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Abstract. This paper addresses the design of approximately bisimilar
finite abstractions of systems that are composed of the interconnection of
smaller subsystems. First, it is shown that the ordinary notion of approx-
imate bisimulation does not preserve the interconnection structure of the
concrete model. Next, a new definition of approximate bisimulation that
is compatible with interconnection is proposed. Based on this definition
of approximate bisimulation, the design of interconnection-compatible
finite abstractions of linear subsystems is discussed.

1 Introduction

Discrete abstractions simplify concrete continuous systems by cutting off the
details, while preserving the essential characteristics. Moreover, it reduces the
computational cost of numerical methods such as reachability analysis and con-
troller synthesis. During this decade, there have been a variety of researches
on this topic. Lafferriere et al [1] investigated a class of autonomous planar hy-
brid systems with finite bisimulations. Alur et al [2] presented algorithms for
reachability analysis of hybrid systems by combining the notion of predicate ab-
straction with polytopic approximation of reachable sets. Lunze [3] considered
continuous-time, continuous-state systems that can only be observed through
discrete events triggered when the state hits one of the boundaries placed on the
state space, and modeled the occurrence of discrete-event sequences as stochas-
tic automata. Tsumura [4] considered systems whose state is stored in a digital
memory and analyzed the relation between necessary bit-length to achieve a
certain bound on input-to-output approximation error, and systems properties
such as stability.

Recently, there has been several researches on finite-state abstractions using
the notion of approximate bisimulation [6], which is an extension of the classi-
cal bisimulation. Girard [7] derived a procedure for constructing approximately
bisimilar finite abstractions of stable discrete-time linear systems. Tabuada [8]
addressed a design of approximately similar finite abstractions of continuous-
time nonlinear dynamical systems under a certain stabilizability assumption.
Tazaki [12] discussed the application of approximate bisimilar abstractions to
optimal control problems.



2 Y. Tazaki and J. Imura

To date, these approaches on discrete abstractions have been successful only
to systems of a relatively small size. This is mainly due to the fact that the num-
ber of the state of discrete abstractions often grows exponentially with respect
to the state dimension of the concrete system. If one knows the internal inter-
connection structure of a complex system, it is natural to take advantage of such
knowledge to reduce the complexity of the computation of the abstraction pro-
cess and that of the resultant abstraction itself. Tabuada et al [9] discussed the
relation between bisimulations and compositional operators in a general setting.
They showed that for a concrete system given by a composition of subsystems,
there exists a bisimilar abstraction that is expressed as a composition of bisimilar
abstractions of subsystems. Julius et al [11] addressed approximate syncroniza-
tion and showed that approximate (bi)simulation is preserved under approximate
syncronization. However, in the case of input-output interconnection, which is
a special class of composition, the interconnection structure of the concrete sys-
tem is not in general preserved in its abstraction. This means that, under the
conventional bisimulation, one cannot simply interconnect the abstractions of
subsystems to construct an abstraction of the original interconnected system.

In this research, motivated by the above background, we propose a new vari-
ant of approximate bisimulation that is compatible with interconnected systems.
Furthermore, based on the proposed interconnection-compatible bisimulation,
the design of finite abstractions of linear subsystems is developed.

The rest of this paper is organized as follows. In Section 2, we define the
basic form of discrete-time dynamical systems treated in this paper, and the
notion of approximate simulation and approximate bisimulation on this class of
systems. In Section 3, after introducing the framework of input-output intercon-
nected systems, we show with a simple example that the ordinary approximate
bisimulation does not preserve the interconnection structure. To overcome this
problem, we propose a new notion of approximate bisimulation that is compati-
ble with interconnection. In Section 4 we discuss the finite abstraction problem
of linear subsystems, according to the definition of approximate bisimulation
introduced in Section 3. Section 5 concludes this paper with some remarks for
future works.

