rest afitonomous system with disturbances, which is written as

this paper, we deal with the design problem of the quantizatien,; = Are; + d;. Moreover, there exists a positive definite

function @, whose resultant state-quantized sys@fX) is matrix M satisfying the following conditions.

approximately bisimilar withy,. 1 1
. . . . M> —5C"C, M > — 5 F'F,

Let us mention that the term “quantised system” is used in [14], (1—=X)2e2 (1—X)2€2 (20)

and a similar expression to (10) is used in [15]. The essential ATMAp < X*M

difference is that, in their definitions, quantization operation is -

a map from the state space to a finite set of symbols, Whereaﬁﬁ

our definition it is a projection of the state space onto its finité€"erred to [4] for the proof to a similar statement. Based on
subset. the above arguments, the next theorem provides a sufficient

condition to approximate bisimulation betweep andQ(Xy,).

Theorem 1.
Let ¥ (X,U,Y, A, B,C) be an(A, B)-stabilizable discrete-
time linear system. Further, choo$¢ M and X that satisfy

Roughly speaking, if two systems are approximately bisimilajo) Then, for a quantization functiad satisfying the condi-
one system can be driven in such a way that its state tra

the state of the other system under a certain error bound on

control inputs and measurements. This is illustrated in Fig. 2. |z — Q@)[[a <1 Vx € X, (21)
Fig. 2(a) shows)(Xy,) tracking Xy, and Fig. 2(b) shows the the system&;, andQ(Xy,) are (e, €,)-approximately bisimi-
opposite casey;, trackingQ(Xy,). Let us take a closer look lar with respect to the relation

into Fig. 2(a). Here, an arbitrary control input is applied to R={(z.#) e X x X|||lz—&|[w <1/1-N} (22)
the systen;, at each timet. On the other hand, the control ' -
input applied toQ(Xy,) is given byw; + v;. The variablev,

is the difference between the control inputs applied to bo
systems, and it plays a crucial role fQ(X1,) to simulateXy,.
Let us denote the state of;, by ; and that ofQ(3yL) by lecr1llnm = [|Ares + dil|m
:éc)t(brrgssgeegtg{se]l)g”;'x:n, the state transition of each system is < \/etTAEMAFet Il [ar < Mleallar + [l

re, A is a constant satisfying < A < 1, The reader is

3.2 Condition for Approximate Bisimulation

and R satisfies the condition (8).

tBroof) The following holds for the error system:



Taking Schur complements, we obtain
NN (AN + BG)T
(AN + BG) N
N (CN)T o [V GT
CN (1-XN’eI| =7 |G (1- NI
which are LMI conditions ofNV andG. Therefore, for a fixed

A, the optimization of F and M reduces to the following
determinant-maximization problem under LMI constraints.

maximize det(N) sub.to (26).

}ZO’ } ) (26)
>0,

Fig. 3. Implementation of quantizer This problem can be solved by a numerical solver SDPT3 [16].
So far, the problem is dependent on the scalar parameter

Define the sef as shown below. which also must be optimized. In order to obtain the optimal
E={ecR"|lelm <1/(1-\)} (23) value of A\, we perform one-dimensional search in the inter-

o val (0,1), iteratively solving the corresponding determinant-
Then, from (20), for every element € E the conditions maximization problem, and find the value whose associated
[[Cel| < e, and|[Fe|| < e, hold, and since|d;|[;s < 1, E get(M) is the smallest.
is an invariant set (16) of the error system. Therefor_e it follows
from Lemma 1 thak;, andQ(Xr,) are(e,, ¢,)-approximately 4 APPLICATION TO OPTIMAL CONTROL PROBLEM
bisimilar with respect to the relatioR given by (22). Finally,
the relationfz satisfies (8) sincéz, Q(z)) € Rforanyz. O |, this section, we show how to construct a suboptimal solution

to a class of optimal control problem, taking advantage of an

3.3 Design of Quantization Function approximately bisimilar abstraction of the original plant model.

Theorem 1 in the previous subsection gives a sufficient cofl-1 Construction of suboptimal control

dition to approximate bisimulation, and in general, arbitrarily

many (Q may satisfy this condition. In practice, in additionT0 begin with, let us define a finite horizon optimal control
to approximate bisimulation, there is a requirement that tH¥oblem on the discrete-time systein

resultant finite automaton should consist of as small number Bfoblem 2. Finite horizon optimal control problem

states as possible. This is due to the fact that the computatioSaippose that for the systeRX X, U, Y, f, h), the initial state
complexities of many numerical algorithms on finite automata, < X and the horizon lengthV are given. Then, find

heavily depends on the number of states. This section discusg®s control input sequence = {ug,u1,...,uy_1} that
a design of the quantization functiadd making the number minimizes the cost function
of finite states as small as possible. To begin with, we derive N-1
the explicit expression af) satisfying the condition (21). The J(u) = Z or(ue, yr) + on(yn) 27)
simplest way of doing this is givin@ by =0

