
Fast Multi-Contact Motion Planning Based on Best-Neighbor Search of
Contact Sequences

Yuichi Tazaki†

Abstract— This paper presents a computationally efficient
method for planning dynamic multi-contact motion. A low-
dimensional dynamical model of a robot equipped with multiple
contact points is developed, and a motion planning problem
is formulated as a optimal control problem with continuous
and discrete variables. An extension to the differential dynamic
programming (DDP) framework enables efficient computation
of optimal cost for a large number of locally modified contact
sequences. Based on this finding, a novel algorithm for multi-
contact motion planning is developed, and its performance is
evaluated in simulations.

I. INTRODUCTION

In order for a humanoid robot to perform various lo-
comanipulation tasks in open and changing environments,
it must be able to plan and execute multi-contact motion
in real time. In traditional motion planning problems such
as bipedal walking, only limited number of parts (e.g.,
feet) make contact, and the order contact switching is fixed
and predefined. General multi-contact planning problems, in
contrast, pose a number of challenges that make the problem
much harder, both theoretically and computationally. Notable
challenges are:

• Non-coplanar contact: traditional reduced-order models
that assume coplanar contact cannot be applied directly.

• Contact between arbitrary combination of body parts
and contact surfaces must be considered.

• The order of contact switching is not specified; instead,
it must be found by the planner.

Existing methods for multi-contact planning can be
broadly categorized into three classes: search-based,
optimization-based, and schedule-based. Search-based meth-
ods generates a search tree of contact state transitions, and
finds a feasible sequence of contact transitions together with
continuous trajectory that satisfies a set of constraints includ-
ing reachability and contact stability [1], [2], [3], [4], [5], [6].
A major technical issue of this approach is combinatorial
explosion of search space. One effective way for reducing
computation cost is to define a reference trajectory of the
center-of-mass (or the base link) and find valid contacts in
the reachable region of this trajectory. [7], [8], [9].

Optimization-based methods formulate multi-contact plan-
ning problem as a certain class of optimization problem.
Notable classes are mathematical programming with com-
plementarity constraints (MPCC) [10], [11] and mixed in-
teger programming (MIP) [12], [13]. A major issue of

†The author is with Faculty of Engineering, Department of Mechani-
cal Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Japan.
tazaki@mech.kobe-u.ac.jp

MPCC is its poor convergence caused by complementarity
constraints. Some studies use soft contact models instead
of rigid contact models to improve the convergence [14],
[15], [16]. Recent studies investigate application of bi-level
optimization technique for reducing computation cost and
improving convergence [17], [18], [19].

Schedule-based methods directly parameterize contact
timing as decision variables. In this manner, complemen-
tarity of contact is satisfied by definition. Winkler et al.
formulated a nonlinear optimal control problem in which
the time instants of contact switching each end-effector are
explicitly defined as decision variables. One shortcoming of
this method is that the number of contact switches must be
specified in advance.

This paper proposes a novel optimization-based method
for multi-contact motion planning. The main contribution of
this paper is two-fold. First, a multi-contact linear inverted
pendulum mode (mc-LIPM), a natural extension of the
conventional LIPM in the multi-contact setup, is proposed
and used for trajectory generation. Just like the conventional
LIPM, the mc-LIPM yields a closed-form solution of the
dynamical equation, which enables planning of long trajec-
tories with a small number of decision variables. Second, a
new contact sequence optimization technique based on local
search of contact states is developed. The proposed method
is conceptually motivated by discrete convex analysis, which
claims that for discrete functions with a special convex
property, one can obtain a global minimum just by repeating
local minimization in a carefully defined neighborhood [20].
At the moment, the proposed method provides no theoretical
guarantee for global optimality. Nevertheless, it has been
found in simulation experiments that the proposed local-
search strategy can find reasonable contact sequences in
many practical examples. We also utilize a property of
differential dynamic programming DDP that updating the
minimum cost when the cost function of only one step
is altered can be computed very efficiently. The proposed
method is applied to various multi-contact planning problems
of a humanoid robot model and verified in simulations.

