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Abstract— This paper presents an approximate semi-offline
approach to model predictive control of continuous-time piece-
wise affine (CTPWA) systems. The proposed method computes
in the offline phase a controllable set and a minimum transition
cost associated with each discrete state sequence. Then at each
sampling time in the online phase, the controller determines the
optimal sequence of intermediate target states over a prediction
horizon, taking advantage of the information precomputed
off line. By effectively distributing the computation over the
offline phase and the online phase, real-time control is achieved,
striking a good balance between the amount of precomputed
data and the online computation time. The proposed method
has been applied to a simple CTPWA system, obtained by
piecewise linear approximation of a pendulum.

Index Terms— Model Predictive Control, Continuous-time
Piecewise Affine Systems

I. I NTRODUCTION

Hybrid systems are a class of systems involving both
continuous dynamics and discrete events, and therefore ca-
pable of modeling a wide range of real world plants. This
paper studies model predictive control of a subclass of hybrid
systems called continuous-time piecewise affine systems. In
model predictive control (MPC), a finite-horizon optimal
control problem is solved at each sampling time, and the
obtained input is applied until the next sampling time. This
procedure is repeated from the next sampling time. Various
control objectives can be specified by means of cost functions
and it is also possible to handle state and input constraints
in an explicit manner.

Recently, there has been growing research interest in
applying MPC to a class of systems that exhibits relatively
rapid motion, such as robots: to this aim, reducing real-time
computational burden is a critical issue. The offline approach,
which executes the major portion of the required computation
in advance, is effective for this purpose [1][2]. Most of the
existing offline approaches, however, suffer from the rapid
growth of the size of the precomputed information. We would
like to point out that one can find a balance between the
size of precomputed information and the online computation
time if the computation is distributed over the offline and the
online phase, instead of being processed entirely in advance.

Imura [3] discussed the optimal control problem of
sampled-data piecewise affine (SDPWA) systems. In these
systems, the dynamics of the continous state during each

Y. Tazaki is with the Department of Mechanical and Environ-
mental Informatics, Tokyo Institute of Technology, Tokyo, Japan
tazaki@cyb.mei.titech.ac.jp

J. Imura is with the Department of Mechanical and Environ-
mental Informatics, Tokyo Institute of Technology, Tokyo, Japan
imura@mei.titech.ac.jp

sampling time interval is discribed by a continuous-time
affine system, while the transition of the mode (the discrete
state) is determined at each sampling time. It was shown,
that the optimal control problem of SDPWA systems is
reduced to an optimization over sequences of discrete states
during each sampling time interval, together with sequences
of continuous states to be passed at each sampling time.
In physical systems, however, a discrete state such as a
contact configuration between two rigid bodies, may change
not only at prescribed sampling times but at any point of
time according to the continuous state and the input of the
system. This means that if such a continuous-time system
is modeled as a discrete-time system or a sampled-data
system, the discrete state (and therefore the dynamics) of the
actual system and the one of the model may differ at some
points in time. In order to avoid such phenomena, explicit
consideration for holding the discrete state constant over the
sampling time intervals should be included in the controller
design.

In light of the above background, this paper proposes
an approximate semi-offline implimentation of MPC for
continuous-time piecewise affine (CTPWA) systems, which
explicitly considers the constant mode condition during sam-
pling time intervals. The method is called semi-offline, since
the computation is effectively distributed over the offline
phase and the online phase.

The rest of this paper is organized as follows. In Section
2, we formalize the finite-time optimal control problem
of CTPWA systems and discuss basic control strategies.
In Section 3, the notion of the controllability of a mode
sequence is introduced. Then, in Section 4, we present an
offline algorithm for computing the controllable set and
the minimum transition cost associated with each of the
mode sequences, and an online algorithm which performs
MPC taking advantage of information precomputed offline.
In Section 5, the proposed method is applied to a simple
CTPWA system and numerical results are presented. Section
6 concludes the paper with several notes for future research.

