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Abstract—This paper presents a method that computes an procedure to obtain an approximate solution that is arbitrarily
approximate solution to a class of optimal control problems in  close to the exact solution. Multiresolution approaches have
arbitrary precision based on a discrete abstraction technique. been investigated in the control and robotics field [10][11].

Using a discrete abstract model, one can obtain upper and lower . . :
bounds on the optimal cost of an optimal control problem. By There is a fundamental difference, however, that they mainly

making use of this property, the method initially constructs focus on mU"[ireSQ'Ution rel_)resentf_ition .Of th? input space,
a coarse discrete model, and then it gradually increases the whereas we consider multiresolution discretization of the

resolution of discretization to tighten the bound on the optimal  gtate space to obtain a finite-state model that is well suited
cost until the rgquired precision_ is satisfied. The effectiveness to optimal control.
sztge TethOd Is demonstrated in & path-planning problem on The rest of this paper is organized as follows. In Section
a ane. .
P II, we formulate the class of optimal control problems we
. INTRODUCTION consider. Next, in Section IIl, we review the representation of
. L ) .. discrete models using mesh structures. Section IV describes
Discrete abstraction is a technique to construct a fInItEh-OW to bound the optimal cost using a discrete model. We
state model that approximates the behavior of a dynamicgls,, gerive a method to actually compute this bound based
system with continuous states. Control of continuous-sta{g1 the forward dynamic programming. The tightness of the
systems poses various difficulties such as the nonlinearity BBund depends on the resolution of the mesh. Section V
the sysigm’s dyna?mc_s and the non-convexnly of Cok'?s”a'ntﬁresents a simple algorithm that gradually increases the mesh
By making use of discrete abstract models, such controlstion until a required precision on the cost bound is
problems are converted into path-planning problems on f'n'tfchieved. In Section VI, we apply the proposed technique

automata, most of which can be solved using novel sear¢§ 5 simple path-planning problem of a 2D vehicle. Finally,
techniques whose computational complexities @(&V) (N concluding remarks are given in Section VII.

is normally the length of prediction time steps). To date

various methods on the control system design using discré}@tat'on) The symbol[i, : i] denotes a sequence of

models have been explored [1]-[6]. In particular, Munos [7]11€9€7Si1,71+1, . .. i>. Moreover.z;, ;, denotes an indexed
equence of variables, , z;, 11, .., z;,. To denote thenax

focuses on approximating value functions in optimal contr )
by the discretization of the state space. However, the methQ§eration, we usemaxp(z)f(z) and max (f(z)|P(2));
does not provide a measure of how much the approximal é)th EXpressions denote t_he maximum valuef f) unde_:r
solution is close to the optimal solution. The authors [9] hav 3 co*ndmon that the prechaYé(x) IS true. When we write
shown that discrete abstract models based on approximafe * ) = maxp(z)f(z), f* denotes the maximum and
bisimulation [8] provides an approximate solution to optima gnotes th? maximizer. The same notation is used for the
control problems with a quantitative performance measurd* operation.

One critical drawback is that the discretization is uniform, Il. PROBLEM SETTING

meaning that the number of symbolic states grow exponen- this paper, we consider discrete-time systems with

tially with respect to the state dimension. continuous state variables and control inputs. A discrete-time

In this paper, we propose a technique to compute aé}/stem is a tuple X, X,, U, f), where X C R" is the set
approximate solution to optimal control problems usingy giates X, C X is the set of initial states) c R™ is
multiresolution discrete models. Unlike most of the previougne set of control inputs and : X x U — X is the state

methods, the proposed method is an on-line method, whigfynsition function. The state and the control input of the
constructs a discrete model after an initial state is given. éystem at time € Z+ are expressed as € X andu; € U

basic idea underlying the proposed method is that one Cc3ispectively. The state transition at timés expressed as
compute upper and lower bounds on the optimal cost by

making use of a discrete model. Moreover, one can tighten Tey1 = f(xr,ur). (1)

this bound by increasing the resolution of discretizatiofye assume that the sefs and U are both bounded. We
under a certain rule. The proposed method repeats this e anN-step trajectory of a systef = (X, Xo, U, f)

