
Multiresolution Discrete Abstraction for Optimal Control

Yuichi Tazaki and Jun-ichi Imura

Abstract— This paper presents a method that computes an
approximate solution to a class of optimal control problems in
arbitrary precision based on a discrete abstraction technique.
Using a discrete abstract model, one can obtain upper and lower
bounds on the optimal cost of an optimal control problem. By
making use of this property, the method initially constructs
a coarse discrete model, and then it gradually increases the
resolution of discretization to tighten the bound on the optimal
cost until the required precision is satisfied. The effectiveness
of the method is demonstrated in a path-planning problem on
a 2D plane.

I. I NTRODUCTION

Discrete abstraction is a technique to construct a finite-
state model that approximates the behavior of a dynamical
system with continuous states. Control of continuous-state
systems poses various difficulties such as the nonlinearity of
the system’s dynamics and the non-convexity of constraints.
By making use of discrete abstract models, such control
problems are converted into path-planning problems on finite
automata, most of which can be solved using novel search
techniques whose computational complexities areO(N) (N
is normally the length of prediction time steps). To date,
various methods on the control system design using discrete
models have been explored [1]-[6]. In particular, Munos [7]
focuses on approximating value functions in optimal control
by the discretization of the state space. However, the method
does not provide a measure of how much the approximate
solution is close to the optimal solution. The authors [9] have
shown that discrete abstract models based on approximate
bisimulation [8] provides an approximate solution to optimal
control problems with a quantitative performance measure.
One critical drawback is that the discretization is uniform,
meaning that the number of symbolic states grow exponen-
tially with respect to the state dimension.

In this paper, we propose a technique to compute an
approximate solution to optimal control problems using
multiresolution discrete models. Unlike most of the previous
methods, the proposed method is an on-line method, which
constructs a discrete model after an initial state is given. A
basic idea underlying the proposed method is that one can
compute upper and lower bounds on the optimal cost by
making use of a discrete model. Moreover, one can tighten
this bound by increasing the resolution of discretization
under a certain rule. The proposed method repeats this

Y. Tazaki is with the Department of Mechanical Sci-
ence and Engineering, Nagoya University, Nagoya, Japan.
tazaki@nuem.nagoya-u.ac.jp

J. Imura is with the Department of Mechanical and Environmen-
tal Informatics, Tokyo Institute of Technology, Meguro, Tokyo, Japan.
imura@mei.titech.ac.jp

procedure to obtain an approximate solution that is arbitrarily
close to the exact solution. Multiresolution approaches have
been investigated in the control and robotics field [10][11].
There is a fundamental difference, however, that they mainly
focus on multiresolution representation of the input space,
whereas we consider multiresolution discretization of the
state space to obtain a finite-state model that is well suited
to optimal control.

The rest of this paper is organized as follows. In Section
II, we formulate the class of optimal control problems we
consider. Next, in Section III, we review the representation of
discrete models using mesh structures. Section IV describes
how to bound the optimal cost using a discrete model. We
also derive a method to actually compute this bound based
on the forward dynamic programming. The tightness of the
bound depends on the resolution of the mesh. Section V
presents a simple algorithm that gradually increases the mesh
resolution until a required precision on the cost bound is
achieved. In Section VI, we apply the proposed technique
to a simple path-planning problem of a 2D vehicle. Finally,
concluding remarks are given in Section VII.

Notation) The symbol[i1 : i2] denotes a sequence of
integersi1, i1+1, . . . , i2. Moreover,xi1:i2 denotes an indexed
sequence of variablesxi1 , xi1+1, . . . , xi2 . To denote themax
operation, we usemaxP(x)f(x) and max (f(x) | P(x));
both expressions denote the maximum value off(x) under
the condition that the predicateP(x) is true. When we write
〈f∗, x∗〉 = maxP(x)f(x), f∗ denotes the maximum andx∗

denotes the maximizer. The same notation is used for the
min operation.

