
Discrete-state Abstractions of Nonlinear
Systems Using Multi-resolution Quantizer

Yuichi Tazaki and Jun-ichi Imura

Tokyo Institute of Technology,
Ōokayama 2-12-1, Meguro, Tokyo, Japan
{tazaki,imura}@cyb.mei.titech.ac.jp

http://www.cyb.mei.titech.ac.jp

Abstract. This paper proposes a design method for discrete abstrac-
tions of nonlinear systems using multi-resolution quantizer, which is ca-
pable of handling state dependent approximation precision requirements.
To this aim, we extend the notion of quantizer embedding, which has
been proposed by the authors’ previous works as a transformation from
continuous-state systems to discrete-state systems, to a multi-resolution
setting. Then, we propose a computational method that analyzes how
a locally generated quantization error is propagated through the state
space. Based on this method, we present an algorithm that generates a
multi-resolution quantizer with a specified error precision by finite refine-
ments. Discrete abstractions produced by the proposed method exhibit
non-uniform distribution of discrete states and inputs.

1 Introduction

The problem of deriving a finite automaton that abstracts a given continuous-
state system is called the discrete abstraction problem. A finite-state system is
suitable for an abstract model since various difficult properties of continuous-
state systems: nonlinearity, discontinuity, and non-convexity, ... can be handled
in a uniform manner in a symbolic space. Until today, various techniques of
discrete abstraction has been developed, and many of them are based on parti-
tioning of state space. In [1][2][7], conditions for partitions that define discrete
abstractions with deterministic transitions are discussed. On the other hand, in
[3][4], instead of considering discrete abstractions of the open-loop behavior of
continuous systems, a hierarchical controller composed of a symbolic transition
system and a feedback controller that moves the continuous state to one region
to another is proposed. There have also been much attention paid on building a
symbolic system whose behavior includes the behavior of a continuous system.
Such symbolic abstractions have been used for verification problems in [6], and
for supervisory control in [8][9].

Recently, discrete abstraction methods based on approximate bisimulation
[10] has gained growing attention. Approximate bisimulation is an extension of
the original bisimulation to metric space. It admits equivalence relation between
two systems if the distance of output signals can be kept within a given threshold.

2 Y. Tazaki and J. Imura

Until now, it has been shown that discrete abstraction of a wide range of sys-
tems can be obtained based on approximate bisimulation. In [11], a procedure
for constructing approximately bisimilar finite abstractions of stable discrete-
time linear systems has been derived. In [12] and [13], it has been shown that a
general nonlinear system with the so-called incremental stability property can be
abstracted by a uniform grid. The authors have also investigated the application
of approximate bisimilar discrete abstractions to optimal control of linear sys-
tems with non-convex state constraints in [14], and to interconnected systems in
[15]. Discrete abstraction based on approximate bisimulation is especially suit-
able for control problems with a quantitative performance measure. It also has
an advantage that it does not require expensive geometric computations. To
date, however, it has the following limitations. First, the error condition in the
conventional approximate bisimulation is uniform. From practical perspectives,
it is desirable to support non-uniform error margin (for an example, error mar-
gin proportional to the norm of the signal itself). Second, the distribution of
discrete states is also uniform. This means that the number of discrete states
grows exponentially with respect to the dimension of the state space.

Motivated by the above backgrounds, this paper proposes a method for the
design of discrete abstractions of nonlinear systems using multi-resolution quan-
tizers. By using multi-resolution quantizers, one can design discrete abstract
models with non-uniform distribution of states and inputs that approximate a
given continuous-state system under state-dependent approximation precision
requirements. Moreover, it also enables us to produce less conservative results
compared to other conventional methods based on uniform discretization. To
this end, in Section 2 we define the notion of finite-step abstraction. This notion
admits an equivalence between two systems if any finite-step state trajectories
of two systems generated with the same input signal satisfy a certain error crite-
rion. In Section 3, we extend the notion of quantizer embedding, which has been
presented in [14] and [15], to multi-resolution setting. This reduces the design
of a discrete abstraction to the design of a pair of multi-resolution meshes, one
is defined in the state space and another in the input space. In Section 4, we
first discuss how to verify if a discrete model defined as a quantizer embedding
with a given mesh satisfies the condition of the finite-step abstraction. This is
basically done by computing how a locally generated quantization errors are
propagated over the state space. Next, based on this verification method, we
propose an algorithm that iteratively refines a multi-resolution mesh until the
resultant quantizer-embedding is a finite-step abstraction of the original sys-
tem. In Section 5, some illustrative examples are shown for demonstrating the
effectiveness of the proposed method.

Notation: We write [i1 : i2] to express the sequence of integers i1, i1 + 1, . . . , i2.
For an integer sequence I = [i1 : i2], uI = {ui1 ,ui1+1, . . . , ui2}. The symbol
R denotes the field of real numbers and the symbol Z+ denotes the set of non-
negative integers. For a vector x ∈ Rn, the symbol ‖x‖∞ denotes the ∞-norm
of x; ‖x‖∞ = maxi∈[1:n] |xi|.