Y. Tazaki is with the Department of Mechanical Sci- by {z¢,u}o.n (be_ aware thaty is not included). If the
ence and Engineering, Nagoya University, Nagoya, Japamumber of steps is apparent from the context, we simply
tazaki@nuem.nagoya-u.ac.jp write {xs, us}
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tal Informatics, Tokyo Institute of Technology, Meguro, Tokyo, Japan. or this class of systems, we consider the following finite-
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Fig. 1. Discrete obtained by quantizer embedding Here,dom(M;) = X anddom(M}') = U. The symbolS;

denotes the set of cell identifiers of the state meShand.A;
denotes that of the input mesH;*. Note that cell identifiers
Problem 1 For a system® = (X, X,,U, f) and a given do not overlap between different meshes. Therefore, if we
initial state z € Xo, find a trajectory {z;, u;}o.y that (@K€ ans from S;, then a cell denoted by’s uniquely
minimizes identifies the cell of the state mesi;.
N_ Using these meshes, we define a symbolic systemhose
J({ze,uton) = Z (W (2) + ¥ (wg)] + % (zy) (2) Setof symbolic states and that of symbolic inputs at tirage
=0 given by S, and A4;, respectively, and the transition relation
at timet is written as

=

subject to (1) andey = =.

In the above problemJ : XV¥*! x UM — R defines
the cost of a given trajectory. Here, the cost need not be
positive. The functiong)¥ : X — R andyy : U — R

are assumed to be continuous. We do not consider constrajtiere s, € S, a; € A, ands,.; € Si41. Note that the
conditions explicitly; constraints should be encapsulated ipehavior of3: is defined only in the time intervdD : NJ.

the cost function as penalty terms. Our purpose is to obtain @ince each mesh is composed of finite cells, the system
approximate solution of this problem such that the differencg can be seen as a finite automaton. Fig. 1 illustrates this
between the cost of the approximate solution and the optimghnsformation in the case of a system with a scalar-valued
solution is below a prescribed positive constant state no input. Each mesW; covers the entire state domain
X. In the figure, f(&) (s € &) is included inCy (8" €

] ) ~ St41). Therefore, a symbolic transition— s’ is defined.
A. Construction of Discrete Models by means of Quantizers |, . . . - .
It is also possible to obtain a finite automaton without

In this section, we review the notion of quantizer emexpiicit input quantization. Like the previous case, the set

bedding [13], which is a systematic method to transforngf symbolic states at time is given by S;. The transition
a continuous-state system into a finite automaton. First @§|ation is defined as

all, we introduce a mesh structure. A mesh is a finite
collection of pairs of a node and a cell:

St & St41 <= f(gst’gat) € Ost+1 (5)

Ill. REPRESENTATION OFDISCRETEABSTRACT MODELS

St = Str1 S U € Us, 5405 6
M= {(6.C.)|s € 5}, ®3) Usw = {u| f(es,u) € O}, &

Here,S denotes a finite set of identifiers. EaCh (s € S) is

called a cell and each, < C; is called the node of the cell Here, a set of symbolic inputs is defined for each symbolic
Cs. The cells form a partition of the mesh domaiom (A1),  states,, and it is equivalent with the set of successor states;
that is,Cs, N Cs, = 0 (s1 # s2) andJ, Cs = dom(M). A thatis, for eachs € S;, we haveA; , = {s' | s — s’} instead

mesh defines a quantization function defined below: of A;. In the later discussion, we consider the case with
Q[M] : dom(M) — {£}ses input quantization only. Nevertheless, the proposed method is
sJeee (4) applicable to the case without input quantization with minor

QM](z) =& if z €. modification.

A quantization functiorQ[M](-) maps a given point inside  As a particular class of meshes, we consider variable-
its domain to a node whose corresponding cell includes resolution meshes composed of rectangular cells. A refine-
Now, let us define a series of meshes for the stateXset ment of a mesh is done by selecting a cell and subdividing
and the input set: it into two sub-cells. Here, a subdivision can be made in one
x ) of n directions. For an example, in the 2-dimensional case,
M ={(&,Cs)[s € &} (t€[0:ND), a cell can be divided either horizontally or vertically. Each
M} ={(§a, Ca) la € A} (t€[0: N —1]). of newly created cells has its node in its middle.