II. PROBLEM SETTING

In this paper, we consider discrete-time systems with
continuous state variables and control inputs. A discrete-time
system is a tuple〈X,X0, U, f〉, whereX ⊂ Rn is the set
of states,X0 ⊆ X is the set of initial states,U ⊂ Rm is
the set of control inputs andf : X × U 7→ X is the state
transition function. The state and the control input of the
system at timet ∈ Z+ are expressed asxt ∈ X andut ∈ U ,
respectively. The state transition at timet is expressed as

xt+1 = f(xt, ut). (1)

We assume that the setsX and U are both bounded. We
denote anN -step trajectory of a systemΣ = 〈X,X0, U, f〉
by {xt, ut}0:N (be aware thatuN is not included). If the
number of steps is apparent from the context, we simply
write {xt, ut}.

For this class of systems, we consider the following finite-
horizon optimal control problem.



Fig. 1. Discrete obtained by quantizer embedding

Problem 1 For a systemΣ = 〈X,X0, U, f〉 and a given
initial state x ∈ X0, find a trajectory {xt, ut}0:N that
minimizes

J({xt, ut}0:N ) =
N−1∑
t=0

[ψx
t (xt) + ψu

t (ut)] + ψx
N (xN ) (2)

subject to (1) andx0 = x.

In the above problem,J : XN+1 × UN 7→ R defines
the cost of a given trajectory. Here, the cost need not be
positive. The functionsψx

t : X 7→ R and ψu
t : U 7→ R

are assumed to be continuous. We do not consider constraint
conditions explicitly; constraints should be encapsulated in
the cost function as penalty terms. Our purpose is to obtain an
approximate solution of this problem such that the difference
between the cost of the approximate solution and the optimal
solution is below a prescribed positive constantε.

III. R EPRESENTATION OFDISCRETEABSTRACT MODELS

A. Construction of Discrete Models by means of Quantizers

In this section, we review the notion of quantizer em-
bedding [13], which is a systematic method to transform
a continuous-state system into a finite automaton. First of
all, we introduce a mesh structure. A meshM is a finite
collection of pairs of a node and a cell:

M = {(ξs, Cs) | s ∈ S}. (3)

Here,S denotes a finite set of identifiers. EachCs (s ∈ S) is
called a cell and eachξs ∈ Cs is called the node of the cell
Cs. The cells form a partition of the mesh domaindom(M);
that is,Cs1 ∩Cs2 = ∅ (s1 6= s2) and

∪
s Cs = dom(M). A

mesh defines a quantization function defined below:

Q[M ] : dom(M) 7→ {ξs}s∈S ,

Q[M ](x) = ξs if x ∈ Cs.
(4)

A quantization functionQ[M ](·) maps a given pointx inside
its domain to a node whose corresponding cell includesx.

Now, let us define a series of meshes for the state setX
and the input setU :

Mx
t = {(ξs, Cs) | s ∈ St} (t ∈ [0 : N ]),

Mu
t = {(ξa, Ca) | a ∈ At} (t ∈ [0 : N − 1]).

Fig. 2. Set of continuous trajectories associated with a symbolic trajectory

Here,dom(Mx
t ) = X anddom(Mu

t ) = U . The symbolSt

denotes the set of cell identifiers of the state meshMx
t andAt

denotes that of the input meshMu
t . Note that cell identifiers

do not overlap between different meshes. Therefore, if we
take an s from St, then a cell denoted byCs uniquely
identifies the cell of the state meshMx

t .

Using these meshes, we define a symbolic systemΣ̂ whose
set of symbolic states and that of symbolic inputs at timet are
given bySt andAt, respectively, and the transition relation
at time t is written as

st
at−→ st+1 ⇔ f(ξst , ξat) ∈ Cst+1 (5)

where st ∈ St, at ∈ At and st+1 ∈ St+1. Note that the
behavior ofΣ̂ is defined only in the time interval[0 : N ].
Since each mesh is composed of finite cells, the system
Σ̂ can be seen as a finite automaton. Fig. 1 illustrates this
transformation in the case of a system with a scalar-valued
state no input. Each meshMx

t covers the entire state domain
X. In the figure,f(ξs) (s ∈ St) is included inCs′ (s′ ∈
St+1). Therefore, a symbolic transitions→ s′ is defined.

It is also possible to obtain a finite automaton without
explicit input quantization. Like the previous case, the set
of symbolic states at timet is given bySt. The transition
relation is defined as

st → st+1 ⇔ ut ∈ Ust,st+1
,

Us,s′ = {u | f(ξs, u) ∈ Cs′}.
(6)

Here, a set of symbolic inputs is defined for each symbolic
statest, and it is equivalent with the set of successor states;
that is, for eachs ∈ St, we haveAt,s = {s′ | s→ s′} instead
of At. In the later discussion, we consider the case with
input quantization only. Nevertheless, the proposed method is
applicable to the case without input quantization with minor
modification.