II. LINEAR CENTROIDAL DYNAMICS IN
MULTI-CONTACT SETUP

Let us start from the well-known centroidal dynamics
equation shown below.

mp̈(t) = f(t)−mg (1)

L̇(t) = τ (t) (2)

Here, p is the position of the CoM, L is the angular
momentum around the CoM, and f and τ are the transla-
tional and rotational component of the net external wrench,
respectively., Moreover, m is the total mass and g is the
gravitational acceleration. The robot can make contact with
the environment with ne end-effectors. Let us denote the
translational and rotational components of the contact wrench
applied to the l-th end-effector (l = 1, 2, . . . , ne) by fl and
τl, respectively. Then the total contact wrench is expressed
as follows.

f(t) =
∑
l

fl(t) (3)

τ (t) =
∑
l

((pl(t)− p(t))× fl(t) + τl(t)) (4)

Although the equations (1) and (2) are linear, the equation
(4) includes cross product, which makes the overall dynamics
nonlinear. To derive a closed-form solution, let us introduce
the following restriction on the translational component of
contact forces.

fl(t) = mλ2
l (t)(p(t)− pl(t)) (5)

This restriction essentially requires that the contact force
acting on each end-effector should always be directed to the
CoM. This condition may be difficult to satisfy in general,
especially for hand contacts, where the direction of hand
contact forces can vary significantly depending on the form
of contact (e.g., grasping a hand rail). Nevertheless, we
consider that this assumption is acceptable in simple multi-
contact cases where the feet make contact mostly with the
ground and the hands are used for pushing against walls.
Since contact forces are repulsive, we have λl(t) ≥ 0.
Moreover, let us approximate the inertia matrix around the
CoM with a diagonal matrix I . Then the angular momentum
around the CoM is given by L = Iω, where ω is the angular
velocity of the base link. The orientation of the base-link
is parameterized by Euler angles θ. Here, assuming that
the yaw and pitch angles are small enough, θ̇ ≈ ω holds.
Furthermore, define τ̂ = I−1τ . As a result, we obtain the
following linearized equations of motion.

p̈(t) =
∑
l

λ2
l (t)(p(t)− pl(t))− g (6)

θ̈(t) =
∑
l

τ̂l(t) (7)

Consider a finite interval of time [0, T] which is further
split into N sub-intervals. The k-th interval is given by
[tk, tk+1] (tk+1 = tk+hk). During each interval, the contact
state of each end-effector does not change. In other words,
contact states may change only at discrete time instants tk.
Furthermore, the stiffness and the contact moment of each
end-effector are constant during each interval, and they are
denoted by λl,k and τ̂l,k, respectively. Under this assumption,
we can analytically integrate (6)(7), which are second-order

linear ODEs, to obtain the following.

pk+1 = p̄k + Ck (pk − p̄k) +
Sk

λ̄k
vk (8)

vk+1 = λ̄kSk(pk − p̄k) + Ckvk (9)

where

Ck = cosh
(
λ̄khk

)
, Sk = sinh

(
λ̄khk

)
p̄k =

∑
λ2
l,kpl,k + g∑

λ2
l,k

, λ̄k =
√∑

λ2
l,k

For rotational movement, we have

θk+1 = θk + ωkhk +
1

2

∑
τ̂l,kh

2
k (10)

ωk+1 = ωk +
∑

τ̂l,khk (11)

The movement of each end-effector is expressed as

pl,k+1 = pl,k +∆pl,k (12)

where pl,k denotes the position of the l-the end-effector and
∆pl,k denotes its change of position between tk and tk+1.

Let us define the state variable and the input variable as

xk =


pk

θk
vk

ωk

{pl,k}l∈1,...,ne

tk

 , uk =


{∆pl,k}l∈1,...,ne

{λl,k}l∈1,...,ne

{τl,k}l∈1,...,ne

hk

 (13)

Then, from (8)-(12), the state transition from tk to tk+1 can
be expressed as follows.

xk+1 = f(xk,uk) (14)

III. FORMULATION OF MOTION PLANNING PROBLEM

A. Task-related Costs

The following task-related cost function is defined.