Notation: The symbol [v1;v2; ...;vN ] denotes the vertical concatenation of vec-
tors or that of matrices, which is equivalent to [vT

1 vT
2 . . . vT

N ]T. Throughout the
paper, the symbol ‖ · ‖ denotes the 2-norm unless otherwise stated. Moreover,
the symbol ‖v‖M is defined as

√
vTMv . For matrices, ‖A‖ denotes the largest

singular value of A.

2 Approximate simulations and bisimulations of
discrete-time dynamical systems

In this section, we introduce the definition of approximate (bi)simulation on a
class of discrete-time dynamical systems. Let us first define the basic form of
discrete-time dynamical systems.
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Definition 1. Discrete-time dynamical system
A discrete-time dynamical system (or simply a system) is a 5-tuple 〈X,U, Y, f, h〉,
where X ⊂ Rn is the set of states, U ⊂ Rm is the set of inputs, Y ⊂ Rl is the set
of outputs, f : X ×U 7→ X is the state transition function, and h : X ×U 7→ Y
is the measurement function. The state, input, and output of the system at time
t ∈ T = {0}∪N are expressed as xt ∈ X, ut ∈ U , and yt ∈ Y , respectively. The
state transition and the measurement at time t are expressed as

x(t + 1) = f(x(t),u(t)), (1)
y(t) = h(x(t),u(t)), (2)

respectively.

Throughout this paper, we use the symbol Σ〈X,U, Y, f, h〉 or simply Σ to
express a system. Let us introduce the notion of approximate simulation and
approximate bisimulation on the class of systems just defined.

Definition 2. Approximate simulation of dynamical systems
Consider two systems Σ〈X,U, Y, f, h〉, Σ̂〈X̂, Û , Y, f̂ , ĥ〉 and positive constant ε.
A binary relation R ⊂ X×X̂ is called an ε-approximate simulation relation from
Σ to Σ̂ if and only if for every (x, x̂) ∈ R, the following holds:
for all u ∈ U , there exists a û ∈ Û such that

‖h(x,u) − ĥ(x̂, û)‖ ≤ ε, (3)

(f(x,u), f̂(x̂, û)) ∈ R. (4)

Moreover, if such an R exists, Σ̂ is said to be approximately similar to Σ with
respect to R and the precision ε.

Definition 3. Approximate bisimulation of dynamical systems
Consider two systems Σ〈X,U, Y, f, h〉, Σ̂〈X̂, Û , Y, f̂ , ĥ〉 and positive constant ε.
A binary relation R ⊂ X × X̂ is called an ε-approximate bisimulation relation
between Σ and Σ̂ if and only if R is an ε-approximate simulation relation from
Σ to Σ̂ and its inverse relation R−1 = {(x̂,x) | (x, x̂) ∈ R} is an ε-approximate
simulation relation from Σ̂ to Σ. Moreover, if such an R exists, Σ and Σ̂ are
said to be approximately bisimilar with respect to R and the precision ε, and this
relation is denoted by Σ ∼ε Σ̂.

The major difference between the above definitions and those introduced in
the literature (see [6], for example) is that the measurement variable of dynamical
systems depend not only on states but also on control inputs, and therefore the
definitions of approximate (bi)simulation are extended accordingly.

3 Approximate Bisimulation of Interconnected Systems

3.1 Expression of interconnected systems

This subsection introduces the general expression of interconnected systems
treated in this paper. Consider a complex system composed of N subsystems
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(a) i-th subsystem of interconnected system. (b) Interconnection of two sub-systems.

Fig. 1. Schematics of interconnected system.

interconnected with each other. The i-th subsystem is described as

Σi〈Xi, Ui, Yi, fi, hi〉.

Here, the input variable ui ∈ Ui and the output variable yi ∈ Yi are decomposed
into subvectors as shown below.

ui =
[
uext

i ; wi

]
, wi =


[
wi2; . . . ; wiN

]
(i = 1)[

wi1; . . . ; wi,N−1

]
(i = N)[

wi1; . . . ; wi,i−1; wi,i+1; . . . ; wiN

]
otherwise.