IV. BOUNDING OPTIMAL COSTUSING DISCRETE This recursive property is exploited in a dynamic
MODELS programming-based approach described later.
A. Trajectory Mapping between Continuous and Discrete F9- 2 illustrates the relation between a symbolic trajectory
Models and the set of continuous trajectories associated with it. The
) . _ i circles (symbolic states) connected by solid arrows depict a
~ In this section, we introduce transformation between trasymnolic trajectory(s:, a;} (symbolic inputs are not shown).
Jectorles. of the continuous-state modgl and the trajectorieg), cach time instant, a gray band drawn behind the
of the discrete-state model. For a trajectdny;, us} of &, nogee, depictsR,,. Therefore, all continuous trajectories
consider a mag*>~> defined as in ®*~%({s,,a,}) lies within these bands. One sample

(50,a;} = @E*E({xt,ut}) o trajectory is shown in dashes arrows.
zg € Cs,, @) Remark 1 The discussion made here has a close relation
ug + @&, wt) € Co,, between approximate bisimulation [8] of a continuous-state
st By 51 (tel0:N-1)) system and a discrete-state system. However, there is one

fundamental difference; while approximate bisimulation con-
The function®=—=% maps a trajectory oE to a trajectory siders arbitrary behavior, our aim is to approximate only the
of ¥. Here, the functiony satisfies¢(z, ) = —¢(#,«) and Optimal behavior.
serves as an error correction term that is to be added on tg_e Cost Bound
control input in order to compensate the error between the ) o . .
states of two systems; andé,,. If ¢ is set asj(-,-) = 0 In the following, it is shown that the optimal cost in (2)

St bl — Y1 . . .

then the same input trajectory is applied to both system§ bounded by the solution of a class of optimal control

One usage of is shown in Section VI. Similarly, consider problems defined on the discrete model. First, for a symbolic
a map@i—’g defined as ' trajectory {s;,a;}, consider the maximum and minimum

value of costs taken by continuous trajectories that are

(2,0} € D572 ({sy,ar}) & associated witH{s, a;} by ==,
Tg € 0807 (8) j({St, at}) = . ) ;Iila};({ n J({xt, Ut}), (13)
Ut = gat + ¢(:Et7 gst)7 Teuere - S
tel0:N—-1 = i ) 14
Toa1 = Flaou). el ) Lspa)=  min o J({zew)). (14

Here, >~ maps a trajectory of. to a set of trajectories A Set of continuous trajectories associated with a symbolic

of . This is natural sinc& has infinitely many trajectories, trajectory can be captured as uncertainty caused by quan-
while 3 has only finite trajectories. For these transformaltization. From this point of view,/ and J are interpreted

tions, we have the following lemma. as the worst-case cost and the best-case costsQf}
under uncertainty. Furthermore, for a symbolic state
Lemma 1 For {s;,a;} — (Dgﬁg({zt,ut}), (e u) € Sy, consider the miniml_Jm vglues Qf'({st,at}o;N) and
(I)g;ﬁg({sh a,}) holds. J({st,at}o.n) over all trajectories starting from:
* min-max . 7
Proof: Omitted. (] (7 (8), s ac} () = (sesarYoin 0= (e ar)),
Now, for a symbolic trajectory{s;,a;}, consider a set (15)
of trajectories given by®>~>({s;,a;}), and moreover,  (J*(s), {s¢,a;}™"™(s)) = min  J({s¢,a}).
consider the projection of this set onto the set of states at {se.ac}o.n,0=s (16)

time ¢. Let us denote this set bi,, to indicate that the set
of continuous states is related to the symbolic state at thet us call 7 (s) ({s¢,a;}™ ™M(s)) the min-max cost

same time instant. Then, the serigR;, }o.n is determined (trajectory) and.J*(s) ({s;,a;}™"™"(s)) the min-min cost
in a recursive manner, starting frofm= 0, as shown below. (trajectory).