As a particular class of meshes, we consider variable-
resolution meshes composed of rectangular cells. A refine-
ment of a mesh is done by selecting a cell and subdividing
it into two sub-cells. Here, a subdivision can be made in one
of n directions. For an example, in the 2-dimensional case,
a cell can be divided either horizontally or vertically. Each
of newly created cells has its node in its middle.



IV. B OUNDING OPTIMAL COST USING DISCRETE

MODELS

A. Trajectory Mapping between Continuous and Discrete
Models

In this section, we introduce transformation between tra-
jectories of the continuous-state model and the trajectories
of the discrete-state model. For a trajectory{xt, ut} of Σ,
consider a mapΦΣ→Σ̂ defined as

{st, at} = ΦΣ→Σ̂({xt, ut}) ⇔
x0 ∈ Cs0 ,

ut + φ(ξst , xt) ∈ Cat ,

st
at−→ st+1.

(t ∈ [0 : N − 1])

(7)

The functionΦΣ→Σ̂ maps a trajectory ofΣ to a trajectory
of Σ̂. Here, the functionφ satisfiesφ(x, x̂) = −φ(x̂, x) and
serves as an error correction term that is to be added on the
control input in order to compensate the error between the
states of two systems,xt and ξst . If φ is set asφ(·, ·) ≡ 0,
then the same input trajectory is applied to both systems.
One usage ofφ is shown in Section VI. Similarly, consider
a mapΦΣ̂→Σ defined as

{xt, ut} ∈ ΦΣ̂→Σ({st, at}) ⇔
x0 ∈ Cs0 ,

ut = ξat + φ(xt, ξst),

xt+1 = f(xt, ut).
(t ∈ [0 : N − 1])

(8)

Here,ΦΣ̂→Σ maps a trajectory of̂Σ to a set of trajectories
of Σ. This is natural sinceΣ has infinitely many trajectories,
while Σ̂ has only finite trajectories. For these transforma-
tions, we have the following lemma.

Lemma 1 For {st, at} = ΦΣ→Σ̂({xt, ut}), {xt, ut} ∈
ΦΣ̂→Σ({st, at}) holds.

Proof: Omitted.
Now, for a symbolic trajectory{st, at}, consider a set

of trajectories given byΦΣ̂→Σ({st, at}), and moreover,
consider the projection of this set onto the set of states at
time t. Let us denote this set byRst to indicate that the set
of continuous states is related to the symbolic state at the
same time instant. Then, the series{Rst}0:N is determined
in a recursive manner, starting fromt = 0, as shown below.
For s0,

Rs0 = Cs0 . (9)

Moreover, fort = 0, 1, . . . , N − 1,

Rat = {u |x ∈ Rst , u+ φ(ξst , x) ∈ Cat},
Rst+1 = {f(x, u) |x ∈ Rst , u+ φ(ξst , x) ∈ Cat}.

(10)

Let us define these equations as maps

Rat = F u(Rst , (st, at)), (11)

Rst+1 = F x(Rst , (st, at)). (12)

This recursive property is exploited in a dynamic
programming-based approach described later.

Fig. 2 illustrates the relation between a symbolic trajectory
and the set of continuous trajectories associated with it. The
circles (symbolic states) connected by solid arrows depict a
symbolic trajectory{st, at} (symbolic inputs are not shown).
For each time instantt, a gray band drawn behind the
nodeξst depictsRst . Therefore, all continuous trajectories
in ΦΣ̂→Σ({st, at}) lies within these bands. One sample
trajectory is shown in dashes arrows.

Remark 1 The discussion made here has a close relation
between approximate bisimulation [8] of a continuous-state
system and a discrete-state system. However, there is one
fundamental difference; while approximate bisimulation con-
siders arbitrary behavior, our aim is to approximate only the
optimal behavior.

B. Cost Bound

In the following, it is shown that the optimal cost in (2)
is bounded by the solution of a class of optimal control
problems defined on the discrete model. First, for a symbolic
trajectory {st, at}, consider the maximum and minimum
value of costs taken by continuous trajectories that are
associated with{st, at} by ΦΣ̂→Σ.