Discrete-state Abstractions of Nonlinear Systems 3

2 Finite-step Abstraction of Discrete-time Systems

2.1 System description

In this paper, we address the discrete abstraction of discrete-time continuous-
state systems defined below. A discrete-time system is a tuple 〈X,U, f〉, where
X ⊂ Rn is the set of states, U ⊂ Rm is the set of inputs, and f : X × U 7→ X
is the state transition function. The state and the input of the system at time
t ∈ Z+ are expressed as xt ∈ X, ut ∈ U , respectively. The state transition at
time t is expressed as

xt+1 = f(xt,ut). (1)

We use the symbol UN to express the set of N -step admissible control input
sequences.

2.2 Finite-step abstraction

In the following, we introduce the notion of finite-step abstraction for the class
of systems defined above.

Definition 1. Finite-step abstraction
Let Σ〈X,U, f〉 and Σ̂〈X,U, f̂〉 be discrete-time dynamical systems. Further, let
R̄ ⊂ X × X be a binary relation between X and X. The system Σ̂ is an N -step
abstraction of Σ with respect to R̄ if and only if for any initial state x0 ∈ X of
Σ, there exists an initial state x̂0 ∈ X of Σ̂ such that the following holds:
for any u[0:N−1] ∈ UN ,

(xt, x̂t) ∈ R̄ (t ∈ [0 : N]),

xt+1 = f(xt,ut), x̂t+1 = f̂(x̂t,ut) (t ∈ [0 : N − 1])
(2)

holds.

The notion of finite-step abstraction can be seen as a variant of approximate
bisimulation in the sense that:

i) it requires the similarity of trajectories for only a finite steps,
ii) it assumes common control inputs, whereas for approximate bisimulation

two control inputs need not be the same, and
iii) the error condition is given in a more general form of binary relation R̄, com-

pared to the constant error bound of conventional approximate bisimulation.

The finite-step formulation could be a restriction. Nevertheless, it still has a
wide range of potential applications. It can, of course, be used to solve problems
that take place in a finite time interval, such as finite horizon optimal control.
Moreover, it can be combined with model predictive control techniques to form
a feedback-type controller. The relation R̄ encodes an error condition imposed
to two systems. The most simple example of R̄ is a uniform error condition:
R̄ = {(x, x̂) | ‖x− x̂‖ ≤ ε}, where ε is a positive constant. On the other hand, R̄
defined as R̄ = {(x, x̂) | ‖x − x̂‖ ≤ η‖x̂‖ + ε} , where both ε and η are positive
constants, expresses a relative error condition.

4 Y. Tazaki and J. Imura

3 Quantizer Embedding

In this section, we introduce the notion of quantizer embedding, which has been
recently proposed by the authors in [15].

First of all, we introduce a mesh defined over a set X ∈ Rn. A mesh M is a
finite collection of pairs denoted by

M = {{ξ0, C0}, {ξ1, C1}, . . . , {ξS , CS}}. (3)

Here, {C0, C1, . . . , CS} forms a partition of X; that is, Ci ∩ Cj = ∅ (i 6=
j),

∪
i Ci = X. Each Cs (s ∈ [0 : S]) is called a cell of the mesh. Moreover,

each ξs ∈ Cs is called a discrete point of the s-th cell. A mesh M defines a
quantization function as shown below.

Q[M] : X 7→ {ξ0, ξ1, . . . , ξS},
Q[M](x) = ξs if x ∈ Cs.

(4)

A quantization function Q[M](·) maps an arbitrary point x to a discrete point
whose corresponding cell includes x. We write Q[M](X) = {ξ0, ξ1, . . . , ξS}.
Moreover, for any x ∈ X, we write Q[M]−1(x) = Cs iff Q[M](x) = ξs.

A discrete-time system can be transformed into a finite state system by
embedding a pair of quantizers into its state-transition function.

Definition 2. Quantizer embedding of discrete-time systems
Let Σ〈X,U, f〉 be a discrete-time system. Moreover let Qx(·) := Q[Mx](·) be a
quantizer defined in the state space and let Qu(·) := Q[Mu](·) be a quantizer
defined in the input space. The quantizer embedding (QE in short) of Σ, denoted
by QE(Σ,Qx, Qu), is a system Σ̂〈Qx(X), U, f̂〉 whose state transition function
is defined as

f̂(x,u) := Qx(f(x, Qu(u))). (5)

At every transition, the input of Σ̂ is mapped to the discrete point of a cell of
the input mesh Mu in which it is included. Moreover, the state of Σ̂ is reset to
the discrete point of a cell of the state mesh Mx in which the state right after
a transition made by f is included. Therefore, as long as the meshes Mx and
Mu are composed of a finite number of cells, a system with a state-transition of
the form (5) can be viewed as a finite automaton. Once we assume that discrete
models are expressed in terms of the quantizer embedding of the original system,
the problem of discrete abstraction reduces to the design of a state mesh and
an input mesh. From now on, to distinguish the cells and discrete points of the
state mesh and the input mesh, we denote them by Mx = {{ξx

s , Cx
s }}[0:S] and

Mu = {{ξu
a , Cu

a }}[0:A], respectively. The transition of Σ̂ can be rewritten in a
symbolic form as

s
a−→ s′ ⇔ f(ξx

s , ξu
a) ∈ Cx

s′ . (6)

Moreover, for later use, we define the predecessor set of a symbolic state s′ as
pre(s′) = {{s, a} | s a−→ s′}. Based on the above discussion, we formulate discrete
abstraction as the following problem.

