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Abstract— This paper proposes a method that realizes dy-
namic dancing motion of humanoid robots based on hybrid
model predictive control. The proposed control method runs
two types of model predictive controllers with different fidelity
and time scale in parallel; one performs long-horizon prediction
by making use of a closed-form solution of the centroidal
dynamics, and the other performs short-horizon prediction
based on the whole-body dynamics. A reference key-pose
sequence of more than 100 key frames including stepping and
fast upper-body movement was edited using Choreonoid and
input to the controller. In closed-loop simulation of a torque-
controlled 32-DoF humanoid robot, the controller was able
to track the reference sequence by attenuating large angular
momentum.

I. INTRODUCTION

Humanoid robots are built to imitate the appearance and
physical ability of human being. This characteristic is not
only useful for replacing human labor but also for replicating
the artistic skills of human experts with robots. Dance is
an example of such artistic skills that involve dynamic and
large movement of the entire body. Recent advances in the
performance of robotic hardware paved a way for realizing
acrobatic dances with humanoid robots. On the other hand,
establishing a design methodology of controllers that can
realize stable dancing motion on a humanoid robot, even
in simulation, is still a challenging and interesting topic to
explore.

Various existing studies focused on motion retargeting,
which is to convert reference motion provided by motion
capture or by manual choreography to kinematically and
dynamically feasible motion that can be executed by a robot.
In previous studies, various retargeting techniques have been
proposed. These include: balance compensation ([1, 2, 3,
4]), consideration of scale difference and self-collision ([5,
6]), and retargeting of human motion to a non-humanoid
robot ([7]). Existing balance compensation techniques used
for retargeting, however, are based on a simple strategy that is
to satisfy the ZMP stability criterion by shifting the center-
of-mass (CoM) horizontally. This technique has a number
of limitations. First, certain margin from kinematic singu-
larity must be ensured to make room for horizontal CoM
adjustment (e.g., the knee joints must be bent all the time).
Second, the method becomes infeasible when the downward
CoM acceleration exceeds 1G. Third, modification of angular
momentum is not considered.

More recently, whole-body model predictive control
(MPC) enabled realization of wider variety of motion includ-
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Fig. 1. Screenshots from dancing simulation

ing singular postures, vertical CoM movement, and angular
momentum variation. However, application of MPC has been
mostly limited to loco-manipulation tasks, and its potential
in realizing acrobatic dance has been explored little.

This paper proposes a motion retargeting and tracking
technique for dancing motion including stepping and large
angular momentum variation. The proposed method consists
of two types of model predictive controllers executed in
parallel. Centroidal (CD-)MPC makes long look-ahead pre-
diction by making use of a closed-form solution of the cen-
troidal dynamics, and generates desired motion that reduces
angular momentum variation by modifying the base link
angular velocity. Whole-body (WB-)MPC performs shorter-
horizon prediction that tracks the output of CD-MPC. The
developed technique is applied to a manually edited key pose
sequence based on a dance performance of a CG animation
character. In physics-based simulation, a closed-loop system
consisting of the proposed controller and a 32-DoF torque-
controlled humanoid robot model was constructed, and dance
motion was successfully realized as shown in screenshot
images (Fig. 1).

The rest of this paper is organized as follows. In Section
II, software interface for dance motion editing and a robot
model used in this study are described. In Section III,
the centroidal dynamics of rigid-body systems is reviewed
from the viewpoint of angular momentum compensation. In
Section IV, a control system architecture of parallel MPC is
presented and its detail is described. In Section V, simulation
results are shown. Concluding remarks are given in Section
VI.

II. DANCE MOTION EDITING

Fig. 2 shows a screenshot of the GUI of Choreonoid [8]
for dance motion editing. The GUI of Choreonoid is highly
customizable. The one shown here is an example layout



Fig. 2. GUI of Choreonoid

(a) Part 1. Total duration: 11s, number of key frames: 26.

(b) Part 2. Total duration: 24s, number of key frames: 81.

Fig. 3. Edited key-pose sequence

specialized for choreography, and consists of three main
views: the scene view (upper left), the media view (upper
right), and the pose-roll view (bottom). An original material
of dance motion (e.g., CG animation, a video clip of human
dance) is displayed in the media view, and the user edits key
poses of the humanoid robot in the scene view. The pose-roll
view enables insertion and deletion of key frames as well as
adjustment of timing of existing key frames.