J({st, at}) = max
{xt,ut}∈ΦΣ̂→Σ({st,at})

J({xt, ut}), (13)

J({st, at}) = min
{xt,ut}∈ΦΣ̂→Σ({st,at})

J({xt, ut}). (14)

A set of continuous trajectories associated with a symbolic
trajectory can be captured as uncertainty caused by quan-
tization. From this point of view,J and J are interpreted
as the worst-case cost and the best-case cost of{st, at}
under uncertainty. Furthermore, for a symbolic states ∈
S0, consider the minimum values ofJ({st, at}0:N ) and
J({st, at}0:N ) over all trajectories starting froms:

〈J∗
(s), {st, at}min-max(s)〉 = min

{st,at}0:N ,s0=s
J({st, at}),

(15)

〈J∗(s), {st, at}min-min(s)〉 = min
{st,at}0:N ,s0=s

J({st, at}).

(16)

Let us call J
∗
(s) ({st, at}min-max(s)) the min-max cost

(trajectory) andJ∗(s) ({st, at}min-min(s)) the min-min cost
(trajectory).

First, we obtain the following basic lemma.

Lemma 2 Let J∗(x) be the optimal cost of Problem 1 with
an initial statex ∈ X0. Moreover, lets ∈ S0 be a symbolic
state satisfyingx ∈ Cs. Then, the following statements hold.
i) There exists a trajectory{st, at} with s0 = s such that

J({st, at}) ≤ J∗(x)

holds.
ii) For all trajectory {st, at} with s0 = s,

J∗(x) ≤ J({st, at})



holds.

Proof: Let {x∗t , u∗t } be the optimal trajectory and
{st, at} = ΦΣ→Σ̂({x∗t , u∗t }). Here we haves0 = s. From
Lemma 1, {x∗t , u∗t } ∈ ΦΣ̂→Σ({st, at}) holds. Therefore
J({st, at}) ≤ J({x∗t , u∗t }) holds and thus we obtain the first
claim.

Next, supposeJ({st, at}) < J({x∗t , u∗t }) holds for some
{st, at} with s0 = s. Then, a trajectory given by

{xt, ut} ∈ ΦΣ̂→Σ({st, at}), x0 = x

satisfiesJ({xt, ut}) < J({x∗t , u∗t }), which contradicts the
optimality of {x∗t , u∗t }. This proves the second claim.
Based on Lemma 2, the next theorem provides a bound on
the optimal cost as well as a way to obtain a trajectory ofΣ
whose cost is inside this bound.

Theorem 1 Let x ∈ X0 be an initial state of Problem 1 and
let s ∈ S0 satisfyingx ∈ Cs. Then, the following inequality
holds.

J∗(s) ≤ J∗(x) ≤ J
∗
(s) (17)

Moreover, a trajectory given by

{x̃t, ũt} ∈ ΦΣ̂→Σ({st, at}min-max(s)), x̃0 = x (18)

satisfies

J({x̃t, ũt}) ≤ J∗(x) + (J
∗
(s)− J∗(s)). (19)

Proof: The first claim is a straightforward consequence
of Lemma 2. For{x̃t, ũt}, we have

J({x∗t , u∗t }) ≤ J({x̃t, ũt})
≤ J({st, at}min-max(s)) = J

∗
(s)

where the first inequality follows from the optimality of
{x∗t , u∗t }, and the second from the definition ofJ . From this
inequality and (17), we obtain (19).

Theorem 1 states that the optimal cost is bounded by the
min-max cost and the min-min cost, computed on the discrete
model. In fact, (17) is the tightest bound onJ({x∗t , u∗t }) that
is available based on Lemma 2 without knowing{x∗t , u∗t }
itself. The theorem also states that a suboptimal trajectory
whose cost is within this bound is obtained using the min-
max trajectory of the discrete model. Therefore, in order
to obtain an approximate solution whose cost is below
J∗(x) + ε, we need to construct a mesh such that the
difference between the min-max cost and the min-min cost
is smaller thanε.

Remark 2 In [12], an alternative way to obtain a bound on
the optimal cost of a time-optimal control problem is derived
based on symbolic abstraction. Comparison of these methods
regarding computational complexity and the tightness of the
bounds is an open question.