Discrete-state Abstractions of Nonlinear Systems 5

Problem 1. Discrete abstraction
For a discrete-time system Σ〈X,U, f〉, N ∈ Z+ and a binary relation R̄ ⊂ X×X,
find a mesh Mx and Mu such that the quantizer-embedding
QE(Σ,Q[Mx], Q[Mu]) is an N -step abstraction of Σ with respect to R̄.

4 Design of Multi-resolution Quantizer

4.1 Preparations

Throughout this section, we will make frequent use of interval operations. Inter-
val computation technique has been used in reachability analysis problems (see
[16]). It will be shown that this technique can also be utilized for the verification
of discrete abstraction. Let [x] = [x, x] and [y] = [y, y] be closed intervals in R.
Elementary operations are defined as follows:

[x] + [y] = [x + y, x + y],

[x] − [y] = [x − y, x − y],

[x][y] = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}],
[x] ∪ [y] = [min{x, y}, max{x, y}].

Moreover, [x] ⊆ [y] ⇔ x ≥ y, x ≤ y. Interval vectors and interval matrices
are vectors and matrices whose elements are intervals. They obey the arithmetic
rules of conventional matrices and vectors, except that element-wise operations
are interval operations defined as above. We denote the set of all interval vectors
of length n by IRn, and the set of all interval matrices with n rows and m columns
by IRn×m. The i-th element of an interval vector [x] is denoted by [xi] = [xi, xi].
The element that lies in the i-th row and the j-th column of an interval matrix
[A] is denoted by [Aij] = [Aij , Aij]. Let [x], [y] ∈ IRn and let a ∈ Rn. We write

a ∈ [x] ⇔ ai ∈ [xi] ∀i ∈ [1 : n],
[x] ⊆ [y] ⇔ [xi] ⊆ [yi] ∀i ∈ [1 : n].

Moreover, for compact sets C ⊂ Rn and D ⊂ Rn, we define

(C,D) = max
a∈C,b∈D

aTb.

For interval vectors, we have

([x], [y]) =
∑

i∈[1:n]

max
ai∈[xi],bi∈[yi]

aibi =
∑

i∈[1:n]

max{xiyi
, xiyi, xiyi

, xiyi}.

Some useful properties of the above operations are listed below for later use.

([x] + [y],v) = ([x],v) + ([y],v) ([x], [y] ∈ IRn,v ∈ Rn),
([x] ∪ [y], [z]) = max{([x], [z]), ([y], [z])} ([x], [y], [z] ∈ IRn),

([A][x],ei) = ([x], [A]Tei) ([x] ∈ IRn, [A] ∈ IRn×n).

Here, ei is a vector whose i-th element is 1 and others are 0.

6 Y. Tazaki and J. Imura

Fig. 1. Multi-resolution mesh

4.2 Multi-resolution quantizer

In this subsection, we introduce a class of quantizer defined by a multi-resolution
mesh. First of all, we assume that the domain X of a quantizer is expressed
as an interval vector of length n. A multi-resolution mesh takes the form of
a binary tree, and each of its leaf nodes is assigned a cell of the mesh. Each
cell is an interval vector of length n. Moreover, we assume that each discrete
point is placed in the middle of the corresponding cell. Initially, the tree is
composed of a single root node, whose cell represents the entire state set X.
The tree can be grown by choosing an arbitrary leaf node, subdividing the
corresponding cell into two sub-cells, and assigning each of them to one of
two new child nodes that are created below the chosen node. A subdivision
can be made in one of the n directions. For an example, in the 2-dimensional
case, a cell can be divided either horizontally or vertically. Let [C]s be a cell
expressed as [C]s = [[Cs,1, Cs,1], [Cs,2, Cs,2], . . . , [Cs,n, Cs,n]]T and let ξs be
the discrete point of [C]s. Here, the i-th element of ξs is given by ξs,i =
(Cs,i + Cs,i)/2. Subdividing [C]s in the i-th direction yields two new sub-cells:
[C]s1 = [[Cs,1, Cs,1], . . . , [Cs,i, (Cs,i + Cs,i)/2], . . . , [Cs,n, Cs,n]]T and [C]s2 =
[[Cs,1, Cs,1], . . . , [(Cs,i + Cs,i)/2, Cs,i], . . . , [Cs,n, Cs,n]]T. The discrete points of
the new cells are placed in the middle of them. Finally, since [C]s is no longer a
leaf node after the subdivision, its cell and discrete point are removed from the
mesh. Fig. 1 illustrates how a multi-resolution mesh is refined.