In this study, we used a video clip of the dance perfor-
mance of a virtual character Hatsune Miku 1. The original

1Hatsune Miku Magical Mirai 2017, https://www.youtube.com/
watch?v=RU-OAZas1Ps

dance performance is more than 4 minutes long. Two parts
(labeled Part 1 and Part 2) from the first 1 minute of the
performance was used to create choreography of the robot
as shown in Figs. 3(a)(b).

Some poses were difficult to reproduce precisely because
of kinematic limitations. For example, large arm swinging
around the sagittal axis was difficult because of shoulder
singularity. Tilting of the hip around the sagittal axis was
impossible because the robot model did not have the roll axis
in the torso. Standing on tiptoe was also difficult because the
robot model did not have toe joints. The original motion also
included complex stepping such as turning of the support foot
and jumping. In [9], classification of foot touch states that
appear in dance was conducted, and dance motion including
sliding of non-support foot was realized with a real humanoid
robot. In this study, however, based on the consideration that
our main focus is compensation of large angular momentum,
these kinds of stepping were replaced by simple stepping in
which each foot makes surface contact with the floor without
sliding. We consider that reproducing complex stepping is a
subject of future study.

The edited choreography data was exported in the YAML
format to be loaded by the control program. Each key frame
consists of the following information:

• Time stamp
• Base link pose
• Joint angles of upper-body and arm joints
• Left and right foot pose
• Contact state of left and right foot (flat contact or float)

III. REVIEW OF CENTROIDAL DYNAMICS FROM THE
VIEWPOINT OF MOTION RETARGETING

A. Centroidal Dynamics and Contact Stability

The centroidal dynamics equation [10] is expressed as
follows.

p̈ =
1

m

∑
l∈1:n

fl

L̇ =
∑
l

[ηi + (pl − p)× fl]
(1)

Here, m is the total mass, p is the center-of-mass (CoM), and
L is the total angular momentum with respect to the CoM.
Moreover, fl and ηl are the linear and rotational component
of the contact wrench applied to the l-th contact. In this
study, we consider contact between either foot and the flat
and level ground only, and we assume that each foot makes
surface contact with the entire area of its sole.

The relationship between the total angular momentum and
the whole-body configuration of the robot is expressed as
follows.

L = I(θ)ω + qL̂(θ, θ̇). (2)

Here, q is a unit quaternion expressing the rotation of the
base link and ω is the angular velocity of the base link.
Moreover I is the composite rigid-body inertia with respect
to the CoM, which is dependent on the joint angle vector

https://www.youtube.com/watch?v=RU-OAZas1Ps
https://www.youtube.com/watch?v=RU-OAZas1Ps


Choreonoid
AIST Simulator

Controller

Choreography key-frame data

(YAML format)
Robot model

(YAML format)
Joint torqueFull state

Desired joint acceleration

Reference centroidal state

Reference footsteps and timing

Reference upper-body joint angle

Desired centroidal state

Desired contact wrench

Footsteps and timing

Whole-body MPC Computation Threads

Inverse Dynamics

Centroidal MPC Computation Thread

Reference key-frame sequence

Fig. 4. Control system architecture

θ. Furthermore, L̂ is the local angular momentum of the
system; namely, it expresses the total angular momentum
expressed of the movement of the links expressed in the local
coordinate frame of the base link. To distinguish between L
and L̂, in this study we call L the global angular momentum.
Equation (2) is essentially the same as Eqs.(7)-(9) of [11]
and Eq.(13) of [10], but it expresses the decomposition of L
more explicitly.

Most existing balance compensation techniques for motion
retargeting are based on the linear inverted pendulum mode
(LIPM), and they focused on modifying the CoM trajectory
so that the resulting ZMP trajectory will stay inside the
support region. In [6], a governing equation that includes
not only the CoM but also the angular momentum was
used. However, the angular momentum was not subject to
modification. From (2) one can observe that the global angu-
lar momentum consists of the contribution of the base link
angular velocity and that of the local angular momentum.
We consider that the essence of dance motion is mostly
embedded in whole-body movement relative to the base link
and therefore modifying the angular velocity of the base link
itself has little impact on the appearance of dance. On the
other hand, reducing the magnitude of the global angular
momentum and its time derivative is beneficial from the
view point of balance control because movement with small
angular momentum variation is generally easier to track.
Based on this reasoning, we propose a model predictive
controller that preserves the local angular momentum of
the reference motion while reducing the global angular
momentum by modifying the base link angular velocity.