Ltask,k

= w2
p∥pk − pref

k ∥2 + w2
v∥pk − pref

k ∥2

+ w2
θ∥θk − θref

k ∥2 + w2
ω∥ωk − ωref

k ∥2

+
∑
l

[
w2

p,l∥pl,k − pref
l,k∥2 + w2

λλ
2
l,k + w2

τ∥τl,k∥2
] (15)

Here, (∗)ref are desired values defined by reference trajecto-
ries. How to provide reference trajectories of the CoM and
those of the end-effectors is problem dependent; for examples
shown in Section V, they are defined by cubic spline curves
connecting the initial and the goal configurations of the robot.
The weight parameters of each term, w∗, must be specified
by the designer.

B. Inequality Constraints

The range of the position of each end-effectors relative to
that of the CoM is restricted as follows:

pl,min ≤ R(θk)
T(pl,k − pk) ≤ pl,max (16)

Here, R(θ) is a rotation matrix equivalent to the Euler angles
θ. Similarly, limits on the stiffness and the contact moment
are expressed as follows.

0 ≤ λl,k ≤ λmax, τl,min ≤ τl,k ≤ τl,max (17)

These constraints are encapsulated into the following cost
function.

Llimit,k

= w2
lim,p(∥min(R(θk)

T(pl,k − pk)− pl,min,0)∥2

+ ∥max(R(θk)
T(pl,k − pk)− pl,max,0)∥2)

+ w2
lim,λ(min(λl,k, 0)

2 +max(λl,k − λmax, 0)
2)

+ w2
lim,τ (∥min(τl,k − τl,min,0)∥2

+ ∥max(τl,k − τl,max,0)∥2)

(18)

Here, min and max are evaluated componentwise.

C. Contact-related Costs

Let us define a set of boolean variables that expresses
the contact state of the end-effectors. Here, σk,l,i (k =
0, 1, . . . , N , l = 1, 2, . . . , ne, i = 1, 2, . . . , nc) is a boolean
variable which takes 1 if and only if the l-th end effector
makes contact with the i-th surface during the time interval
[tk, tk+1], where N is the number of phases considered in
planning and nc is the number of contact surfaces. Each
end-effector is not allowed to make contact with more than
one contact surface simultaneously; thus,

∑
i σk,l,i ≤ 1 must

hold. A boolean vector variable σk is defined as σk =
[σk,1,1, . . . , σk,ne,ns

], and σ (without subscript) is defined
as σ = [σ0, . . . ,σN].

The rigid contact model requires that the complementarity
condition is satisfied between contact force and end-effector
movement; that is, either of them must be zero at any instant
of time. In our formulation, the complementarity condition is
imposed to the planning problem by assigning proper weights
to the following complementarity cost.

Lcompl,k =
∑
l

[∑
i

(
σk,l,iw

2
compl(η

T
i (pl,k − oi))

2
)

+

(∑
i

σk,l,i

)
w2

compl∥∆pl,k∥2

+

(
1−

∑
i

σk,l,i

)
w2

compl

[
λ2
l,k + ∥τl,k∥2

]]
(19)

The first term requires that the distance between the l-th end-
effector and the i-th contact surface in the normal direction
must be zero, if they are in contact (σk,l,i = 1). Here, oi

and ηi are the origin and the normal of the i-th contact face,
respectively. The second term requires that the end-effector
movement must be zero if it is in contact with one of the
contact surfaces (

∑
i σk,l,i = 1). The third term requires

that the stiffness and the contact moment applied to the
end-effector must be zero if it is not in contact with any
of the contact surfaces (

∑
i σk,l,i = 0). The value of the

weight wcompl is gradually increased during the course of
optimization, as described in Section IV.