(5)

yi =
[
yext

i ; zi

]
, zi =


[
zi2; . . . ; ziN

]
(i = 1)[

zi1; . . . ; zi,N−1

]
(i = N)[

zi1; . . . ; zi,i−1; zi,i+1; . . . ; ziN

]
otherwise.

(6)

Each subsystem has two groups of input signals (uext
i and wi) and two groups

of output signals (yext
i and zi). The signals wi and zi are internal signals, used

to construct interconnections between other subsystems. On the other hand,
uext

i and yext
i are external signals, which compose, together with those of other

subsystems, the input/output interface of the whole interconnected system.
Here, for simplicity of discussion, we introduce the following assumption to

ensure that the interconnected system is well-posed.
Assumption 1. The internal output variables at time t, zi(t), are independent
of the internal input variables at time t, wi(t).
The measurement function is then decomposed as

yi =
[
yext

i

zi

]
=

[
hy

i (xi,u
ext
i ,wi)

hz
i (xi,u

ext
i )

]
. (7)

We first define the parallel composition of two subsystems.

Definition 4. Parallel composition
Suppose two systems Σi〈Xi, Ui, Yi, fi, hi〉 (i = 1, 2) are given. The parallel com-
position of Σ1 and Σ2 is the system 〈X1 × X2, U1 × U2, Y1 × Y2, f1‖f2, h1‖h2〉
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whose state transition function and measurement function are defined as follows.[
x1

x2

]
(t + 1) = (f1‖f2)

([
x1

x2

]
(t),

[
u1

u2

]
(t)

)
=

[
f1(x1(t),u1(t))
f2(x2(t),u2(t))

]
,

y(t) = (h1‖h2)
([

x1

x2

]
(t),

[
u1

u2

]
(t)

)
=

[
h1(x1(t),u1(t))
h2(x2(t),u2(t))

]
.

(8)

We denote by Σ1‖Σ2 the parallel composition of Σ1 and Σ2. The parallel
composition of more than two systems are defined recursively as follows.

Σ1‖Σ2‖ . . . ‖ΣN := Σ1‖(Σ2‖ . . . ‖ΣN ). (9)

The interconnection of subsystems are obtained by imposing restrictions rep-
resenting the interconnections of the internal signals on their parallel composi-
tion.

Definition 5. Interconnection of subsystems
Suppose N subsystems Σi〈Xi, Ui, Yi, fi, hi〉 (i = 1, 2, . . . , N), whose input vec-
tors and output vectors are decomposed as in (5) and (6), respectively, are
given. Moreover, suppose the size of subvectors wij and zji matches for all
i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N}\{i}. The interconnection of Σ1, Σ2, . . . ,
and ΣN , denoted by I(Σ1, Σ2, . . . , ΣN ), is defined as the parallel composition
Σ1‖Σ2‖ . . . ‖ΣN subject to the constraints

wij = zji (i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N}\{i}) (10)

and whose input and output variables are defined as

ū =
[
uext

1 ;uext
2 ; . . . ;uext

N

]
, ȳ =

[
yext

1 ;yext
2 ; . . . ;yext

N

]
. (11)

Fig. 1(a) illustrates the block diagram of the i-th subsystem, and Fig. 1(b) shows
the interconnected system with two subsystems.

3.2 Composition-compatible bisimulation

There are some important aspects that the abstractions of interconnected sys-
tems should be equipped with. First, it should preserve the interconnection struc-
ture of the original system. In addition, it is preferable if we could design the
abstraction separately for each subsystem. However, using the ordinary definition
of bisimulation, the interconnection of the bisimilar abstractions of subsystems
is not in general bisimilar with the original interconnected system. This can be
shown in the following simple example.