IV. CONTROL SYSTEM DESIGN

A. Overview

The overall control system architecture is shown in Fig. 4.
The reference key pose sequence edited offline is loaded

and stored in the controller’s memory. A reference whole-
body state of an arbitrary time instant is obtained by lin-
ear interpolation of key poses. Reference centroidal states
(i.e., CoM position, velocity, and angular momentum) are
calculated from the reference whole-body state. Reference
footsteps and timing are directly obtained from key poses.
The CD-MPC thread outputs optimized centroidal states
together with modified footsteps and timing, and this is
reflected to the cost function of WB-MPC. The desired joint
angle and velocity of the upper-body and arms are directly
provided from the interpolated key-pose sequence to WB-
MPC without being filtered through CD-MPC. Desired joint
torque is computed by means of inverse dynamics based on
desired joint acceleration and contact wrench output by WB-
MPC. Full state of the robot is retrieved from the simulator
and input to WB-MPC to form a feedback control loop. On
the other hand, the current state of the robot is not fed back
to CD-MPC. In this sense, CD-MPC works as a feedforward
dynamics filter.

B. Centroidal MPC

CD-MPC realizes long-horizon prediction by utilizing a
closed-form solution of the centroidal dynamics (see [12] for
detail). To begin with, the stiffness-based parametrization of
contact force is defined as follows.

fl = mλ2
l (p− (pl + rl)) (3)

Here, λl ≥ 0 is the stiffness and it expresses the strength
of the contact force. Moreover, rl shifts the direction of the
contact force; the contact force points from pl towards p−rl.
By substituting (3) into (1) and applying the zero-order hold
to λl, rl, and ηl, the centroidal dynamics can be analytically
integrated over a time interval between each consecutive
key frames. In this manner, a discrete-time prediction model
for p, v, and L can be obtained. A prediction model of
q, the base link rotation, is obtained by subdividing each
time interval into smaller subintervals and applying Euler’s
method to the base link angular velocity given by ω =
I−1(L − qL̂). Here, the composite inertia I and the local
angular momentum L̂ are calculated from interpolated key-
pose sequence and provided to CD-MPC as references.

The state, control input, and output (used to define the
cost function) of CD-MPC are defined as follows.

xcd
k =



pk

vk

qk
Lk

tk
{pl,k}
{ql,k}


, ucd

k =


τk

{vl,k}
{ωl,k}
{λl,k}
{rl,k}
{η̂l,k}

 , ycd
k = xcd

k (4)

Note that each time step corresponds to a single time interval
between consecutive key frames. The variables pl,k, ql,k,
vl,k, and ωl,k denote the position, orientation, velocity, and
angular velocity of the l-th foot, respectively. The variable
tk denotes the time instant of the beginning of the k-th key
frame, while τk denotes its duration. CD-MPC formulated



above is capable of footstep and timing adaptation because it
includes the footstep poses and timing as decision variables.
However, the effectiveness of this feature in dance motion
retargeting is not investigated in depth in the present study.

The cost function of CD-MPC is defined as follows:

Jcd = Lcd
Ncd +

Ncd−1∑
k=0

Lcd
k ,

Lcd
k =

1

2
∥W cd,y(ycd

k − ycd,ref
k )∥2

+
1

2
∥W cd,u(ucd

k − ucd,ref
k )∥2

(5)

where N cd is the number of prediction steps (counted by
number of key frames), ycd,ref

k and ucd,ref
k are desired values,

and W cd,x and W cd,u are diagonal weight matrices. The
desired value of the angular momentum is set as zero based
on the discussion given in Section III. Desired timing (tk
and τk) are determined from the time stamps of key poses.
The desired value of λl,k is dependent on the contact state
of the l-th contact during the k-th frame. If it is in contact,
the desired stiffness is set as a value needed for statically
supporting the weight of the robot, and otherwise it is set
as zero. The desired value of rl,k and ηl,k are both set as
zero. For other variables, desired values are calculated from
interpolated key poses. The setting of weights is summarized
in Table I(b).

C. Whole-body MPC

Whole-body MPC is based on the centroidal dynamics +
full kinematics formulation. By differentiating (2), we obtain

L̇ = Iω̇ + İω + q
˙̂
L+ ω × (qL̂).

Rearranging this gives

ω̇ = I−1
(
− (İω + ω × (qL̂) + q

˙̂
L)

+
∑
l∈1:n

(ηl + (pl − p)× fl)
) (6)

In this manner, angular velocity of the base link can be
explicitly included in the state variable.