D. Formulation of Optimal Control Problem

The overall cost function is defined as

J [σ] =
∑
k

Lk[σk],

Lk[σk] = Ltask,k + Llimit,k + Lcompl,k[σk]

(20)

and the planning problem is formulated as the following
optimal control problem:

find σ,x,u

minimize J [σ](x,u)

subject to xk+1 = f(xk,uk)

(21)

This problem is hard to solve directly for two reasons.
First, J and f both have nonlinearity. Second, it has a
combinatorial nature because of the presence of the discrete
decision variable σ. To deal with nonlinearity, we take a
strategy known as the differential dynamic programming.
For optimizing with respect to σ, we propose a novel best-
neighbor search strategy, which will be described in the next
subsection.

IV. DIFFERENTIAL DYNAMIC PROGRAMMING WITH
BEST-NEIGHBOR CONTACT SEQUENCE OPTIMIZATION

A. Backward and Forward Pass of DDP

Let us once put aside the problem of discrete variable σ,
and review the procedure and characteristics of differential
dynamic programming (DDP). In the dynamic programming
framework, the value function, or the optimal cost-to-go, is
defined as follows:

Vk(x) = min
uk,...,N−1

N∑
k′=k

Lk′ xk = x (22)

This function gives the minimum cost of all possible sub-
trajectories from k to N that starts from x. Here, the well-
known Bellman equation states that the following recursive
relationship holds.

VN (x) = LN (x) (23)
Qk(x,u) = Lk(x,u) + Vk+1(f(x,u)) (24)

Vk(x) = min
u

Qk(x,u) (25)

Using (23)-(25), one can calculate the value function re-
cursively backward in time, starting from k = N . If
there is nonlinearity in the state equation and/or the cost
function, however, it is generally difficult to calculate the
value function analytically. The DDP (differential dynamic

programming) provides a way to compute the value function
by means of quadratic approximation.

Vk(x+ δx) ≈ Vk(x) + Vk,xδx+
1

2
δxTVk,xxδx

Qk(x+ δx,u+ δu) ≈ Qk(x,u) +Qk,xδx+Qk,uδu

+
1

2
δxTQk,xxδx+

1

2
δuTQk,uuδu+ δuTQk,uxδx

(26)

Here, Vk,x, Qk,x, Qk,u are the first derivatives (i.e., the
gradients) of the value function and the action value function,
and Vk,xx, Qk,xx, Qk,uu, Qk,ux are the second derivatives.
Based on this quadratic approximation, the computation of
the Bellman equation can be expressed by the following
series of linear operations.

Q = L+ V ′

Qx = Lx + fT
k,xV

′
x

Qu = Lu + fT
k,uV

′
x

Qxx = Lxx + fT
k,xV

′
xxfk,x

Quu = Luu + fT
k,uV

′
xxfk,u

Qux = Lux + fT
k,xV

′
xxfk,u

V = Q−
1

2
QT

uQ
−1
uuQu

Vx = Qx −QT
uQ

−1
uuQux

Vxx = Qxx −QT
uxQ

−1
uuQux (27)

Here, (∗)k and (∗)k+1 are denoted by (∗) and (∗)′, re-
spectively, to save space. Note that we ignore the second
derivatives of the state transition function (i.e., fxx, fuu, and
fux) for simplicity.

The forward pass of DDP computes the update of xk and
uk in the following steps. In the conventional DDP, δx0 is
simply set as 0, but in our case, it is computed to minimize
the value function:

δx0 = −V −1
0,xxV0,x (28)

The remaining updates are computed recursively as follows.

δuk = −Q−1
k,uu(Qk,u +Qk,uxδxk)

δxk+1 = fk,xδxk + fk,uδuk

(29)

In the conventional DDP framework, the value function
is computed in the backward pass as described in (27). In
a similar manner, it is also possible to derive a forward
computation pass. Let us define the optimal cost-so-far
function as follows.

Uk(x) = min
u0,...,k−1

k−1∑
k′=0

Lk′ xk = x

This function gives the minimum cost of all possible sub-
trajectories from 0 to k that terminates at x. The following
recursive relationship can be derived.

U0(x) = 0

Uk+1(x
′) = min

u
{Uk(f̂(x

′,u)) + Lk(f̂(x
′,u),u)}

Here, f̂ is the ‘inverse’ of f , which satisfies f̂(f(x,u),u) =
x for any x and u. The recursive update rule of the quadratic
approximation of the optimal cost-so-far can be derived as
follows.