C. Cost Computation Using Dynamic Programming

So far, all discussion has been made in the trajectory
level. However, it is not always a trivial task to compute an
upper-boundJ and a lower-boundJ for a given symbolic
trajectory. Moreover, it is obviously inefficient to enumerate
all trajectories of the discrete model in order to find the min-
max/min-min trajectories, even though the trajectory space
is finite. In the following, it is shown that an overestimate
of the min-max cost and that of the min-min cost can be
computed using a forward dynamic programming technique.
At first, for each discrete states ∈ S0, we compute

J
∗
s := max

x∈Cs

ψx
0(x), J

∗
s := min

x∈Cs

ψx
0(x), (20)

Rmin-max
s := Cs, R

min-min
s := Cs. (21)

Next, for t ∈ [1 : N ] in the ascending order and for each
s′ ∈ St, compute

〈 J∗
s′ , (s, a)

min-max
s′ 〉 := min

(s,a) s.t. s
a−→s′

[
J
∗
s

+ max
u∈Fu(Rmin-max

s ,(s,a))
ψu
t (u) + max

x∈Fx(Rmin-max
s ,(s,a))

ψx
t+1(x)

]
,

(22)

〈 J∗
s′ , (s, a)

min-min
s′ 〉 := min

(s,a) s.t. s
a−→s′

[
J∗
s

+ min
u∈Fu(Rmin-min

s ,(s,a))
ψu
t (u) + min

x∈F x(Rmin-min
s ,(s,a))

ψx
t+1(x)

]
,

(23)

Rmin-max
s′ := F x(Rmin-max

s , (s, a)min-max
s′ ), (24)

Rmin-min
s′ := F x(Rmin-min

s , (s, a)min-min
s′ ). (25)

Unlike conventional dynamic programming, the above pro-
cedure computes two different costs, the min-max cost and
the min-min cost, as well as some other related quantities.
For eachs, J

∗
s andJ∗

s store the minimum value of the worst-
case cost and the best-case cost, respectively, among all
trajectories that ends ats. Moreover, the symbols(s, a)min-max

s′

and(s, a)min-min
s′ are used to keep track of transitions that lead

to s′ in the trajectories givingJ
∗
s′ andJ∗

s′ , respectively. Fi-
nally,Rmin-max

s′ andRmin-min
s′ denote states taken by continuous

trajectories that are associated with the symbolic trajectories
giving J

∗
s and J∗

s, respectively. Once this computation is
completed, one can obtain the min-max trajectory by finding
s ∈ SN that gives the smallestJ

∗
s and tracking(s, a)min-max

s′

backwards. The min-min trajectory is also obtained in the
same way.

Remark 3 One should keep in mind that the min-max/min-
min costs computed in the above procedure are overestimates
of the ones defined in Section IV. By overestimate, we mean
that the computed min-max cost may be larger and the min-
min cost may be smaller than the true values. At the same
time, the computed min-max/min-min trajectories may be
different from the real ones. This is because themax andmin
operations onφut and ψx

t are evaluated separately, despite



they do not always take the extreme values at every time
instant in a single trajectory. Nevertheless, these can still be
used to bound the optimal cost.

Remark 4 It is often difficult to compute the set operations
F x and F u strictly and therefore one should rely on some
set approximation techniques to overestimateRmin-max

s and
Rmin-min

s . There is also no general solution to the evaluation of
max andmin operations on the cost termsψx

t andψu
t . One

should consider efficient implementation for each concrete
problem. One example of implementation is shown in Section
VI.

V. M ESH REFINEMENT

In the previous section, it has been shown that the true
optimal cost is bounded by the min-max/min-min costs
calculated on the discrete model. In this section, we discuss
the generation of a mesh whose cost gap, the difference
between the min-max cost and the min-min cost, is less than
ε. Our basic strategy is to begin with a coarse mesh and
refine it repeatedly until the condition is satisfied. A key
question is which part of the mesh to refine, in order to
reduce the cost gap most efficiently. This time, we employ a
simple rule; subdivide the largest cell on the min-max/min-
min trajectories. This rule is based on the fact that the
cost gap is caused by uncertainty in the min-max/min-min
trajectories, and therefore refining the mesh along these
trajectories reduces the cost gap. To choose one particular
cell out of the cells on these trajectories, we simply choose
the largest one. However, the largest cell may not always
have the largest influence on the cost gap, thus there remains
a room for improvement in the refinement rule.