4.3 Verification of N-step abstraction

In this subsection, we discuss how to verify, for a given discrete-time system
Σ〈X,U, f〉 and a given pair of multi-resolution meshes Mx and Mu, whether
Σ̂ defined as Σ̂ = QE(Σ,Qx, Qu) (Qx = Q[Mx], Qu = Q[Mu]) is an N -step
abstraction of Σ. From later on, we will write Mx = {{ξx

s , [C]xs}}[0:S], Mu =
{{ξu

a , [C]ua}}[0:A], since the cells of the meshes are assumed to be interval vectors.
Let us define the following sequence of binary relations:

R0 =
∪

x∈X

(x, Qx(x)), Rt =
∪

(x,x̂)∈Rt−1, u∈U

(f(x,u), f̂(x̂, u)). (7)

We will transform this recursive expression of Rt in such a way that the discrete-
state characteristics of Σ̂ is made more explicit. Let us define Rt,s := {x | (x, ξx

s)

Discrete-state Abstractions of Nonlinear Systems 7

∈ Rt}. Then (7) is rewritten using Rt,s as follows:

R0,s = [C]xs , Rt,s′ =
∪

{s,a}∈pre(s′)

f(Rt−1,s, [C]ua). (8)

Here, f(Rt−1,s, [C]ua) = {f(x,u) |x ∈ Rt−1,s,u ∈ [C]ua}. The following lemma
provides the simplest way for checking the N -step abstraction.

Lemma 1. Σ̂ is an N -step abstraction of Σ if Rt ⊆ R̄ holds for all t ∈ [0 : N],
or equivalently, if Rt,s ⊆ R̄s holds for all t ∈ [0 : N] and s ∈ [0 : S], where
R̄s = {x | (x, ξx

s) ∈ R̄}.

It is in general difficult to compute the nonlinear set operation f(Rt−1,s, [C]ua).
Moreover, due to the set union operations, Rt,s may become highly non-convex
as t increases. In the following, we derive a practical method that computes
a conservative approximation of (8), taking advantage of interval computation
techniques. The next lemma provides us with a conservative linear approximation
of the nonlinear set operation f(Rt−1,s, [C]ua).

Lemma 2. Let Cx and Cu be convex subsets of X and U , respectively, and let
ξx ∈ Cx, ξu ∈ Cu. Moreover, let [A](Cx, Cu) and [B](Cx, Cu) be functions that
return interval matrices defined as

[Aij](Cx, Cu) =
[

min
x∈Cx,u∈Cu

∂fi

∂xj
(x,u), max

x∈Cx,u∈Cu

∂fi

∂xj
(x,u)

]
, (9)

[Bij](Cx, Cu) =
[

min
x∈Cx,u∈Cu

∂fi

∂uj
(x,u), max

x∈Cx,u∈Cu

∂fi

∂uj
(x,u)

]
. (10)

Then, the following inclusion holds:

f(Cx, Cu) ⊆ [A](Cx, Cu)(Cx − ξx) + [B](Cx, Cu)(Cu − ξu) + f(ξx, ξu). (11)

Proof. From the mean value theorem, for any x ∈ Cx, u ∈ Cu and i ∈ [1 : n],
there exists a θ ∈ [0, 1] such that

fi(x,u) = fi(ξx, ξu) +
∂

∂x
fi(x′,u′)(x − ξx) +

∂

∂u
fi(x′,u′)(u − ξu)

where fi(x,u) denotes the i-th element of f(x,u), x′ = ξx + θ(x − ξx) and
u′ = ξu + θ(u − ξu). From the convexity assumption, x′ ∈ Cx, u′ ∈ Cu. This
means (∂/∂x)fi(x′,u′) is included in the i-th row interval vector of [A](Cx, Cu)
and (∂/∂u)fi(x′,u′) is included in the i-th row interval vector of [B](Cx, Cu).
This completes the proof. ut

Now, let [E]t,s be a sequence of interval vectors defined as

[E]0,s = [C]xs − ξx
s , (12)

[E]t,s′ =
∪

{s,a}∈pre(s′)

[[A]t−1,s,a[E]t−1,s + [B]t−1,s,a([C]ua − ξu
a) + (f(ξx

s , ξu
a) − ξx

s′)]

(13)

8 Y. Tazaki and J. Imura

where [A]t,s,a = [A]([E]t,s + ξx
s , [C]ua) and [B]t,s,a = [B]([E]t,s + ξx

s , [C]ua). From
Lemma 2, we have [E]t,s +ξx

s ⊇ Rt,s; thus, [E]t,s +ξx
s is an over-approximation of

Rt,s. This means that [E]t,s can be seen as a conservative estimate of the accumu-
lated error between xt and x̂t when x̂t = ξx

s (x̂t denotes the state of Σ̂ at time t).
Furthermore, equation (13) describes how the accumulated error of one symbolic
state is propagated to other symbolic states. The term [A]t−1,s,a[E]t−1,s expresses
the error of s being propagated to its successor s′, the term [B]t−1,s,a([C]ua −ξu

a)
expresses the input quantization error, and the term (f(ξx

s , ξu
a) − ξx

s′) expresses
the state quantization error. For later use, we write equation (12), (13) in the
form of an algorithm.

propagate error
for each s ∈ S do [E]0,s := [C]xs − ξx

s

for t = 1 to N
for each s′ ∈ S

[E]t,s′ :=
∪

{s,a}∈pre(s′)[[A]t−1,s,a[E]t−1,s + [B]t−1,s,a([C]ua − ξu
a)

+(f(ξx
s , ξu

a) − ξx
s′)]

end
end

The next lemma gives a sufficient condition for the N -step abstraction.