P ′ = U + L

P ′
x = f̂T

x (Ux + Lx)

P ′
u = f̂T

u (Ux + Lx) + Lk,u

P ′
xx = f̂T

x (Uxx + Lxx)f̂x

P ′
uu = f̂T

u (Uxx + Lxx)f̂u + Luu

P ′
ux = (f̂T

u (Uxx + Lxx) + Lux)f̂x

U ′ = P −
1

2
PT
uP−1

uu Pu

U ′
x = Px − PT

uP−1
uu Pux

U ′
xx = Pxx − PT

uxP
−1
uu Pux

(30)

By using this optimal cost-so-far function, one can also
derive a backward computation pass of optimal trajectory
which is a reverse version of (29), but it is not shown here
because it is not used in the proposed algorithm.

B. Efficient One Step Update of Minimum Cost Using Value
Functions

Consider that for a certain cost function J , we have
computed backward and forward value functions, V =
{V0, V1, . . . , VN} and U = {U0, U1, . . . , UN}. Once value
functions are obtained, one can easily compute the minimum
value of the cost function by minimizing the sum of Vk and
Uk for an arbitrary time index k:

J∗ = min
δx

{
Uk + Vk + (Uk,x + Vk,x)

Tδx

+
1

2
δxT(Uk,xx + Vk,xx)δx

}
= Uk + Vk

− 1

2
(Uk,x + Vk,x)

T(Uk,xx + Vk,xx)
−1(Uk,x + Vk,x)

(31)

Note that, from the definition of backward and forward value
functions, the value of J∗ is the same for any choice of k
from 0 to N .

Next, consider that we would like to compute the mini-
mum of a slightly modified cost function where the cost of
one time instant k is replaced by L̂k. A naive way would be
to recompute the value functions completely for this modified
cost function, but it is computationally expensive, especially
if we would like to compute the minimum of many different
instances of modified cost functions. In the following steps,
one can compute the minimum of the modified cost function
more efficiently by utilizing the value functions at hand.

1) Using the existing Vk+1, compute a single step of
backward value update (27) and obtain Vk. Here, use
the modified cost L̂k instead of the original cost Lk.

2) Compute the modified minimum cost by applying (31)
to Vk and Uk.

C. Neighborhood of Contact Sequences

A contact sequence is parameterized by a boolean vector
variable σ. Here, we restrict transition of contact states so
that at most one contact switching occurs at each time step.
This restriction can be expressed as

∥σk+1 − σk∥ ≤ 1 (32)

Here, the norm counts the number of non-zeros. Under this
restriction, the contact state of at most one end-effector may

Algorithm 1 Main loop
1: x,u,σ ← INIT()
2: wcompl ← wcompl,min

3: loop until convergence
4: δx, δu,σ ← SWITCHEDDDP(σ)
5: x← x+ δx
6: u← u+ δu
7: wcompl ← min(γwcompl, wcompl,max)
8: end loop
9: return x,u,σ

change at a time. Moreover, an end-effector cannot directly
switch contact surfaces, but it has to switch to non-contact
state before making a new contact. A contact sequence sat-
isfying (32) is said to be a valid contact sequence. There are
two reasons for imposing this restriction. First, simultaneous
switching of multiple contacts is difficult to realize on a real
robot. Second, by restricting transitions one can reduce the
set of possible contact sequences, which effectively reduces
computation cost. This restriction is not absolutely necessary
for the development of the method; it is theoretically possible
to allow transitions between arbitrary contact states, or to
impose even more strict restriction on contact transitions.
Consider for example a simple case of two end-effectors and
one contact surface. In this case, σ1 = [[1, 1], [0, 1], [0, 0]] is
a valid 3-step sequence, while σ2 = [[1, 1], [0, 1], [1, 0]] is
not valid, since the first end-effector makes contact and the
second one breaks contact simultaneously.