Let us consider two systems Σ1 and Σ2 connected in a cascade (Fig. 2(a)).
We denote by Σ̂i an abstraction of Σi, which is εi-approximately bisimilar to
Σi with the binary relation Ri. Our question is whether the cascade of the
abstractions (shown in Fig 2(b)) is approximately bisimilar to the cascade of the
original systems, under the notion of the conventional bisimulation.
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(a) Cascade of subsystems. (b) Cascade of abstractions.

Fig. 2. Cascade of two subsystems.

In the cascade of Σ1 and Σ2, the equality

y1 = u2 (12)

holds. In the cascade of Σ̂1 and Σ̂2, on the other hand, assuming that the inter-
connection is temporarily cut off, approximate bisimilarity implies that

‖yi − ŷi‖ ≤ εi (i = 1, 2)

hold for some ŷ1, ŷ2, û1 and û2. The equality constraint ŷ1 = û2 is in general
not met, unless ε1 = 0 (meaning that Σ̂1 is strictly similar to Σ1) and Σ̂2 = Σ2.
Thus, the conventional bisimulation is not compatible even with this simple
interconnection.

In the following, we propose a new variation of approximate bisimulation
that is compatible to interconnection operation.

Definition 6. Interconnection-compatible approximate simulation
Suppose subsystems Σi〈Xi, Ui, Yi, fi, hi〉, Σ̂i〈X̂i, Ûi, Ŷi, f̂i, ĥi〉, and a set of posi-
tive constants

εi = {εy
i , {εw

ij}j∈{1,...,N}\{i}, {εz
ij}j∈{1,...,N}\{i}} (13)

are given. A binary relation Ri ∈ Xi × X̂i is an interconnection-compatible (IC
in short) εi-approximate simulation relation from Σi to Σ̂i if and only if for
every (xi, x̂i) ∈ Ri, the following holds:
for all ui = [uext

i ;wi] (wi = [wi1; . . . ;wiN ]), there exists a ûext
i that satisfies

the following two conditions.
1. For [zi1; . . . ;ziN ] = hz

i (xi,u
ext
i ) and [ẑi1; . . . ; ẑiN ] = ĥz

i (x̂i, û
ext
i ),

‖zij − ẑij‖ ≤ εz
ij (j ∈ {1, . . . , N}\{i}). (14)

2. For all ŵi = [ŵi1; . . . ; ŵiN ] within the range ‖wij − ŵij‖ ≤ εw
ij,

‖hy
i (xi,u

ext
i ,wi) − ĥy

i (x̂i, û
ext
i , ŵi)‖ ≤ εy

i (j ∈ {1, . . . , N}\{i}) (15)

and

(fi(xi,u
ext
i ,wi), f̂i(x̂i, û

ext
i , ŵi)) ∈ Ri (16)

hold.
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Definition 7. Interconnection-compatible approximate bisimulation
Suppose subsystems Σi〈Xi, Ui, Yi, fi, hi〉, Σ̂i〈X̂i, Ûi, Ŷi, f̂i, ĥi〉 and a set of posi-
tive constants εi defined as in (13) are given. A binary relation Ri ⊂ Xi × X̂i is
called an IC εi-approximate bisimulation relation between Σi and Σ̂i if and only
if Ri is an IC εi-approximate simulation relation from Σi to Σ̂i and its inverse
relation R−1

i is an IC εi-approximate simulation relation from Σ̂i to Σi. More-
over, if such an Ri exists, Σi and Σ̂i are said to be IC-approximately bisimilar
with respect to Ri and the precision εi, and this relation is denoted by Σi ∼I

εi
Σ̂i.

The major difference between the above definition and the ordinary approx-
imate bisimulation is that, the internal input signals ŵij are regarded as distur-
bances rather than control inputs.

Remark 1. For systems without internal input signals, Definition 7 reduces to
the definition of ordinary approximate bisimulation with the output error bound
separately specified to yext

i and zijs. For systems without external input signals,
Definition 7 becomes a bounded output error condition under bounded distur-
bances.