For so, First, we obtain the following basic lemma.

Rsy = Clso- ©)  Lemma 2 LetJ* (z) be the optimal cost of Problem 1 with
Moreover, fort = 0,1,..., N — 1, an initial.sta_te:c € Xo. Moreover, lets € Sy be a symbolic

state satisfying: € C,. Then, the following statements hold.
Ro, ={u|z € Ry, ,u+ ¢(&s,,2) € C, }, (10) i) There exists a trajectorys;, a;} with sy = s such that
R5t+1 = {f((L’,’LL) |(E S Rst; u+ d)(gs“l') S Cat}« l({staat}) < J*(ZL')
Let us define these equations as maps holds
Ra, = F*(Rs,, (st,ar)), (11) i) For all trajectory {s,a;} with so = s,

Ruyy = FX(Ra,, (s1,00). (12) J(2) < T({se,ar})



holds. C. Cost Computation Using Dynamic Programming

So far, all discussion has been made in the trajectory
! level. However, it is not always a trivial task to compute an
_ PIEEDN koK _ !
{st,ac} = @ i} E{xt’ut }g.ﬂlgere we haveso = s. From upper-bound/ and a lower-bound/ for a given symbolic
Lemma 1, {xtv“ti < ©=7*({s,a,}) holds. Therefore yqiactory. Moreover, it is obviously inefficient to enumerate
J({s1,ar}) < J({zf, ui}) holds and thus we obtain the first o trajectories of the discrete model in order to find the min-
claim. _ . max/min-min trajectories, even though the trajectory space
Next, suppose/({s:, a:}) < J({z7,u;}) holds for some g finjte. In the following, it is shown that an overestimate
{st,a:} with sy = s. Then, a trajectory given by of the min-max cost and that of the min-min cost can be
S5 B computed using a forward dynamic programming technique.
{we,ue} € D777 ({51, a}), 2o = 2 At first, for each discrete statee S, we compute

Proof: Let {zf,u;} be the optimal trajectory and

satisfiesJ ({z, u }) < J({z},u;}), which contradicts the 7" = max ¥(z), J* = min ¥(z) (20)
optimality of {z},u}}. This proves the second claim. = ° el 0 I ren 0Mh
Based on Lemma 2, the next theorem provides a bound on RIM M= Oy, MM .= O, (21)

the optimal cost as well as a way to obtain a trajectory.of

whose cost is inside this bound. Next, fort € [1 : N] in the ascending order and for each

s’ € S;, compute

Theorem 1 Letx € X, be an initial state of Problem 1 and (77, (s,a)""™) :=  min [j:
let s € Sy satisfyingz € C,. Then, the following inequality (s,a) st.s=>s'
holds. 6 () + wE )}
max 2 (u max ()],
" N . u€ Fu(RMin-max (5 q)) x€ Fx(RMin-max (5 qY)
J(s) < () < T (s) (17) (22)
Moreover, a trajectory given by (J%, (s,a)minminy . — min [I;
. . (s,a) Sts—rs’
(T, 0} € 7 ({s1,a, )" ™™s)), fo =z (18)
o+ i )].
satisfies u€ R (RPN, (s,a)) T EF*(RTMMN,(5,a))
(23)
J({&i}) < T (@) + (T (s) = L(s).  (19)
Rm/in—max:: Fx(Rmin—max (S a)m,in—maX) (24)
Proof: The first claim is a straightforward consequence N i
Rsn'}ln min = F (R?ln mln’ (S, a)g}m mln). (25)

of Lemma 2. For{Z;, .}, we have

Unlike conventional dynamic programming, the above pro-

cedure computes two different costs, the min-max cost and
(s) the min-min cost, as well as some other related quantities.
For eachs, J, and.J store the minimum value of the worst-
case cost and the best-case cost, respectively, among all