Next, let us define the notion of adjacency of two contact
sequences. A valid contact sequence σ and another one σ′

is said to be adjacent to each other if

σ0 = σ′
0, σN = σ′

N ,

|{k ∈ 1, 2, . . . , N − 1 |σk ̸= σ′
k}| ≤ 1

(33)

holds; that is, if their initial and terminal states are the same
and they have different contact states in at most one step in
between. For a contact sequence σ, its neighborhood N (σ)
is defined as the set of all contact sequences adjacent to it.
For example, the neighbors of σ = [[1, 1], [0, 1], [0, 0], [1, 0]]
are [[1, 1], [1, 0], [0, 0], [1, 0] and [[1, 1], [0, 1], [1, 1], [1, 0].

D. Switched DDP

The essential idea behind the proposed algorithm is to
evaluate all contact sequences in the neighborhood of the
current best sequence, and repeat this procedure until we
arrive at an equilibrium. In this manner, we are no longer
guaranteed to find a globally optimal solution, but instead
we can find a reasonably good contact sequence in much
smaller amount of time.

The pseudo-code of the proposed method is shown in
Algorithm 1 and 2. Algorithm 1 is the main loop. Here,
the complementarity weight wcompl is initialized by its
minimum value wcompl,min, and magnified by a constant
rate γ in every iteration until it reaches wcompl,max. We
found this mechanism helpful for avoiding convergence to
an undesirable contact sequence.

Algorithm 2 SWITCHEDDDP
1: J∗ ←∞
2: loop
3: V ← VALUEBACKWARD(σ)
4: U ← VALUEFORWARD(σ)
5: N ← ENUMNEIGHBORS(σ)
6: for each {ki, σ̂i} ∈ N do
7: Ji ← MINCOST(Vki+1, Uki

, σ̂i)
8: end for
9: i∗ = argminiJi

10: if J∗ ≤ Ji∗ then
11: break
12: end if
13: J∗ ← Ji∗

14: Lki∗ ← L̂i∗

15: σki∗ ← σ̂i∗

16: end loop
17: V ← VALUEBACKWARD(σ)
18: (δx, δu)← STATEFORWARD(V)

Continuous variables are initialized with reference values,
where reference values are obtained by cubic interpolation of
the initial and the goal configurations, as described in Section
III-A. Contact sequence is initialized with a sequence that
minimizes the cost J [σ](x,u) in (21), where x and u are
both fixed to the initial trajectory. Since continuous variables
are all fixed, this optimization can be done by means of con-
ventional dynamic programming, which is computationally
very cheap.

After initialization, it iteratively updates the trajectory until
convergence. Algorithm 2 is the minor loop. Here, VALUE-
BACKWARD computes the backward value function using
(27), while VALUEFORWARD computes the forward value
function using (30). Next, ENUMNEIGHBORS enumerates all
possible local changes applicable to the current contact state
sequence. For each candidate change of contact state, the
updated minimum cost is evaluated by MINCOST using the
procedure described in Section IV-B. Note that this for-loop
can be executed in parallel. The best local change is identified
and applied to the current contact sequence. The above
procedure is repeated until a local equilibrium is reached.
Finally, the backward value function is recalculated using the
updated contact sequence, and the optimal differential update
for the current trajectory is computed by STATEFORWARD
using (29).

E. Continuous-time Trajectory Generation

A continuous-time trajectory of the CoM between time
instants tk and tk+1 is obtained as the closed-form solution
of (6)(7) with initial conditions given by pk, vk.

End-effector trajectories, on the other hand, are not
uniquely identified from the outputs of the planner. Here, we
define a continuous trajectory of each end-effector between
tk and tk+1 by cubic spline interpolation. To avoid the risk
of interfering with contact surfaces while moving, a cycloid-
like trajectory that moves away from contact surfaces during

TABLE I
SETTING OF WEIGHT PARAMETERS

k = 0, N otherwise
wp 100 0.1
wv 100 1.0
wθ , wω 100 100
wλ, wτ 0.01
wlim,p, wlim,λ, wlim,τ 100.0
wcompl,min 0.01
wcompl,max 100.0
γ 2.0

non-contact phases is added to the spline curve.