The following theorem states that IC-approximately bisimilar abstractions
are actually compatible with interconnection.

Theorem 1. Suppose N subsystems Σi (i = 1, . . . , N) are given, and for each of
them, Σ̂i is an IC-approximately bisimilar abstraction with respect to the binary
relation Ri and the precision set εi. If the condition

εw
ij ≥ εz

ji (i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N}\{i}) (17)

is satisfied, the two interconnected systems I(Σ1, . . . , ΣN ) and I(Σ̂1, . . . , Σ̂N )
are approximately bisimilar (in the sense of Definition 3) with respect to the
relation

R = {((x1;x2; . . . ;xN ), (x̂1; x̂2; . . . ; x̂N )) | (xi, x̂i) ∈ Ri (i = 1, 2, . . . , N)}
(18)

and the precision

ε =
∑

i

εy
i . (19)

The proof is given in Appendix A.
Now let us return to the previous cascade system example and make sure

that the cascade of abstractions based on Definition 7 is actually approximately
bisimilar to the original system. Suppose Σ1 ∼I

ε1
Σ̂1 with respect to the relation

R1 and Σ2 ∼I
ε2

Σ̂2 with respect to the relation R2, where ε1 = {εz
12}, ε2 =

{εy
2, ε

w
21}. For any uext

1 , there exists ûext
1 that satisfies ‖z12 − ẑ12‖ ≤ εz

12 (and
vice versa). Moreover, the condition ‖yext

2 − ŷext
2 ‖ ≤ εy

2 holds as long as the
condition ‖w21 − ŵ21‖ ≤ εw

21 is satisfied. Therefore, if the condition εw
21 ≥ εz

12
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(a) Block diagram of Q(Σ) (b) State transition of Q(Σ)

Fig. 3. System with state quantizer.

holds, the cascade of Σ̂1 and Σ̂2 is approximately bisimilar to the cascade of Σ1

and Σ2 with the precision ε = εy
2.

In order to design the abstractions of subsystems that preserve approximate
bismilarity under interconnection, one should first divide the input-output sig-
nals into groups of those used for external interface and those used for inter-
connection, and then design the abstractions satisfying the conditions stated in
Theorem 1. Moreover, the precision parameter of each abstraction should be cho-
sen according to the condition (17). The proposed method enables us to design
the abstraction of each subsystem in a separate way by regarding errors on inter-
nal signals as disturbances. One should keep in mind, however, that this could
produce a conservative result compared to designing the abstraction by viewing
the original interconnected system as a whole, if such a method is available.

4 Finite abstractions of linear subsystems

In the previous section, we have introduced the notion of interconnection-
compatible approximate bisimulation. As the next step, in this section we ad-
dress the design of approximately bisimilar finite abstractions of subsystems of
interconnected systems. The term finite abstraction refers to a finite state system
that approximates a continuous-state system.

4.1 Expression of finite abstractions via state quantization

One of the most important issues of the finite abstraction problem is about the
expression of finite automata. In the following, we propose a way of expressing
finite automata via state-quantization of continuous-state systems.

First of all, a quantization function is defined as follows.

Q : X 7→ X . (20)

Here, the set X = {x1, . . . , xN} is a finite subset of X.
The following definition introduces the notion of finite automata induced by

the state-quantization of continuous-state systems.
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Definition 8. Finite automata induced by state quantization
Consider a dynamical system Σ〈X,U, Y, f, h〉 and a quantization function Q :
X 7→ X . The following system is called a finite automaton induced by the state
quantization of Σ, denoted by Q(Σ).