II. PROBLEM FORMALIZATION AND BASIC STRATEGIES

In this section, we formalize the finite-horizon optimal
control problem of CTPWA systems. First, consider the
continuous-time piecewise affine (CTPWA) system

Σ :
ẋ(t) = AI(t)x(t) + aI(t) + BI(t)u(t)

if

[
x(t)
u(t)

]
∈ SI(t)

(1)



where x ∈ <n is the continuous state,u ∈ <m is the
continuous input, andI ∈ M(= {1, 2, . . . ,M}) is the
mode (the discrete state). Furthermore,AI ∈ <n×n and
BI ∈ <n×m are constant matrices, andaI ∈ <n is a constant
vector. A subregion of(x,u) assigned to the modeI is given
by the closed polyhedral cell

SI =
{ [

x
u

]
∈ <n+m CI

[
x
u

]
≤ dI

}
(2)

whereCI ∈ <pI×(n+m), dI ∈ <pI and the vector inequality
x ≤ 0 indicatesxi ≤ 0 for each element. It is assumed
that eachSI has a pairwise disjoint interior but a common
boundary, that is,intSI ∩ intSJ = ∅ and SI ∩ SJ (if
it exists) is included in the boundary ofSI(SJ), where
intS expresses the interior ofS. In this paper, the well-
posedness of the system is assumed to be guaranteed for
brevity. Refer to [4][5][6] for a more detailed discussion.
We further assume that the affine system assigned to each
mode is controllable. For the above system, we consider the
following finite horizon optimal control problem.

[ Problem 1 ] Suppose the initial statexs, the target statexf ,
the positive definite matrixR ∈ <m×m, and the prediction
horizonT > 0 are given. Then, for system (1), find an input
sequenceu that minimizes the cost function

J(u) =
∫ t0+T

t0

u(τ)′ R u(τ) dτ (3)

while satisfyingx(t0) = xs andx(t0 + T ) = xf .

This paper applies the method for the optimal control prob-
lem of SDPWA systems proposed in [3] to CTPWA systems
with some modifications. The method decomposes the whole
controller design process into the following three steps.

Step 1Determine the sequence of modes{I0, I1, . . . , IN−1}
whereI(t) = Ik

∀t ∈ [tk, tk+1].

Step 2 Determine the sequence of waypoints (intermediate
target states){x0,x1, . . . , xN} wherex0 = xs, xN = xf ,
andx(tk) = xk.

Step 3Generate a continuous-time input sequenceu, which
drives the state fromxk to xk+1 through the regionSIk

for
eachk = 0, 1, . . . , N − 1.

Here, the sequence{tk} on the time axis is given bytk =
kh whereh is a positive constant. The symbolN refers to
the number of prediction steps and is given byN = T/h.

Fig. 1 illustrates this strategy applied to a CTPWA system
with 2 states,1 input, and4 modes. The state, the input,
and the modes are denoted byx = (x1, x2), u, and I ∈
M = {1, 2, 3, 4}, respectively. Each mode is assigned a
cuboid region in the(x1, x2, u) space. In this example, four
waypoints (x0, x1, x2, andx3) are placed on the state space.
The waypointx1 is placed on the boundary of mode 1 and
mode 2, andx2 is placed on the boundary of mode 1 and
mode 4. The mode between each subsequent pair of these
waypoints isI0 = 2, I1 = 1 and I2 = 4, respectively.
Arrowed curves with solid lines express the trajectory of
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Fig. 1. Illustration of the control strategy applied to a simple CTPWA
system. (a) Entire view of the(x1, x2, u) space. (b) Projected onto(x1, x2)
plane (upper) and(x1, u) plane (lower).

(x1, x2, u), while arrowed curves with dashed lines express
the same trajectory projected onto the(x1, x2) plane.

It should be mentioned, that for continuous-time PWA
systems, restricting the mode transitions to lie one a set of
equally distributed points in time is unnecessary, and doing
so could lead to merely a suboptimal solution. This time,
however, we accept this artificial constraint in order to keep
the problem tractable.

It should also be considered, that the pair of state and input
must stay within the region of the specified mode during each
time interval; that is, the following condition must hold.

∀k = 0, 1, . . . , N − 1 ,

CIk

[
x(t)
u(t)

]
≤ dIk

∀t ∈ [tk, tk+1]. (4)

Now, let us for now assume that condition (4) holds,
though it will be explicitly considered later. Then, for each
time interval [tk, tk+1], the plant is expressed as a time-
invariant affine system corresponding to the modeIk; ẋ =
AIk

x+aIk
+BIk

u. This enables Step 3 to be formalized as
a fixed terminal optimal control problem of an affine system
as below.

[ Problem 2 ] For an affine systeṁx = AIk
x + aIk

+ BIk
u,

find u that minimizes the cost function

J(u) =
∫ tk+1

tk

u(τ)′ R u(τ) dτ (5)

while satisfyingx(tk) = xk, x(tk+1) = xk+1.