J(at,up}) < J({@eaed)
< J({st,a }™N(s)) = J

*

where the first inequality follows from the optimality of
{z},u;}, and the second from the definition 8f From this trajectories that ends at Moreover, the symbols, a)mimmax
inequality and (17), we obtain (19). _ and (s, @)™ are used to keep track of transitions that lead
_Theorem 1 states thgt thg optimal cost is bounded _by tl”lng s’ in the trajectories giving7*, and J*,, respectively. Fi-
min-max cost and the min-min cost, computed on the dlscrep%"y [RMin-max gy pMin-min denosfe statgé taken by continuous

rnodel: In fact, (17) is the tightest bQU”d a{y, ,“z}) that trajectories that are associated with the symbolic trajectories
is available based on Lemma 2 without knowifig;, u; }

: ; _ giving j: and J%, respectively. Once this computation is
itself. The theorem also states that a suboptimal trajectopy,,\hjeted, one can obtain the min-max trajectory by finding
whose c_ost is WI;hIE th(;s_ bound is gblta;rjﬁd ufsmg t_he rr:jmé € Sy that gives the smaIIesT: and tracking(&a)g}in—max
max trajectory of the discrete model. Therefore, in ordej,q\yards. The min-min trajectory is also obtained in the
to obtain an approximate solution whose cost is belo‘@ame way.

J*(x) + ¢, we need to construct a mesh such that the

difference between the min-max cost and the min-min co

) ﬁemark 3 One should keep in mind that the min-max/min-
is smaller thare.

min costs computed in the above procedure are overestimates

of the ones defined in Section IV. By overestimate, we mean
Remark 2 In [12], an alternative way to obtain a bound on that the computed min-max cost may be larger and the min-
the optimal cost of a time-optimal control problem is derivegnin cost may be smaller than the true values. At the same
based on symbolic abstraction. Comparison of these methogigie, the computed min-max/min-min trajectories may be
regarding computational complexity and the tightness of thgifferent from the real ones. This is becauserthiec andmin
bounds is an open question. operations ong;' and ¢ are evaluated separately, despite



they do not always take the extreme values at every timeOn the other hand, since we have
instant in a single trajectory. Nevertheless, these can still be — min-m — min-min

: <
used to bound the optimal cost. J({se, a}™) < J({s1, ar} )

from the definition of min-max trajectory,

Remark 4 It is often difficult to compute the set operations - min-max min-max
F* and F" strictly and therefore one should rely on some 'i({st’at} min-min(S)) J({S“at}min_min(s))
set approximation techniques to overestimag" ™ and J({st,a:} (s)) — J({s¢, ae} (s))
RN There is also no general solution to the evaluation ofmp|y
max andmin operations on the cost termg® and ;. One . .
should consider efficient implementation for each concrete 7 (s) =" (s) - o
problem. One example of implementation is shown in Section = J({s¢, a;}™" ™(s)) — J({st,a:}™™"(s)) <e.
VI.

€,

IN A

€

Here, s denotes a symbolic state whose cell includes the
V. MESHREFINEMENT initial statex. Therefore, if all cells in the min-max trajectory
d the min-min trajectory are smaller thanthe difference
etween the min-max cost and the min-min cost will be
Elow e and thus the algorithm will terminate. Moreover,

In the previous section, it has been shown that the tr
optimal cost is bounded by the min-max/min-min cost

calculated on the discrete model. In this section, we discu _ o . : .
the generation of a mesh whose cost gap, the differen e algorithm subdivides the largest cell in the min-max/min-

between the min-max cost and the min-min cost. is less thAp" trajectories. These two facts indicate that the algorithm
¢. Our basic strategy is to begin with a coarsé mesh ar{hever subdivides cells smaller thanSince the state set and

refine it repeatedly until the condition is satisfied. A ke)} € input set are both bounded, we can conclude that the

question is which part of the mesh to refine, in order t(glgorlthm terminates, at the latest, when all cells in the mesh

reduce the cost gap most efficiently. This time, we employ ecomes smaller than u
simple rule; subdivide the largest cell on the min-max/min- VI. EXAMPLE

min trajegtories. This rule is pasgd on thf—: fact th{:lt the In this section, we apply the proposed technique to the
cost gap is caused by uncertainty in the min-max/min-migath-planning problem of a vehicle that moves on a 2D plane.
trajectories, and therefore refining the mesh along thegfe assume that the vehicle moves in a constant velacity