Qz) = Uflmx], U= (Vn/2)U (24) while satisfying the constraints
where the matriDU is given by the decomposition @/, M = u €Cy (1€4{0,1,..., N —1}) (28)
UTU. The operator-] maps each element of a vector to its y€Cy (t€{0,1,...,N})
nearest integer. Here, one can see that the number of the ste§ggre{y,, y:,...,yx} is given by (1).

of the finite automatorf)(Xy,) is approximately proportional .
to the volume of the se/ X = {Uz|x € X}. Moreover, We denote this problem bP (X, zo,Cy,Cy, J). Further, we
since the state seX is given, it is proportional tq], o (0) assume thaf (u) is smooth. For later use, we define

(0:(U) is the ith singular value of0’) and equivalently, to v . ax agf)t(u’y)’ (t=0,1,...,N —1),
(v/n/2)"/2) /det(M). Therefore, by finding the positive defi- uel,yeY || du
nite matrix/ that minimizeslet(M) subject to the conditions y

. 0
(20), one can design a suboptimal finite abstraction (subopti- “* *~ , 0 ey @@(“’y) (t=0,1,....N),
mality is due to the fact that (20) is a sufficient condition). This_ N-1 14 N oy
problem is transformed into a tractable class of mathematickl’ = 2-¢=o Lt andL¥ =3, L;.

programming problem by a procedure described below. Firghur objective is to construct a suboptimal solution to the
we show that the conditions (20) can be transformed into linegfoblem

:jneafitgg inequality (LMI) conditions as long asis fixed. First, P = P(S, 20,Cu,Cy, J). (29)
N=M", G=FM- (25) Th|s can be o.lone by the fo!lowmg prlolce.dure: |

and by multiplying each equation of (20) with' from both FirSt, we design an approximately bisimilar abstraction

sides, we obtain Y(X,U,Y, f,h) of the original plant modeL, together with

9 T its associated relatioR. As mentioned before, the relatid®
AN — (AN + BG)"M(AN + BG) = O, must satisfy (8). Next, we define a new optimal control problem

N — (CN)Y(CN)/((1 = N)?e) > O, ony, defined as
N -G G/((1=)\)?%) > 0. Py = P(S, &g, int(Cu, €), it (Cy, €,), J).  (30)



Here, &, is an element ofX that satisfies(xg, 9) € R.
The condition (8) onR guarantees the existence of suth
Moreover, the symbdht(C, ¢) denotes a set operation defined

by

int(C,e€) :=={v € C|B(v,e) CC},
which returns a subset @f obtained by shrinking® by the
amounte. Here, B(v,¢) is a closed ball with the radius
centered av. We denote by} the optimal solution tdP;. It
goes without saying thg?; should be easier to solve than the

original problentp.

As a final step, we generate a control input sequence thiat
simulatesu; starting froma. Let us denote this b;. In the
case of¥, andQ(X,) described in Section 3, the simulating
input is given byu,; = 4, + F(x; — &), whereu, is an element
of w} corresponding to the control input at timeandz; is the

state ofS: driven bya? from .

The next theorem provides a condition f@f to be a feasible
solution toP and an upper bound of the cogfa}). As a |
preparation, we need to define yet one more optimal control ‘

problem on>:

Py =P (X, o, int(Cy, 2¢,), int(Cy, 2¢,), J).

We denote byi’ the optimal solution t&s.
Theorem 2.

Suppose the two system¥ X, U, Y, f, h) and>(X, U, Y, f, h)
are(e,, €,)-approximately bisimilar with respect 8 C X x

y
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Fig. 4. Finite abstraction of sample system.

X, and R satisfies (8). Moreover, consider the three optimal

control problemsP, P, andP, defined by (29), (30), and (32),
respectively. Then the following statements hold:

i) If P, is feasible, therP; is feasible.
i) If P, is feasible, therP is feasible.

iii) The cost of simulating trajectory:} is upper-bounded by

the following inequality;

J(ay) < J(us) +2(L%, + LY,).

Proof) The statement i) and ii) are straightforward from th?o this problem byu

definition of approximate bisimulation.