The state, control input, and output of WB-MPC are
defined as follows.

xwb
κ =


pκ

vκ

qκ
ωκ

θκ
θ̇κ

 , uwb
κ =

 θ̈κ
{fl,κ}
{ηl,κ}

 , ywb
k =


xwb
κ

{pl,κ}
{ql,κ}
{vl,κ}
{ωl,κ}

 (7)

The time index of WB-MPC is denoted by κ to avoid
confusion with CD-MPC. A discrete-time prediction model
for WB-MPC is derived by applying the Euler method with a
fixed time step ∆t. The cost function of WB-MPC is defined

Reference key-pose sequence
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as follows:

Jwb = Lwb
Nwb +

Nwb−1∑
κ=0

Lwb
κ ,

Lwb
κ =

1

2
∥Wwb,y(ywb

κ − ywb,ref
κ )∥2

+
1

2
∥Wwb,u(uwb

κ − uwb,ref
κ )∥2

(8)

where Nwb is the number of prediction steps, ywb,ref
k and

uwb,ref
k are desired values, and Wwb,y and Wwb,u are diag-

onal weight matrices. The desired values of the centroidal
states (pκ, vκ, qκ, and ωκ) are obtained by substituting
the output of CD-MPC into the closed-form solution of
the centroidal dynamics. The desired values of the foot
states ({pl,κ}, {ql,κ}, {vl,κ}, and {ωl,κ}) are obtained by
interpolating the footsteps included in the output of CD-
MPC using cycloid curves. Desired contact wrenches are
calculated by substituting the output of CD-MPC to (3).
Desired joint angle and velocity are directly taken from
interpolated key poses, and desired joint acceleration is set
as zero. The setting of weights is summarized in Table I(c).

D. Parallel Execution of MPC Threads

Integrating multiple predictive controllers based on models
with different fidelity and time scale is a major technical
challenge. In [13], switching of full and simple models
within the prediction horizon was considered, but in this
case the two models shared the same time scale. In this
study, we take a strategy in which multiple MPC threads are



TABLE I
PARAMETER SETTING

CD-MPC WB-MPC
prediction steps 15 10
time step 1 key frame 20ms
update period 1 key frame 4ms
number of iterations 20 2
number of threads 1 5
state dimension 25 76
input dimension 25 50

(a) MPC parameters

CoM position 10
CoM velocity 10
Base rotation 10
Angular momentum 10
Time 1
Foot position 10
Foot rotation 1
Duration 1
Foot velocity 1
Foot angular velocity 1
Foot stiffness 1
Foot CMP offset 100
Foot moment 100

CoM position 5
CoM velocity 5
Base rotation 5
Base angular velocity 5
Angular momentum 5
Foot position 5
Foot rotation 5
Foot velocity 5
Foot angular velocity 5
Foot force 200
Foot moment 200
Leg joint angle 0
Leg joint velocity 0
Other joint angle 10
Other joint velocity 10
Joint acceleration 100

(b) CD-MPC weights (c) WB-MPC weights

executed in parallel with loose synchronization, as illustrated
in Fig. 5. Optimization of the CD-MPC thread is triggered at
every key frame switching, while optimization of each WB-
MPC thread is triggered at a fixed time preriod. The most
recent optimization result of CD-MPC is reflected to the cost
function of WB-MPC.

Another point of consideration is computation delay. Each
optimization cycle of WB-MPC takes more than 10ms, which
is much longer than a typical control period of a humanoid
robot. To improve the update rate, we propose a simple
technique which runs multiple computation threads with
shifted timing, as illustrated in Fig. 6. As illustrated in the
figure, np threads are run in shifted timing. Consider that
the optimization computation of the i-th thread is triggered
at time t. This optimization will be completed by t+∆tdelay.
The (i+1)-th thread will be triggered at t+∆tupdate, where
∆tupdate = ∆tdelay/np. In this manner, the update period is
shortened to ∆tupdate while the latency is still determined
by ∆tdelay.

E. Parameter Setting

The parameter setting of MPC is summarized in Ta-
bles I(a)-(c). Decision variables are normalized based on their
physical dimensions so that their values range within the
same order of magnitude. The weights shown in the table
are applied to those normalized variables. In this study, good
combination of weights was searched by manual tuning. It
was found important to assign greater weights to control
input variables (i.e., joint acceleration and contact wrenches)

Fig. 7. Kinematic diagram of RHP-S1

to avoid oscillatory behavior. In WB-MPC, the joint angle
and velocity weights of the leg joints were set as 0 because
these joints were guided by desired foot pose and velocity.