It is well known that the solution of Problem 2 is given in



an explicit form as follows.

u∗
Ik

(t ; xk,xk+1) = −R−1B′
Ik

eA′
Ik

(h−t)WIk
(h)−1ηIk

,

(6)

x∗
Ik

(t ; xk,xk+1) = eAIk
(t−h)

{
WIk

(h − t)WIk
(h)−1ηIk

−
∫ h−t

0

eAIk
τdτ aIk

+ xf

}
, (7)

J∗
Ik

(xk,xk+1) = η′
Ik

WIk
(h)−1ηIk

. (8)

Here, WIk
(t) =

∫ t

0
eAIk

τBIk
R−1B′

Ik
eA′

Ik
τdτ and ηIk

=
eAIk

hxk −xk+1 +
∫ h

0
eAIk

τdτ aIk
. Rearranging (6) and (7)

yields

u∗
Ik

(t ; xk,xk+1) = EIk
(t) xk + FIk

(t) xk+1 + ζIk
(t),

(9)

x∗
Ik

(t ; xk,xk+1) = GIk
(t) xk + HIk

(t)xk+1 + ξIk
(t)
(10)

whereEIk
(t), FIk

(t), GIk
(t), and HIk

(t) are time varying
matrices, andζIk

(t), ξIk
(t) are time-varying vectors. As

shown above, so far as the mode invariance condition (4)
holds, the solution to Problem 2 (and hence, to Step 3) is
given by the explicit function of waypointsxk, xk+1, mode
Ik, and timet.

We now turn our attention to considering condition (4) in
the controller design. The most straightforward way of doing
this is by treating the condition in Step 3, that is, adding (4)
into Problem 2, as a constraint. In this way, however, Problem
2 is no longer expected to be given an explicit solution like
(6) and (7). In light of this observation, we give (6) and (7)
as a solution to Step 3, and keeping this in mind, guarantee
condition (4) to hold in Step 1 and Step 2. First, substitute
(9) and (10) into (4). Then we have

CIk

[
EIk

(t) FIk
(t)

GIk
(t) HIk

(t)

] [
xk

xk+1

]
≤ dIk

− CIk

[
ζIk

(t)
ξIk

(t)

]
.

(11)

This recasts condition (4) into a constraint with respect to
waypointsxk, xk+1, and modeIk. Since condition (11) has
nonlinear terms on timet, we approximate (11) by a time-
invariant linear inequality by means of discretization. Intro-
ducing a sequence of time pointstki = tk + (h/Nd) i (i =
0, 1, . . . , Nd) over the interval[tk, tk+1] and evaluating (11)
at each of these points yields

C̄Ik

[
xk

xk+1

]
≤ d̄Ik

, (12)

C̄Ik
=



CIk

[
EIk

(tk) FIk
(tk)

GIk
(tk) HIk

(tk)

]
CIk

[
EIk

(tk1) FIk
(tk1)

GIk
(tk1) HIk

(tk1)

]
...

CIk

[
EIk

(tk+1) FIk
(tk+1)

GIk
(tk+1) HIk

(tk+1)

]


,

d̄Ik
=



dIk
− CIk

[
ζIk

(tk)
ξIk

(tk)

]
dIk

− CIk

[
ζIk

(tk1)
ξIk

(tk1)

]
...

dIk
− CIk

[
ζIk

(tk+1)
ξIk

(tk+1)

]


whereNd is a positive constant. Although (12) is merely a
necessary condition to (11), it can be made arbitarily close
to (11) by increasingNd.

Based on the above strategy, Problem 1 is transformed into
an approximate optimization problem of mode sequences and
waypoint sequences formalized as below.

[ Problem 3 ] Suppose the initial statexs, the target state
xf , and the number of prediction stepsN are given. Then,
for system (1), find a mode sequenceI = {I0, I1, . . . , IN−1}
and a waypoint sequenceX = {x0,x1, . . . , xN} minimizing
the cost function

J(I,X ) =
N−1∑
k=0

J∗
Ik

(xk,xk+1) (13)

while satisfying

x0 = xs, xN = xf , (14)

C̄Ik

[
xk

xk+1

]
≤ d̄Ik

(k = 0, 1, . . . , N − 1). (15)

Notice that Problem 3 requires the optimization of mode
sequence, while at the same time optimizing the waypoint
sequence for a given mode sequence. The waypoint opti-
mization subproblem is a quadratic programming problem.
Let us define this subproblem for future reference as below.

[ Problem 4 ] Suppose the system (1),xs, xf , and the
mode sequenceI ∈ MN are given. Then, find the optimal
waypoint sequenceX = {x0,x1, . . . , xN} minimizing the
cost function (13) while satisfying (14) (15).