Lemma 3. Σ̂ is an N -step abstraction of Σ if

[E]t,s ⊆ Ēs (14)

holds for all t ∈ [0 : N], s ∈ [0 : S], where Ēs = R̄s − ξx
s .

From later on, we focus on cases in which R̄s is expressed as an interval vector.
In such cases, the evaluation of [E]t,s ⊆ Ēs is done by comparing real values at
most 2n times. The following algorithm checks the N -step abstraction.

max violation
{t, s, µ, i} := argmaxt∈[0:N],s∈[0:S],µ∈{−1,1},i∈[1:n](([E]t,s, µei) − (Ēs, µei))
p := ([E]t,s, µei) − (Ēs, µei)
return {t, s, µ, i, p}

The max violation algorithm returns a tuple {t, s, µ, i, p}, in which t, s and µei

denote the time, the cell index and the direction of the maximum error violation,
respectively, and p denotes the corresponding amount of violation. If p ≤ 0, it
means that condition (14) is satisfied and therefore no further refinement of the
meshes is needed. In the next subsection, we discuss how to refine the meshes if
p returned by max violation has a positive value.

4.4 Iterative refinement of meshes

Let us consider how to design a pair of meshes that satisfies (14). We want the
meshes not only to satisfy (14), but also to be as coarse as possible. However,
it is extremely difficult to guarantee that the obtained meshes are optimal in

Discrete-state Abstractions of Nonlinear Systems 9

terms of the number of cells. Instead, we take an iterative and greedy approach;
starting from a state mesh and an input mesh both composed of a single cell, we
subdivide a cell in a certain direction one by one until the error condition (14)
is satisfied. At each iteration, we first detect a cell and a direction that violate
the error margin most significantly. This is done by calling propagate error
followed by max violation, defined in the last subsection. Let us denote the
return values of max violation by {t, s′, µ, i, p}. Again, if p ≤ 0 then no further
refinement is needed and we can get out of the loop. Otherwise, we identify
a cell-direction pair whose contribution to the error ([E]t,s′ , µei) is the largest.
From (13), ([E]t,s′ , µei) is given by the following:

([E]t,s′ , µei) =
([C]xs′ − ξx

s′ , µei) if t = 0,

max
{s,a}∈pre(s′)

(
([E]t−1,s, µ[A]Tt−1,s,aei) + ([C]ua − ξu

a , µ[B]Tt−1,s,aei)

+ (f(ξx
s , ξu

a) − ξx
s′ , µei)

)
otherwise.

(15)

For later use, let us denote by pre(t, s′, µ, i) the pair {s, a} that gives the maxi-
mum in the right hand side of (15). We can observe from (15) that for t = 0, the
only way to reduce ([E]t,s′ , µei) is to reduce ([C]xs′ −ξx

s′ ,ei); i.e., to subdivide the
cell [C]xs′ in the i-th direction. On the other hand, for t > 0, ([E]t,s′ , µei) is given
by the maximum of the sum of three terms, where the maximum is taken among
all the predecessors of s′. Note that those three terms are interpreted as: the ac-
cumulated error propagated from s, the input quantization error, and the state
quantization error. Therefore, we have three options to reduce ([E]t,s′ , µei): to
reduce the accumulated error ([E]t−1,s, µ[A]Tt−1,s,aei), to reduce the input quan-
tization error ([C]ua − ξu

a , µ[B]Tt−1,s,aei), and to reduce the state quantization
error (f(ξx

s , ξu
a) − ξx

s′ , µei).
To reduce ([C]ua − ξu

a , µ[B]Tt−1,s,aei), we should subdivide [C]ua . However, a
question arises; in which direction should [C]ua be subdivided? Now, notice that
([C]ua − ξu

a , µ[B]Tt−1,s,aei) can be further decomposed into the following form:

([C]ua − ξu
a , µ[B]Tt−1,s,aei) = ([C], µ[Brow

i]T) =
∑

j∈[1:m]

([Cj], µ[Bij])

=
∑

j∈[1:m]

max{([Cj], µB ij), ([Cj], µBij)}

=
∑

j∈[1:m]

max{([C], µBijej), ([C], µBijej)}.

(16)

For ease of notation, we temporarily write [C] = [C]ua −ξu
a . Moreover, [Brow

i] and
[Bij] = [Bij , Bij] denote the i-th row vector and the (i, j)-element of [B]t−1,s,a,
respectively. From this equation, we observe that by subdividing [C]ua in the j-th
direction whose corresponding term in the summation is the largest, the overall

10 Y. Tazaki and J. Imura

input quantization error will be reduced the most. Thus, we choose this j as the
direction of subdivision.