V. DANCE SIMULATION RESULTS

A. Robot Model

A model of RHP-S1 “Friends”2 (Kawasaki Heavy Indus-
try, [14]) was used in this study. The kinematic diagram
of the robot is shown in Fig. 7. The model has 32 DoF
(4 DoF in torso and neck, 8 DoF in each arm, 6 DoF
in each leg). The kinematic and inertial parameters were
matched to the real robot. Each arm and each leg of the
robot weighs approximately 13% and 14% of the total mass,
respectively. This means that this robot has particularly high
mass proportion of arms compared to human body, whose
arm mass is approximately 1/3 of leg mass. This makes
dancing motion involving rapid arm swinging especially
challenging.

B. Simulation Setting

Choreonoid was used for both dance motion editing and
dynamical simulation. Note that Body Motion Controller (a
built-in balance compensator of Choreonoid) was not used,
and raw key pose sequence was directly input to a user-
defined controller that realizes MPC in the simulation loop of
Choreonoid. The AIST simulator item was used for physics
simulation. The time step of physics simulation was set as
0.25ms, whereas the control cycle was set as 1ms. A custom
C++ trajectory optimization library named dymp 3 was
developed and used to implement MPC. The main features
of this library are analytical gradient computation of the
centroidal and whole-body models, and implementation of
differential dynamic programming (DDP) allowing infeasible
starting points.

2Project Kaleido (in Japanese), https://p-kaleido.com
3dymp: DYnamics-based Motion Planner, https://github.com/

ytazz/dymp

https://p-kaleido.com
https://github.com/ytazz/dymp
https://github.com/ytazz/dymp
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C. Results

Some screenshot images of simulation are shown in Fig. 1.
See the attached video for better visualization of simulation.
The knee joints of the robot had to be almost fully stretched
throughout the tested dance motion. This made it difficult to
apply conventional balance compensation techniques based
on CoM shifting. Instead, the model-predictive controller
mainly made use of tilting of the upper body and adjustment
of arm trajectory to maintain the centroidal state inside the
stabilizable region.

Figs. 8(a)-(c) show footsteps, CoM and ZMP trajectory
generated in different stages. The CoM trajectory output by
CD-MPC was much smoother than the one obtained by linear
interpolation of key poses and it could be tracked by WB-
MPC without much error. The ZMP output of WB-MPC also
tracked that of CD-MPC although it showed certain degree
of fluctuation for maintaining balance.

Figs. 9(a)-(c) show time series of the global and local
angular momentum. Angular momentum obtained by linear
interpolation of key poses showed large amplitude and dis-
continuity. In contrast, CD-MPC was able to output angular
momentum with much smaller amplitude by canceling the
local angular momentum with the base link angular velocity.
The output of WB-MPC was also expected to show similar
angular momentum profile but the result showed relatively
greater amplitude. One possible reason of this error is that
CD-MPC utilizes (2) based on the assumption that ω and
θ̇ are independent. Because of kinematic constraint, the
leg joint velocity is actually dependent on the base link
angular velocity when the foot is in contact with the floor.
Discrepancy between Fig. 9(b) and (c) could be reduced
by taking this dependency into account. Nevertheless, the
amplitude of the global angular momentum was smaller than
the local angular momentum as we can observe in Fig. 9(c),
which indicates that cancelation with the base link rotation
was effective to a certain extent.

D. Computation Time

The average and maximum computation time of MPC
threads are summarized in Table II. The computation time

TABLE II
COMPUTATION TIME

ave [ms] max [ms]
CD-MPC (20 iterations) 12 14
WB-MPC (2 iterations) 14 16

of CD-MPC was negligible considering its low update rate
(one update per key frame). The computation time of WB-
MPC could be made smaller than the specified recomputation
period (20ms) by limiting the number of iterations to 2.
The overall simulation was slower than real time, however,
because dynamical simulation and MPC were run on the
same computer. The reason why WB-MPC required much
longer computation time per iteration than CD-MPC is
because it has much greater state and input dimensions (see
Table I(a)). The computation cost of whole-body MPC could
be reduced further by exploiting its structure (e.g., sparsity
of state equations and costs). We consider it as a subject of
future study.

VI. CONCLUSION

This paper proposed a control method of dance motion
based on a parallel model predictive control framework. Ac-
robatic dance motion was performed by a torque-controlled
humanoid robot model in dynamical simulation. Future work
includes realizing dance motion with a real humanoid robot.
Major technical challenges toward sim2real would be to
integrate whole-body state estimation into the control system
loop and to respect joint velocity and torque limits.
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