The model predictive controller should solve Problem 3
at each sampling timet with t0 = t and xs = x(t). Here,
we assume for simplicity that the sampling period of MPC
is equal to the partition lengthh , although these may differ
in general. Problem 3 should be solved in a shorter time
than the sampling period in order to perform the MPC.
With this requirement and keeping the discussion given in
the introduction in mind, the method proposed in this paper
precomputes the controllable set and the lower bound of the
transition cost for everyN -step mode sequence. The notion
of controllability associated with a mode sequence will be
defined at the beginning of the next section. Moreover, the
minimum transition cost is given as a solution to the relaxed
version of Problem 4 as below.

[ Problem 4’ ] For system (1) and a given mode sequence
I ∈ MN , find the optimal waypoint sequenceX =



{x0,x1, . . . , xN} minimizing cost function (13) while sat-
isfying (15).

The only difference between Problem 4 and Problem 4’ is
that constraint (14) has been removed. Thus the minimum
cost of Problem 4’ provides a good lower bound to Problem
4, and moreover, Problem 4’ is suitable for precomputation
since it is independent of specificxs andxf .

III. C ONTROLLABLE SETS OFMODE SEQUENCES

In this section, we introduce the notion of controllability
associated with a mode sequence and derive some useful
properties. To begin with, let us denote the set of pairs of
waypoints(x0,x1) subject to (12) for a given modeI as
below.

F(I) :=
{ [

x0

x1

]
∈ <2n C̄I

[
x0

x1

]
≤ d̄I

}
. (16)

Similarly, denote the set of waypoint sequencesX =
{x0,x1, . . . , xN} satisfying (12) according to a given mode
sequenceI = {I0, I1, . . . , IN−1} as follows.

F(I) :=
{

X = (x′
0 x′

1 . . . x′
N )′ ∈ <(N+1)n[

xk

xk+1

]
∈ F(Ik) (k = 0, 1, . . . , N − 1)

}
. (17)

Next, consider the projection ofF(I) onto the space of pairs
of the first and the last waypoints :

E(I) := π0,N (F(I)). (18)

Here, the functionπ0,N (X ) projects the set ofN -step
waypoint sequencesX onto the space of pairs of the first
and the last waypoints. That is,

π0,N (X ) :=
{

[x′
0 x′

N ]′ ∈ <2n |
∃xi ∈ <n (i = 1, 2, . . . , N − 1)

s.t. [x′
0 x′

1 . . . x′
N ]′ ∈ X ⊂ <(N+1)n

}
. (19)

Clearly, in the case of1 step, the setE(I) is equivalent to
F(I). By definition, if (x0,xN ) ∈ E(I) holds for a mode
sequenceI = {I0, I1, . . . , IN−1}, then it follows that there
exists an intermediate waypoint sequencex1,x2, . . . , xN−1

that satisfies (12). This leads us to define the controllability
of mode sequences as follows.

[ Definition 1 ] A mode sequenceI ∈ MN is controllable iff
E(I) 6= ∅. Moreover, if a pair(xs,xf ) satisfies(xs,xf ) ∈
E(I), then the pair(xs,xf ) is said to be controllable with
respect toI.

In the sense of Definition 1, we callE(I) the controllable
set ofI. Now, let us define the following set operation.

[ Definition 2 ] For a setE0 ⊂ <2n andE1 ⊂ <2n,

E0 · E1 := π0,2((E0 ×<n) ∩ (<n × E1)). (20)

Then, the controllable set of a mode sequenceI and the

controllable sets of its subsequencesI0, I1 are related in
terms of (20). That is,

E(I) = E(I0) · E(I1) (21)

whereI = {I0, I1}. Moreover, for a mode sequenceI =
{I0, I1, . . . , IN−1}, the following relation holds.

E(I) = E(I0) · E(I1) · . . . · E(IN−1). (22)

From (16) and (17),F(I) is given by a linear inequality on
<(N+1)n. It follows thatE(I) is given by a linear inequality
on <2n: we denote this by

E(I) = 〈HI , KI〉 . (23)

Here,〈H,K〉 is defined as

〈H,K〉 :=
{

z ∈ <s Hz ≤ K
}

(24)

where s is the number of columns ofH. It follows that
onceHI andKI are known, one can test the controllability
of a pair (xs,xf ) with respect toI by simply evaluating
HI(x′

s x′
f )′ ≤ KI .