For reducing (f(ξx
s , ξu

a) − ξx
s′ , µei), it is natural to subdivide [C]xs′ However,

we need an additional care; subdividing [C]xs′ in the i-th direction does not
always reduce (f(ξx

s , ξu
a)− ξx

s′ , µei). If (f(ξx
s , ξu

a)− ξx
s′)Tei > 0 then the change

of (f(ξx
s , ξu

a) − ξx
s′) resulting from the subdivision in the i-th direction is given

by −(([C]xs′ − ξx
s′ ,ei)/2)ei. On the other hand, if (f(ξx

s , ξu
a) − ξx

s′)Tei < 0, the
change of (f(ξx

s , ξu
a)− ξx

s′) will be (([C]xs′ − ξx
s′ ,ei)/2)ei. This means subdivision

is effective if and only if (f(ξx
s , ξu

a) − ξx
s′)Tei and µ have the same sign.

Finally, let us consider reducing ([E]t−1,s, µ[A]Tt−1,s,aei). Like (16), we have

([E]t−1,s, µ[A]Tt−1,s,aei) =
∑

j∈[1:n]

max{([E]t−1,s, µAijej), ([E]t−1,s, µAijej)}

(17)

where [Aij , Aij] denotes the (i, j)-element of [A]t−1,s,a. But in this case, it is
not straightforward to determine which cell (and in which direction) should be
subdivided in order to reduce ([E]t−1,s, µej) for given µ ∈ R and j ∈ [1 : n]. This
is because [E]t−1,s is itself an accumulated sum of quantization errors caused by
all the predecessors of s. Hence, we shall repeat the same discussion as above in
order to identify a cell and its direction to be subdivided. This leads us to the
following recursive algorithm, which determines a cell-direction pair that has the
most significant influence on ([E]t,s′ , µei).

identify bottleneck(t, s′, µ, i)
if t = 0

return {s′, i, ([C]xs′ − ξx
s′ , µei)/2}

else
C1 := ∅, C2 := ∅, C3 := ∅
{s, a} := pre(t, s′, µ, i)
[A] := [A]([E]t−1,s + ξx

s , [C]ua)
[B] := [B]([E]t−1,s + ξx

s , [C]ua)
if sgn((f(ξx

s , ξu
a) − ξx

s′ ,ei)) = sgn(µ)
C1 := C1 ∪ {s′, i, ([C]xs′ − ξx

s′ , µei)/2}
end
for j ∈ [1 : m]

C2 := C2 ∪ {a, j, ([C]ua − ξu
a , µBijej)/2}

∪ {a, j, ([C]ua − ξu
a , µBijej)/2}

end
for j ∈ [1 : n]

C3 := C3 ∪ identify bottleneck(t − 1, s, µAij , j)
∪ identify bottleneck(t − 1, s, µAij , j)

end
return argmax{c,d,p}∈C1∪C2∪C3

p

end

Let {c∗, d∗, p∗} be the return values of identify bottleneck(t, s′, µ, i). Here,

Discrete-state Abstractions of Nonlinear Systems 11

the variable c∗ could contain either a state symbol or an input symbol. In the
former case, [C]xc∗ is a cell of Mx, and in the latter case, [C]uc∗ is a cell of
Mu. We may omit the superscript and write [C]c∗ when the distinction is not
necessary. Connecting the above components all together, we obtain the following
algorithm.

refine mesh
Mx := {{0, X}}, Mu := {{0, U}}
loop

propagate error
{t, s′, µ, i, p} := max violation
if p ≤ 0 then terminate
{c∗, d∗, p∗} := identify bottleneck(t, s′, µ, i)
subdivide(c∗, d∗)

end

Here, subdivide is a procedure that divides the cell [C]c∗ in the direction d∗.
In the following, we will show that the algorithm refine mesh actually ter-

minates in finite iterations and produces a pair of meshes that defines an N -step
abstraction of the given original system. First, we introduce the following as-
sumption:

Assumption 1 There exists a positive constant ε that satisfies

{(x, x̂) | ‖x − x̂‖∞ ≤ ε} ⊆ R̄. (18)

This assumption is fairly natural and is satisfied in most cases including uniform
and relative error conditions shown in Section 2. Moreover, let us define

λA = max
x∈X,u∈U,i∈[1:n],j∈[1:n]

∣∣∣∣ ∂fi

∂xj
(x,u)

∣∣∣∣ ,

λB = max
x∈X,u∈U,i∈[1:n],j∈[1:m]

∣∣∣∣ ∂fi

∂uj
(x,u)

∣∣∣∣ .

The next lemma claims that there exists a lower-bound on the size of cells that
are subdivided at each iteration of refine mesh.

Lemma 4. In refine mesh, a pair (c∗, d∗) passed to subdivide at each itera-
tion satisfies

([C]c∗ − ξc∗ ,ed∗) ≥ ε

αNβN
(19)

where α0 = β0 = 1 and αt = max{maxk∈[0:t−1] λ
k
AλB , maxk∈[0:t] λ

k
A}, βt =

(
∑t

k=0 nk + m
∑t−1

k=0 nk) for t ≥ 1.

12 Y. Tazaki and J. Imura

Proof. At first, we will prove by construction that the output of identify
bottleneck(t, s′, µ, i), denoted by {c∗, d∗, p∗}, satisfies

([E]t,s′ , µei) ≤ 2p∗βt, (20)
([C]c∗ − ξc∗ ,ed∗) ≥ 2p∗/(|µ|αt). (21)

When t = 0, identify bottleneck immediately returns {s′, i, ([C]xs′−ξx
s′ , µei)/2}.