V. SIMULATION EXPERIMENTS

A. Planning and Simulation Results

The proposed method was applied to four example scenes:
flat, stairs, gap, and gap with rail. Each motion was tested
in rigid body dynamical simulation in which motion planning
was performed offline, and the robot tracked the planned
trajectory by whole-body control. For both planning and
simulation, a computer with AMD Ryzen 9 5950X CPU
with 16 cores was used. Choreonoid was used for simulation
environment. The robot model used for simulation has 30
joints and its total mass is 44[kg]. A model with four
end-effectors corresponding to feet and hands are used for
planning. The setting of the weight parameters is shown in
Table I.

Planned reference trajectories are visualized in Figs. 1(a)-
(d). For each figure, the thick solid line depicts the trajectory
of the CoM, while thinner solid lines depict the trajectories
of the end-effectors. We can observe in Fig. 1(a),(b) that
bipedal walking gait is automatically generated without any
prior knowledge. In Fig. 1(c), jumping motion consisting of a
flight phase is generated. Here, physically consistent vertical
movement of the CoM is generated by the planner. The gap
with rail scene shown in Fig. 1(d) two handrails are placed
in the middle of the gap on both sides (left and right). The
planner generated motion in which the robot places two
hands on the handrail to support its weight while moving
over the gap.

Figures 3(a)-(d) visualize how planned contact sequence
changed over the course of optimization. The horizontal axis
indicates the switching count of contact sequence, while each
column indicates the contact sequence at the correspond-
ing iteration cycle. For example, horizontal stripes seen in
Fig. 3(a) indicate that the left and the right foot make contact
in turn with double support phase in between. In every exam-
ple, the contact sequence largely settles to a fixed sequence
after around 50 switches, but persistent chattering of contact
states is observed. This chattering may be occurring between
two adjacent contact sequences having almost the same cost.
We consider therefore that chattering can be suppressed by
introducing certain hysteresis mechnism to contact switching.

Figures 2(a)-(d) show snapshot images of dynamical sim-
ulation. We found it quite challenging to track reference

TABLE II
AVERAGE COMPUTATION TIME PER ITERATION, WITH AND WITHOUT

PARALLELIZATION.

w/ parallel [ms] w/o parallel [ms]
flat 12.16 11.36
stairs 16.73 13.55
gap 12.72 10.87
gap with rail 14.29 12.16

trajectories multiple contacts and flight phases. So this time
we conducted simulation in an assisted setup in which very
large values are assigned to the base link inertia. In this
manner, the base link orientation is effectively fixed, and
the controller can concentrate on trajectory tracking of the
translational movement of the CoM and the end-effectors.
Applying more sophisticated whole-body control techniques
for achieving better trajectory tracking performance is a
subject of future study.

B. Computational Characteristics

Computation time for one iteration (average of 100 it-
erations) is summarized in Table II. It can be seen that
computation time is very small compared to reports in
existing studies. Considering that we need about 50 iterations
for convergence, the overall computation time for trajec-
tory generation is less than 1 second. Table II compares
computation time with and without parallelization. It was
against our expectation that it took slightly greater compu-
tation time with parallelization. The reason for this result
is that the algorithm is fine-grained, so the overhead of
thread synchronization was greater than the time gained by
parallel execution. We must conclude that OpenMP-based
parallelization is not very effective, but it is still possible that
tailor-make parallel implementation could achieve further
speed up.

VI. CONCLUSION

This paper presented a multi-contact motion planning
method that is based on discrete local search of contact
sequences. The proposed method is able to generate long
trajectories by utilizing the closed-form solution of the mc-
LIPM. A novel manipulation of forward and backward value
functions enabled efficient update of optimal cost, which
lead to parallel evaluation of multiple contact sequences. One
interesting of future study is to extend the method to motions
involving large rotation of base link.

REFERENCES

[1] K. Hauser, T. Bretl, and J. C. Latombe, “Non-gaited humanoid
locomotion planning,” in IEEE-RAS Int. Conf. Humanoid Robots,
2005, pp. 7–12.

[2] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Potential
field guide for humanoid multicontacts acyclic motion planning,” in
2009 IEEE International Conference on Robotics and Automation,
2009, pp. 1165–1170.