Q(Σ) :

{
x(t + 1) = Q(f(x(t),u(t)))
y(t) = h(x(t),u(t))

(x(0) ∈ X ). (21)

The block diagram and the state transition of a Q(Σ) is illustrated in Fig. 3.
Notice that, in this state equation, the state transition is closed in X as long as
the initial state is chosen from X . To clarify this property, we define the subset
of the input set as

Uij = {u ∈ U |Q(f(xi,u)) = xj}, (22)

which refers to the set of control inputs that drives the state xi to xj . Note that
from the property of the quantization function Q, {Uij}j forms a partition of U
for each i. Using this notation, the state transition of Q(Σ) is rewritten as

x(t) = xi ∧ u(t) ∈ Uij ⇒ x(t + 1) = xj . (23)

In this way, the input set is also discretized as a class induced from the
state transition over finite states. Therefore, the partition of the input set is
dependent on the current state. This implicit fashion of the input discretization
differs from the other researches (like [7],[8]), where explicit input quantization
or originally discrete input systems are considered. Moreover, in the case that
the measurement function is a function of states only (written as h(x)), the state
quantization results in indirect quantization of the output set; i.e., Y 7→ Y =
{h(x) |x ∈ X}.

4.2 Approximate bisimulation condition of finite abstraction

In this subsection, we address the design of finite abstractions of linear subsys-
tems. Linear subsystems are expressed as follows.

Σi :



xi(t + 1) = Aixi(t) + Bu
i uext

i (t) +
∑

j∈{1,2,...,N}\{i}

Bw
ijwij ,

yext
i (t) = Cy

i xi(t) + Dyu
i uext

i (t) +
∑

j∈{1,2,...,N}\{i}

Dyw
ij wij ,

zij(t) = Cz
ijxi(t) (j ∈ {1, 2, . . . , N}\{i}).

(24)

We assume that the state set Xi of Σi is bounded. For systems of this form,
we express their abstractions as state-quantized systems Qi(Σi), defined in the
previous subsection. Then the problem of concern reduces to deriving a quanti-
zation function Qi whose resultant Qi(Σi) is IC-approximately bisimilar to Σi

with respect a binary relation Ri satisfying the condition.

For any x ∈ Xi, there exists a x̂ ∈ Xi such that (x, x̂) ∈ Ri, (25)

where Xi denotes the state set of Qi(Σi).
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Remark 2. The condition (25) is necessary for applying bisimilar abstractions to
actual analysis and control problems, assuming that the initial state is arbitrarily
chosen from Xi. In [11], this condition is imposed in the definition of approximate
(bi)simulation.

Theorem 2. Interconnection-compatible approximately bisimilar finite abstrac-
tions of linear subsystems
Let Σi be an (Ai, B

u
i )-stabilizable discrete-time linear system defined by (24) and

let εi be a set of positive constants defined by (13). There exist a matrix Fi, a
positive definite matrix Mi and a constant λi ∈ (0, 1) satisfying the conditions

(Ai + Bu
i Fi)TMi(Ai + Bu

i Fi) ≤ λ2
i Mi, (26)

Mi ≥
1

(1 − λi)2α2
i

(Cy
i + Dyu

i Fi)T(Cy
i + Dyu

i Fi),

Mi ≥
1

(1 − λi)2εz
ij

2 (Cz
ij + Dzu

ij Fi)T(Cz
ij + Dzu

ij Fi) (j ∈ {1, 2, . . . , N}\{i})
(27)

where the constant αi is given by

αi := εy
i −

∑
j∈{1,2,...,N}\{i}

||Dyw
ij ||εw

ij . (28)

Furthermore, if αi and the constant defined as

βi := 1 −
∑

j∈{1,2,...,N}\{i}

||Bw
ij

TMiB
w
ij ||εw

ij (29)

are both positive, then for a quantization function Qi satisfying the condition

||xi − Qi(xi)||Mi ≤ βi ∀xi ∈ Xi, (30)

the systems Σi and Qi(Σi) are IC-approximately bisimilar with respect to the
precision εi and the relation

Ri = {(x, x̂) | ||x − x̂||Mi ≤ 1/(1 − λi)}, (31)

which satisfies (25).