Here, ([E]0,s′ , µei) = ([C]xs′−ξx
s′ , µei) = 2p∗. Moreover, ([C]xs′−ξx

s′ ,ei) = 2p∗/|µ|.
Therefore we confirm that (20) and (21) hold for t = 0.

Now, suppose (20) and (21) hold for t = τ −1 and consider the case of t = τ .
Let us denote {cρ, dρ, pρ} = argmax{c,d,p}∈Cρ

p for each ρ ∈ {1, 2, 3} (recall that
Cρ are temporary variables that appear in identify bottleneck). Then, p∗ is
given by p∗ = max{p1, p2, p3}. Here we have

(f(ξx
s , ξu

a) − ξx
s′ , µei) ≤ 2p1, ([C]ua − ξu

a , µ[B]Tt−1,s,aei) ≤ 2mp2.

Moreover, from (20) with t = τ − 1 we have

([E]τ−1,s, µ[A]Tτ−1,s,aei) ≤ 2np3βτ−1.

Therefore

([E]τ,s′ , µei) ≤ 2p1 + 2mp2 + 2np3βτ−1 ≤ 2p∗βτ .

On the other hand, we have

([C]xs′ − ξx
s′ ,ed1) ≥ 2p1/|µ|, ([C]ua − ξu

a ,ed2) ≥ 2p2/(|µ|λB),
([C]c3 − ξc3 ,ed3) ≥ 2p3/(|µ|λAατ−1).

This yields

([C]c∗ − ξc∗ ,ed∗) ≥ 2p∗/max{|µ|, |µ|λB , |µ|λAατ−1} ≥ 2p∗/(|µ|ατ),

and we conclude that (20) and (21) hold for any t ≥ 0.
From Assumption 1, we have (Ēs′ , µei) ≥ ε for µ ∈ {−1, 1}. This means

([E]t,s′ , µei) ≥ ε holds for a tuple {t, s′, µ, i} passed to identify bottleneck.
From this together with (20) and (21) we obtain ([C]c∗ − ξc∗,ed∗) ≥ ε/(αtβt).
Since the right hand side of this inequality monotonically decreases with respect
to t, ([C]c∗ − ξc∗,ed∗) ≥ ε/(αNβN) holds for all t ∈ [0 : N]. ut

Now we come to our main result.

Theorem 1. For a system Σ and a binary relation R̄ satisfying Assumption 1,
the algorithm refine mesh terminates in finite iterations. Moreover, its outputs
Mx and Mu define a quantizer embedding QE(Σ,Q[Mx], Q[Mu]) that is an
N -step abstraction of Σ with respect to R̄.

Proof. refine mesh will not terminate before the error condition (14) is satis-
fied. On the other hand, from Lemma 4, the size of a cell subdivided at each
iteration has a positive lower-bound. Since we subdivide a cell in half, the amount
a cell shrinks at each subdivision also has a positive lower-bound. Moreover, the
state set X and the input set U are both bounded. These facts prove the theorem.

Discrete-state Abstractions of Nonlinear Systems 13

(a) State mesh for uniform error margin (c) State mesh for relative error margin

(b) Input mesh for uniform error margin (d) Input mesh for relative error margin

Fig. 2. Discrete abstraction of a linear system

Table 1. Growth of the number of cells

N 0 1 2 3 4 5 6 7 8 - 20

state grid 64 149 208 238 264 283 293 295 296 - 296

input grid 1 2 4 4 4 4 4 4 4 - 4

(a) Uniform error margin

N 0 1 2 3 4 5 6 7 - 10 11 12 - 20

state grid 4 6 14 42 73 97 109 118 - 120 121 121 - 121

input grid 1 1 1 2 4 6 6 8 - 8 8 10 - 10

(b) Relative error margin

5 Examples

This section shows some simple examples as graphical demonstrations.
Consider the following 2-dimensional linear system:

xt+1 = Axt + But, A =
[
0.68 −0.14
0.14 0.68

]
, B =

[
0

0.1

]
.

The state set is given as X = [−1, 1] × [−1, 1] and the input set is given as
U = [−1, 1]. For this system, at first we compute a discrete abstraction using
the uniform error condition R̄ = {(x, x̂) | ‖x− x̂‖ ≤ 0.3}. The result is shown in
Fig. 2(a),(b). The discrete abstraction obtained is composed of 296 states and 4
inputs. Next, for the same system we specify a relative error condition given as
R̄ = {(x, x̂) | ‖x−x̂‖ ≤ 0.2+0.7‖x̂‖}. This kind of error condition is particularly

14 Y. Tazaki and J. Imura

(a) Euler stepping (b) Poincaré section

Fig. 3. Discrete abstraction of val der Pol oscillator.

useful when only the systems behavior near the origin is of interest. The result
is shown in Fig. 2(c),(d). In this case, the discrete abstraction is composed of
120 states and 8 inputs. Table 1(a)(b) show how the number of cells grows with
respect to the step length N . We can observe that the number of cells does not
increase when N becomes larger than a certain value (in these examples, less
than 20). This implies a possibility that these discrete abstractions are valid for
infinite steps. More theoretical study is needed in a future work.