To summarize, the overall procedure is written as follows.
Algorithm :

1) Initialize the mesh :

Mx
t := {(0, X)} (t ∈ [0 : N ]),

Mu
t := {(0, U)} (t ∈ [0 : N − 1])

2) Construct a discrete modelΣ̂ by quantizer embedding.
3) Compute min-max cost and min-min cost using (20) -

(25).
4) Terminate ifJ

∗
(s)− J∗(s) ≤ ε.

5) Subdivide the largest cell on the min-max/min-min
trajectories. Go to Step 2.

Theorem 2 The algorithm terminates in finite iterations.

Proof: Consider a symbolic trajectory{st, at}. Since
the cost functionJ is assumed continuous, for anyε > 0,
there exists aδ > 0 such that

r̄(Cst , ξst) ≤ δ ∀t ∈ [0 : N ],

r̄(Cat , ξat) ≤ δ ∀t ∈ [0 : N − 1],

⇒ J({st, at})− J({st, at}) ≤ ε

where r̄(C, ξ) denotes the radius of the smallest ball that is
centered atξ and includesC.

On the other hand, since we have

J({st, at}min-max) ≤ J({st, at}min-min)

from the definition of min-max trajectory,

J({st, at}min-max(s))− J({st, at}min-max(s)) ≤ ε,

J({st, at}min-min(s))− J({st, at}min-min(s)) ≤ ε

imply

J
∗
(s)− J∗(s)

= J({st, at}min-max(s))− J({st, at}min-min(s)) ≤ ε.

Here, s denotes a symbolic state whose cell includes the
initial statex. Therefore, if all cells in the min-max trajectory
and the min-min trajectory are smaller thanδ, the difference
between the min-max cost and the min-min cost will be
below ε and thus the algorithm will terminate. Moreover,
the algorithm subdivides the largest cell in the min-max/min-
min trajectories. These two facts indicate that the algorithm
never subdivides cells smaller thanδ. Since the state set and
the input set are both bounded, we can conclude that the
algorithm terminates, at the latest, when all cells in the mesh
becomes smaller thanδ.

VI. EXAMPLE

In this section, we apply the proposed technique to the
path-planning problem of a vehicle that moves on a 2D plane.
We assume that the vehicle moves in a constant velocityv
along they-axis, while its motion along thex-axis is given
by

xt+1 = xt + ut.

The symbol xt denotes the vehicle’sx-position at time
t, ut denotes the control input (amount of change in the
x-coordinate in a single move). Figs. 3(a)-(d) show the
workspace as well as meshes during the progress of refine-
ment. We take thex-axis in the vertical direction and the
y-axis in the horizontal direction. Since the vehicle moves
in a constant velocity in they direction, the state mesh at
time t, Mx

t , can be overlaid on the workspace in they = vt
position. The state set is set asX = [−1, 1] and the step
length is set asN = 20. In this example, the control input
is not quantized explicitly.

The state costψx
t reflects the difficulty of moving in

certain locations in the workspace. In the figures, the state
cost at each location is expressed by the intensity of the color
at that location. Regions in white are assigned the cost of0,
while the regions in black are assigned the maximum cost
of 10. The input cost is simply given asψu

t (u) = u2.
For the input interfaceφ, we setφ(x, x̂) = x̂− x. In this

way, the functionF x is given by

F x(Rs, (s, a)) = Cs′ (s
a−→ s′),

which means that the set of continuous statesRs always
coincides with the cellCs. On the other hand, the function
F u is given by

F u(Rs, (s, a)) = {u |u = x′ − x, x ∈ Cs, x
′ ∈ Cs′}.



(a) Initial mesh

(b) After 60 refinements

(c) After 100 refinements

(d) After 200 refinements

Fig. 3. Mesh refinement process in path-planning problem

min-min cost

min-max cost

40

80

100

50 100 150 200 400

Fig. 4. Change of cost gap during refinement

Since the state and the control input are both scalar, sets
are numerically expressed as ranges. Themax and min
operations on the state costψx

t are computed approximately
by means of sampling, and those on the input costψx

t (u) =
u2 are evaluated analytically.