trajectories reduces the cost gap. To choose one particugz}(mg they-axis, while its motion along the-axis is given
cell out of the cells on these trajectories, we simply choo

the largest one. However, the largest cell may not always
have the largest influence on the cost gap, thus there remains Tip1 = Ty + Uy

a room for improvement in the refinement rule. The symbolz, denotes the vehicle's:-position at time
To summarize, the overall procedure is written as follows, u, denotes the control input (amount of change in the
Algor|th.n.1:_ z-coordinate in a single move). Figs.3(a)-(d) show the
1) Initialize the mesh : workspace as well as meshes during the progress of refine-
ment. We take thec-axis in the vertical direction and the
MF:={(0,X t : N o . . . . .
‘il {(0,X)} (z e [0:NY), y-axis in the horizontal direction. Since the vehicle moves
M :={(0,U)} (t€[0: N —1]) in a constant velocity in the direction, the state mesh at

2) Construct a discrete modgl by quantizer embedding. time_ t M, can be overlgid on the workspace in e vt

3) Compute min-max cost and min-min cost using (20) Position. The state set is set a5 = [-1,1] and the step
(25) length is set asV = 20. In this example, the control input

4) Terminate ifj*(s) _JH(s) < is not quantized explicitly. N o

5) Subdivide the largest cell on the min-max/min-min ' he State coswsf reflects the difficulty of moving in
trajectories. Go to Step 2 certain locations in the workspace. In the figures, the state

cost at each location is expressed by the intensity of the color
at that location. Regions in white are assigned the cost of
while the regions in black are assigned the maximum cost
Proof: Consider a symbolic trajectorys;,a,}. Since of 10. The input cost is simply given ag}(u) = u?.

Theorem 2 The algorithm terminates in finite iterations.

the cost function/ is assumed continuous, for amy> 0, For the input interface, we set¢(x, ) = & — «. In this
there exists @& > 0 such that way, the functionF™ is given by
7(Cs,,&5,) <6 Yt € [0: N, FX(Rs, (s,a)) = Co (s = &),
7(Cayya,) <0 YVt [0: N —1], which means that the set of continuous stafgs always
= T({se,ar}) — J({st,a:}) < e coincides with the cell’;. On the other hand, the function
B F" is given by

wherer(C, §) denotes the radius of the smallest ball that is

centered at and includesC. F'(Rs, (s,a)) ={u|u=2"—2,2€Cs, 2’ € Ca}.



(d) After 200 refinements

Fig. 3. Mesh refinement process in path-planning problem
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Fig. 4. Change of cost gap during refinement

Since the state and the control input are both scalar, s«ﬂg]

are numerically expressed as ranges. Thex and min

operations on the state cagf are computed approximately [11]

by means of sampling, and those on the input eg<tu) =
u? are evaluated analytically.

Fig.3(a) to Fig.3(d) show the initial mesh, the mesheb2]
after 60, 100 and 200 refinements, respectively. Each small

that in this particular example, the cost gap exhibits roughly
exponential decrease. Aft@00 refinements, the cost gap
becomed).41, which is less thari0% of the min-min cost

of 4.23. The amount of computation time fa00 refinements
was 390 milliseconds on a personal computer equipped with
1.2GHz CPU and2.0GB memory.

VIl. CONCLUSION

This paper has presented an online approach to optimal
control that makes use of multiresolution discrete models.
First, it has been shown that the optimal cost is bounded
by the min-max cost and the min-min cost, computed on a
discrete model based on a dynamic programming technique.
Based on this theoretical result, the proposed algorithm
refines a mesh repeatedly until this bound becomes precise
enough. A heuristic rule on the selection of a cell to be subdi-
vided in the mesh refinement algorithm is used, accompanied
with a proof that the algorithm terminates in finite time. This
time, we have considered discrete-time systems. In the future,
the method should be extended to continuous-time systems
so that the discretization of the time axis as well as the state
space and the input space is handled in a uniform framework.
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