Next, we consider the discrete abstraction of the van der Pol oscillator as an
example of nonlinear periodic systems. The van der Pol oscillator is governed by
the following ordinary differential equation:

ẍ = µ(1 − x2)ẋ − x.

In order to apply our method, this system should be transformed into a discrete-
time system. We investigate two ways of time-discretization; Euler stepping and
Poincaré section. This time, we choose the Poincaré section as x ∈ [0.0, 3.0], ẋ =
0. Fig. 3(a) shows a discrete abstraction of the van der Pol oscillator in the Euler
stepping case. The parameters are set as µ = 0.5, h = 0.1 and N = 6, where
h denotes the step size. The state set is given as X = [−3, 3] × [−3, 3]. The
approximation precision is given as R̄ = {(x, x̂) | ‖x − x̂‖ ≤ 0.5}. In this result,
the discrete abstraction consists of 1294 discrete states. On the other hand,
Fig. 3(b) shows the case of Poincaré section. We can observe that the mesh is
densely subdivided near the origin. This reflects the fact that a small difference
of initial states near the origin could cause a significant difference of the number
of cycles required before converging to the periodic orbit.

6 Conclusion

In this paper, we have presented a computational approach to the discrete ab-
straction of nonlinear systems. The presented approach works well even within
the framework of discrete-state abstractions of interconnected systems developed

Discrete-state Abstractions of Nonlinear Systems 15

in [15]. That is to say, based on the result of [15], we can treat the case in which
our approach is applied to only a complex subsystem of the whole system, which
produces a kind of hybrid abstraction.

References

1. G. Lafferriere, G.J. Pappas and S. Sastry : Hybrid Systems with Finite Bisimula-
tions, P. Antsaklis et al. (Eds.) : Hybrid Systems V, LNCS 1567, 186/203, 1999.

2. M.E. Broucke : A geometric approach to bisimulation and verification of hybrid
systems, Hybrid Systems: Computation and Control (HSCC99), Lecture Notes in
Computer Science 1569, Springer-Verlag, 61/75, 1999.

3. L.C.G.J.M. Habets, P.J. Collins and J.H. van Schuppen : Reachability and control
synthesis for piecewise-affine hybrid systems on simplices, IEEE Transactions on
Automatic Control, Vol. 51, No. 6, 938/948, 2006.

4. M. Kloetzer, C. Belta : A Fully Automated Framework for Control of Linear
Systems from LTL Specifications, Hybrid Systems: Computation and Control
(HSCC06), Lecture Notes in Computer Science 3927, Springer-Verlag, 333/347,
2006.

5. P.E. Caines and Y. Wei : Hierarchical Hybrid Control Systems: A Lattice Theoretic
Formulation, IEEE Trans. on Automatic Control, Vol. 43, No. 4, 1998.

6. R. Alur, T.D. Verimag and F. Ivančić : Predicate Abstractions for Reachability
Analysis of Hybrid Systems, ACM Trans. on Embedded Computing Systems, Vol.5,
No.1, 152/199, 2006.

7. J. Lunze, B. Nixdorf and J. Schröder : Deterministic Discrete-event Representa-
tions of Linear Continuous-variable Systems, Automatica, Vol. 35, 395/406, 1999.

8. X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver and M.D. Lemmon : Supervisory
Control of Hybrid Systems, In Proc. of IEEE, Special Issue in Hybrid Systems.
P.J. Antsaklis, Ed., 1026/1049, July 2000.

9. J. Raisch and S.D. O’Young : Discrete Approximation and Supervisory Control of
Continuous Systems, IEEE Trans. on Automatic Control, Vol. 43, No. 4, 569/573,
1998.

10. A. Girard and G.J. Pappas : Approximation metrics for discrete and continuous
systems, IEEE Transactions on Automatic Control, 52(5), 782/798, 2007.

11. A. Girard : Approximately Bisimilar Finite Abstractions of Stable Linear Systems,
Hybrid Systems: Computation and Control, vol 4416 in LNCS, 231/244, Springer,
2007.

12. P. Tabuada : Approximate Simulation Relations and Finite Abstractions of Quan-
tized Control Systems, Hybrid Systems: Computation and Control, vol 4416 in
LNCS, 529/542, Springer, 2007.

13. G. Pola, A. Girard and P. Tabuada: Symbolic models for nonlinear control systems
using approximate bisimulation, 46th IEEE Conference on Decision and Control,
4656/4661, 2007.

14. Y. Tazaki, J. Imura; Finite Abstractions of Discrete-time Linear Systems and Its
Application to Optimal Control, 17th IFAC World Congress, 2008.

15. Y. Tazaki, J. Imura; Bisimilar Finite Abstractions of Interconnected Systems, Hy-
brid Systems: Computation and Control, vol 4981 in LNCS, 514/527, Springer,
2008.

16. N. Ramdani, N. Meslem, Y. Candau : Reachability of uncertain nonlinear systems
using a nonlinear hybridization, Hybrid Systems: Computation and Control, vol
4981 in LNCS, 415/428, Springer, 2008.