A rough explanation of Theorem 2 is as follows: Bisimulation can be cap-
tured as a tracking problem of two systems. If one system can track the other
system’s output trajectory with a constant error bound (say ε), then this system
is similar to the other with the precision ε. Moreover, if both systems can track
their opponent’s trajectory, then they are bisimilar to each other. Therefore, in
those cases when both systems are linear, the problem can be viewed as the
stabilization problem of the error system, and in such cases, the bisimulation
relation is related to the invariant set of the error system. A detailed proof is
given in Appendix B.
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(a) Output response.

(b) Difference of the output trajectories

of I(Σ̂1, Σ2) and I(Σ1, Σ2).

Fig. 4. Output response of I(Σ̂1, Σ2) and I(Σ1, Σ2).

Finally, an explicit expression of the quantizer Qi satisfying the condition
(30) is given as follows.

Qi(x) =
(√

n

2
Ui

)−1 [(√
n

2
Ui

)
x

]
(32)

Here, the matrix Ui is given by UT
i Ui = Mi/β2

i , n is the size of x and [x] is the
rounding function, which maps each element of x to its nearest integer.

4.3 Example

This section shows a simple example. Consider an interconnected system com-
posed of two subsystems. The parameters of the subsystems are given as follows.

Σ1 :


x1(t + 1) =

[
1.0 0.1
−1.0 0.7

]
x1(t) +

[
0.0 0.0
1.0 0.1

] [
uext

1 (t)
w12

]
[
yext
1

z12

]
(t) =

[
1.0 0.0
0.0 0.1

]
x1(t)

Σ2 :

x2(t + 1) =
[

0.7 0.1
−1.0 0.5

]
x2(t) +

[
0.0
0.2

]
w21(t)

z21(t) =
[
0.0 0.2

]
x2(t)

Let us derive an abstraction of this system by first designing a finite abstrac-
tion of Σ1 only, and next making its interconnection with Σ2.

The following parameters are chosen to meet the conditions in Theorem 2.

εy
1 = 0.1, εz

12 = εw
21 = 0.1, εz

21 = εw
12 = 0.05

M1 =
[
2.3e3 2.2e2
2.2e2 4.3e1

]
, F1 =

[
−4.1 −1.2

]
, λ1 = 0.7

M2 =
[
1.6e3 1.6e2
1.6e2 1.9e2

]
, λ2 = 0.7
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Substituting the above values of M1 and β1 = 0.97 to (32) we obtain the quan-
tizer Q1 and hence Σ̂1 = Q1(Σ1).

Fig. 4 shows the output response of the two systems I(Σ̂1, Σ2) and I(Σ1, Σ2).
The input signal

uext
1 (t) =

{
1.0 (t < 30)
0.0 (t ≥ 30)

is applied to I(Σ1, Σ2), and the input signal for I(Σ̂1, Σ2) is given by ûext
1 =

uext
1 (t)+F1(x̂1(t)−x1(t)). It is observed from the figure that the specified output

error bound is achieved.

5 Conclusion

In this paper we discussed the design of finite abstractions of interconnected sys-
tems. In a general setting of interconnected systems, we introduced an extended
notion of approximate bisimulation, which is compatible with interconnection.
This means that the abstractions of subsystems that are based on the presented
approximate bisimulation can be connected with each other to form an abstrac-
tions of the whole system. We have also presented a design procedure for the
finite abstraction of linear subsystems under this new notion of approximate
bisimulation. In future works, we should extend the class of subsystems whose
finite abstractions are computable.
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A Proof of Theorem 1

We only prove the approximate similarity from I(Σ1, . . . , ΣN ) to I(Σ̂1, . . . , Σ̂N ).
The opposite case is treated in the same manner. Suppose, for each i, the state
xi of the subsystem Σi and the state x̂i of its abstraction Σ̂i are in the relation
Ri. Moreover, suppose that the input ū = [uext