Fig. 3(a) to Fig. 3(d) show the initial mesh, the meshes
after 60, 100 and200 refinements, respectively. Each small
circle represents the node of a cell. A symbolic trajectory
draw in solid lines depict the min-max trajectory whereas a
trajectory in dashed lines depict the min-min trajectory. On
the other hand, Fig. 4 shows the change of the min-max cost
and the min-min cost in the course of refinement. We observe

that in this particular example, the cost gap exhibits roughly
exponential decrease. After200 refinements, the cost gap
becomes0.41, which is less than10% of the min-min cost
of 4.23. The amount of computation time for200 refinements
was390 milliseconds on a personal computer equipped with
1.2GHz CPU and2.0GB memory.

VII. C ONCLUSION

This paper has presented an online approach to optimal
control that makes use of multiresolution discrete models.
First, it has been shown that the optimal cost is bounded
by the min-max cost and the min-min cost, computed on a
discrete model based on a dynamic programming technique.
Based on this theoretical result, the proposed algorithm
refines a mesh repeatedly until this bound becomes precise
enough. A heuristic rule on the selection of a cell to be subdi-
vided in the mesh refinement algorithm is used, accompanied
with a proof that the algorithm terminates in finite time. This
time, we have considered discrete-time systems. In the future,
the method should be extended to continuous-time systems
so that the discretization of the time axis as well as the state
space and the input space is handled in a uniform framework.

REFERENCES

[1] J. Raisch and S.D. O’Young : Discrete Approximation and Supervisory
Control of Continuous Systems, IEEE Trans. on Automatic Control,
Vol. 43, No. 4, 569/573, 1998.

[2] X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver and M.D. Lemmon :
Supervisory Control of Hybrid Systems, In Proc. of IEEE, Special
Issue in Hybrid Systems. P.J. Antsaklis, Ed., 1026/1049, July 2000.

[3] L.C.G.J.M. Habets, P.J. Collins and J.H. van Schuppen : Reachabil-
ity and Control Synthesis for Piecewise-Affine Hybrid Systems on
Simplices, IEEE Transactions on Automatic Control, Vol. 51, No. 6,
938/948, 2006.

[4] J. Imura and H. Matsushima : Simultaneous Optimization of Continu-
ous Control Inputs and Discrete State Waypoints, 9th International
Workshop on Hybrid Systems: Computation and Control (HSCC
2006), J.Hespanha and A.Tiwari (Eds.) LNCS 3927 Springer-Verlag,
pp. 302-317, 2006.

[5] M. Kloetzer, C. Belta : A Fully Automated Framework for Control
of Linear Systems from LTL Specifications, Hybrid Systems: Com-
putation and Control (HSCC06), Lecture Notes in Computer Science
3927, Springer-Verlag, 333/347, 2006.

[6] A. Girard and G.J. Pappas : Hierarchical Control System Design Using
Approximate Simulation, Automatica, 45(2), 566/571, 2009.

[7] R. Munos and A. Moore : Variable Resolution Discretization in
Optimal Control, Machine Learning Journal, 49, pp 291-323, 2001.

[8] A. Girard and G.J. Pappas : Approximation Metrics for Discrete and
Continuous Systems, IEEE Transactions on Automatic Control, 52(5),
782/798, 2007.

[9] Y. Tazaki and J. Imura : Finite Abstractions of Discrete-time Linear
Systems and Its Application to Optimal Control, 17th IFAC World
Congress (in CDROM), Seoul, Korea, July 6-11, 2008.

[10] A. Girard : Towards a Multiresolution Approach to Linear Control,
IEEE Transactions on Automatic Control, 51(8), 1261/1270, 2006.

[11] S.R. Lindemann and S.M. LaValle : A Multiresolution Approach for
Motion Planning Under Differential Constraints, IEEE International
Conference on Robotics and Automation, pp.139-144, May 15-19,
Orlando, FL, USA, 2006.

[12] M. Mazo and P. Tabuada : Approximate Time-Optimal Control via
Approximate Alternating Simulations, American Control Conference,
pp.1009-1014, Baltimore, Maryland, USA, June 30 - July 2, 2010.

[13] Y. Tazaki and J. Imura : Approximately Bisimilar Discrete Abstrac-
tions of Nonlinear Systems Using Variable-Resolution Quantizers,
American Control Conference, pp.1015-1020, Baltimore, Maryland,
USA, June 30 - July 2, 2010.