To prove the statement iii), defing; as a trajectory simulating
us on X from &,. From approximate bisimilarityp] is a
feasible solution tgP and w} is a feasible solution tdP;.

Moreover,
J(uy) — J(ui) < L%, + LY,,
J(a3) = J(a3) < L', + LVe,

hold. On the other hand, the optimality @f implies

J(uy) < J(u3).
Therefore (33) holds.

4.2 Computation of optimal control on finite abstraction

Problem 3. 1-step Optimal Control Problem
For giveni,j € [1: |X|] andt € [0 : N],
minimize ¢; (h(x;, w)) subject tou € U;;, u € C,,.

The solution to this problem, if exists, moves the state from
x; to x; at timet¢ in one step, with the minimal cost while
respecting the constraints. Let us denote the optimal solution
i/ and its corresponding cost hy;’.

The number of all possible combinations (@f j, ), which is
N|X|?, is finite although it could be considerably large. If
the state transition relation is sparse, which is often the case,
the actual number of combinations could be much smaller.
Therefore, we shall compute Problem 3 for every combination
of (i,4,t) and store the result (feasibility, and if feasibig?’

and ij) into a database. Using these expressions, the original
problem can be regarded as the problem of finding a state
sequence = {sg, s1, ..., sy which satisfies the constraint

ys, €Cy (t=0,1,...,N) (34)

and minimizes the cost function

N-1

We briefly show that for finite automata, the solution to optimal T(E) =Y T+ N (Ys)- (35)
control problems can be efficiently computed. Let us consider t=0

a finite automator)(X) induced by the state quantization of
a discrete-time syste. We use the notation for quantization

function given in (9).

Our goal here is to solve the optimal control problem

P<Q(E)’ To € X,Cu,Cy, ']>

This problem is a path-planning problem over a directed graph
with a finite number of nodes, and therefore it is solvable by
various efficient searching algorithms.

It should be noted that not every kind of control problem
is transformed into a tractable planning problem. One such

Recall that although the state @f(X) is discrete, the input is example is a problem with “liveness” constraints, in which the
still continuous. First, consider a “small” optimization problemsystem is required to visit every state infinitely often. Also,

as defined below.

extra treatments might be needed for infinite-horizon cases.
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Fig. 5. Optimal trajectory orQ(Xy,) (solid), and simulated
trajectory on>r, (dash).

5. NUMERICAL EXAMPLES

6. CONCLUSION

This paper discussed the finite abstraction of stabilizable
discrete-time linear systems, using the framework of approxi-

mate bisimulation. The proposed method results in a uniform
distribution of discrete states over the state set. This means
that the number of discrete states grows exponentially as the
state dimension increases, and this fact limits the application
of the method to low dimensional systems. In the future, we

should investigate some kind of non-uniform discretization to

cope with this problem.

(1]
[2

(3]

[4]

(5]

(6]

This section shows simple examples. Consider a 2-state 1-input

discrete-time linear systebi;, with the following parameters:
X=-1,1x[-1,1,U=[-1,1,Y =X

0.88 —0.17 0 10
A= {0.17 0.88}’32 M*C: {0 1}

(71

(8]

For this system, we designed an approximately bisimilar finite

abstraction of)(%r,) with €, = 0.3, ¢, = 0.3 using the method

described in the previous section. Fig.4 shows the resultqg]t

finite automator)(Xr,). In Fig. 4, Small circles represent the

measurement valueg; &) corresponding to each of the states
of Q(XL), and lines connecting circles depicts possible state

transitions.

[10]

The next example demonstrates an application to a finite-
horizon optimal control problem with non-convex constraints
(Fig. 5). The output-constraint set is given by a non-convex sptl]

Cy, = Y\D where
D = [—0.4,0.4] x [0.3,0.5] U [—0.4,0.0] x [-0.5,—0.2]

denotes the unsafe (entering-prohibited) region (drawn as gréy!

areas in the figure). The input constraint is given by

C. = [-0.1, 0.1].
The cost function is simply set as
N—-1
T(uyy) =D [uf + llyel 3] + |y |13
t=0

[13]

[14]

where N = 25. In this experiment, the finite abstraction is[15]

computed with the precisions, = 0.1 ande, = 0.1. Three
different initial states{—0.8; —0.5], [0.8;0.8], and[0.8; —0.8]

are specified. The simulation result is shown in Fig.5. In the

figure, solid lines represent the optimal paths computed on t

] K.C. Toh, M.J. Todd and R.H. Tutuncu:

finite automaton, and dashed lines represent the trajectories
obtained by simulating the optimal paths (solid lines) on the

original system.
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