1 ; . . . ;uext
N ] of I(Σ1, . . . , ΣN ) is

arbitrarily chosen. Then, for each i, the internal output, internal input, external
output and state transition are subsequently determined as zi = hz

i (xi,u
ext
i ),

wij = zji, yext
i = hy

i (xi,u
ext
i ,wi), and x′

i = fi(xi,u
ext
i ,wi). From the approxi-

mate bisimilarity of Σi and Σ̂i, there exists ¯̂u = [ûext
1 ; . . . ; ûext

N ] satisfying (14)
and also, under the assumption

‖wij − ŵij‖ ≤ εw
ij , (33)

satisfying (15) and (16). From the condition (17), the assumption (33) is actually
fulfilled. Finally, it is straightforward from (15) that ‖ȳ − ˆ̄y‖ ≤ ε holds with ε
defined by (19).

¤

B Proof of Theorem 2

From the stabilizability assumption, there exists a matrix Fi making the eigen-
values of (Ai +Bu

i Fi) strictly inside the unit circle and hence one can show that
Mi and λi satisfying (26),(27) exist by following the line of Proposition 3 in [6].
Let us denote the state, the input and the output of Qi(Σi) by x̂i, ûi and ŷi,
respectively. We first derive the condition for Qi(Σi) to be approximately similar
to Σi. Taking the difference of the state equations of Qi(Σi) and Σi, we obtain
the error system

ei(t + 1) = Aiei(t) + Bu
i δuext

i (t) +
∑

j∈{1,2,...,N}\{i}

Bw
ijδwij + di(t) (34)
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where ei = x̂i − xi, δuext
i = ûext

i − uext
i , δwij = ŵij − wij and di is the

quantization error defined by di(t) = Qi(Aix̂i(t)+Biûi(t))−(Aix̂i(t)+Biûi(t)).
Here, we specify the control input ûext

i (t) as a function of xi(t), x̂i(t) and uext
i (t)

defined by ûext
i (t) = uext

i (t) + Fi(x̂i(t)−xi(t)) where Fi is a matrix making the
matrix (Ai + Bu

i Fi) asymptotically stable. Then the error dynamics is written
as

ei(t + 1) = (Ai + Bu
i Fi)ei(t) +

∑
j∈{1,2,...,N}\{i}

Bw
ijδwij(t) + di(t) (35)

and moreover, the following inequality holds.

‖ei(t + 1)‖Mi
≤ λi‖ei(t)‖Mi

+ 1 − βi + ‖di(t)‖Mi
.

Here, Mi is the positive definite matrix satisfying (26),(27) and the constant βi

is defined by (29). From the condition ‖di(t)‖Mi ≤ βi, the set Ei defined as

Ei = {e | ‖e‖Mi ≤ 1/(1 − λi)} (36)

is an invariant set of the error system. Moreover, from (27) and (28), every
element e ∈ Ei satisfies the conditions

‖ŷext
i − yext

i ‖ ≤ ‖(Cy
i + Dyu

i Fi)e‖ +
∑

j∈{1,2,...,N}\{i}

‖Dyw
ij ‖εw

ij ≤ εy
i ,

‖ẑij − zij‖ = ‖(Cz
ij + Dz

ijFi)e‖ ≤ εz
ij (j = 1, . . . , N, j 6= i).

Therefore it follows that the binary relation Ri defined as Ri = {(x, x̂) | (x̂ −
x) ∈ Ei}, which is written equivalently as (31), is an IC-approximate simulation
relation from Σi to Qi(Σi) with the precision εi.

In the opposite case, choosing the control input uext
i (t) as uext

i (t) = ûext
i (t)+

Fi(xi(t) − x̂i(t)) yields the same error system as (35). Therefore, the relation
(31) is an IC-approximate bisimulation relation between Σi and Qi(Σi).

¤