[3] K. Bouyarmane and A. Kheddar, “Static multi-contact inverse problem
for multiple humanoid robots and manipulated objects,” in IEEE-RAS
Int. Conf. Humanoid Robots, 2010, pp. 8–13.

(a) Flat (b) Stairs (c) Gap (d) Gap with rail

Fig. 1. Visualization of generated trajectories. Initial trajectory (top) and after optimization (bottow).

(a) Flat (b) Stairs (c) Gap (d) Gap with rail

Fig. 2. Snapshot images of trajectory tracking in simulation.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

p
h
a
s
e
 c

o
u
n
t

contact sequence switching count

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

p
h
a
s
e
 c

o
u
n
t

contact sequence switching count

(a) Flat (b) Stairs

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

p
h
a
s
e
 c

o
u
n
t

contact sequence switching count

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

p
h
a
s
e
 c

o
u
n
t

contact sequence switching count

foot

R L

hand

R L

on off off off

off off off off

off on off off

on on off off

off off on on

off on on on

on off on on

off on off on

on off on off

(c) Gap (d) Gap with rail

Fig. 3. Change of contact sequence during iteration

[4] ——, “Multi-contact stances planning for multiple agents,” in IEEE
Int. Conf. Robotics and Automation, 2011, pp. 5246–5253.

[5] A. Escande and A. Kheddar, “Contact planning for acyclic motion
with tasks constraints,” in IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2009, pp. 435–440.

[6] M. Murooka, K. Chappellet, A. Tanguy, M. Benallegue, I. Kuma-
gai, M. Morisawa, F. Kanehiro, and A. Kheddar, “Humanoid loco-
manipulations pattern generation and stabilization control,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5597–5604, 2021.

[7] G. C. Thomas and L. Sentis, “Towards computationally efficient
planning of dynamic multi-contact locomotion,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 3879–3886.

[8] S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Trans. Robotics, vol. 34, no. 3, pp. 586–601, 2018.

[9] I. Kumagai, M. Morisawa, S. Hattori, M. Benallegue, and F. Kanehiro,
“Multi-contact locomotion planning for humanoid robot based on
sustainable contact graph with local contact modification,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6379–6387, 2020.

[10] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” Int. J. Robotics Research,
vol. 33, no. 1, pp. 69–81, 2014.

[11] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Hierarchical planning of dynamic movements without scheduled
contact sequences,” in IEEE Int. Conf. Robotics and Automation, 2016,
pp. 4636–4641.

[12] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2531–2538, 2018.

[13] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multicon-
tact pattern generation with sequential convex approximations of the
centroidal dynamics,” IEEE Transactions on Robotics, vol. 37, no. 5,
pp. 1661–1679, 2021.

[14] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, 2012, pp. 4906–4913.

[15] T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 4914–4919.

[16] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajec-
tory optimization through contacts and automatic gait discovery for
quadrupeds,” IEEE Robotics and Automation Letters, vol. 2, no. 3,
pp. 1502–1509, 2017.

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

c
o
s
t

iter

weight

(a) Change of complementarity weight

0

5

10

15

20

25

30

0 20 40 60 80 100

c
o
s
t

iter

flat

stairs

gap

gapwithrail

(b) Change of cost

Fig. 4. Change of complementarity weight and cost during iteration.

[17] I. Chatzinikolaidis, Y. You, and Z. Li, “Contact-implicit trajectory op-
timization using an analytically solvable contact model for locomotion
on variable ground,” IEEE Robotics and Automation Letters, vol. 5,
no. 4, pp. 6357–6364, 2020.

[18] Y. Zhu, Z. Pan, and K. Hauser, “Contact-implicit trajectory optimiza-
tion with learned deformable contacts using bilevel optimization,” in
2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 9921–9927.

[19] A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive
control via admm,” in IEEE International Conference on Robotics and
Automation, 2022.

[20] K. Murota, Recent Developments in Discrete Convex Analysis.
Springer Berlin Heidelberg, 2009, pp. 219–260.