For numerically computingHI and KI , this paper
employs a projection algorithm proposed in [7] and
[8]. This algorithm takes a linear inequality represen-
tation 〈H,K〉 as an input, and outputs the linear in-
equality representation〈Hd,Kd〉 of the projection{x ∈
<d | ∃y ∈ <s−d s.t. H(x′ y′)′ ≤ K}. Let us denote this
by 〈Hd,Kd〉 = projection(〈H,K〉 , d). This projection
algorithm repeatedly finds an extreme point of the projection
by solving a linear programming problem on<s, until
every extreme point is found. This indicates that directly
projectingF(I) to E(I) is likely to become prohibitively
slow asN grows. To overcome this problem, (21) and (22)
provide a way to reduce the projection of<(N+1)n to <2n

into the projection of<3n to <2n. More precisely, if the
controllable sets of two mode sequencesI0 andI1 are given,
the controllable set ofI = {I0, I1} is obtained by means of
(21). Furthermore, notice that (21) is rewritten in terms of
linear inequality representations as

〈H,K〉 = 〈[H01 H02] ,K0〉 · 〈[H11 H12] ,K1〉

= projection

(〈[
H01 O H02

O H12 H11

]
,

[
K0

K1

]〉
, 2n

)
(25)

where E(I) = 〈H,K〉, E(I0) = 〈[H01 H02],K0〉, and
E(I1) = 〈[H11 H12],K1〉. With this in place, an algorithm
which computes the controllable sets of mode sequences, by
extending the length of mode sequences step by step starting
from 1 step, will be presented in the next section.

IV. A LGORITHMS OF SEMI-OFFLINE MPC

In this section, we construct a model predictive control
law based on the discussions of the preceding sections. The
outline of the method is as follows: In the offline phase, for
every mode sequence with length from1 to N , compute the
linear inquality representation of the controllable set and
the minimum transition cost. Then at each sampling timet



in the online phase,
i) enumerate allN -step mode sequences controllable to

the state pair(x(t),xf ).
ii) determine the optimal waypoint sequence by solving

Problem 4 for each of the enumerated mode sequences.
iii) generate a continuous-time inputu∗(x(t),x1) where

x1 is the first element of the optimal waypoint se-
quence obtained in ii).

We call the method “semi-offline” since the optimization of
waypoints is left to be processed on line.

The algorithm given below computes the controllable sets
and the minimum transition costs of mode sequences offline.

[ Algorithm 1 ]
Inputs: Σ, R, h, N
Outputs: Θk (k = 1, 2, . . . , N) : set of controllablek-

step mode sequences.
〈HI , KI〉 : linear inequality representation of
the controllable set associated with the mode
sequenceI.
J(I) : minimum transition cost of the mode
sequenceI.

Compute controllable sets of mode sequences.
1: Θ1 ← ∅.
2: for eachI ∈ M
3: if F(I) 6= ∅ then
4: addI into Θ1.
5: (H{I},K{I}) ← (C̄I , d̄I).
6: end
7: end
8: for eachk ∈ [2, N ]
9: Θk ← ∅.
10: for eachI ∈ Θk−1

11: for eachJ ∈ M
12: J := {I, J}.
13: 〈HJ ,KJ 〉 ← 〈HI ,KI〉 ·

〈
H{J},K{J}

〉
(25).

14: If 〈HJ ,KJ 〉 6= ∅, then addJ into Θk.
15: end
16: end
17: end

Compute minimum transition cost of mode sequences.
18: for eachI ∈ Θk (k ∈ [1, N ])
19: Solve Problem 4’ forI then store the minimum cost

to J(I).
20: end

The symbol← refers to substitution from the right hand
side to the left hand side.

The following algorithm implements the model predictive
controller utilizing the output of Algorithm 1.

[ Algorithm 2 ]
Inputs: xs, xf , h, N

TABLE I

COMPARISON OF THE NUMBER OF MODE SEQUENCES.

steps 1 2 3 4 5 6
controllable mode sequences 7 19 46 107 247 583
possible mode sequences 7 19 53 149 421 1193

0: t ← t0, x(t0) ← xs.
1: Θ ← ∅.
2: for eachI ∈ ΘN

3: if HI(x(t)′ x′
f )′ ≤ KI then addI into Θ.

4: end
5: SortΘ in ascending order by usingJ(I) as a compar-

ison key.
6: J∗ ← ∞.
7: for eachI ∈ Θ
8: if J(I) < J∗ then
9: solve Problem 4 forx(t), xf , andI. Denote the

obtained minimum cost byJ .
10: if J < J∗ thenJ∗ ← J .
11: end
12: end
13: Denote by{I0, I1, . . . , IN−1} and {x0,x1, . . . , xN}

the mode sequence and the waypoint sequence that give
the optimal costJ∗. Generate continuous time input
u∗

I0
(x(t),x1) by (6) and apply it to the plant during

the sampling time intervalh.
14: t ← t + h.
15: Go to Step 1.

V. NUMERICAL EXAMPLES

This section shows numerical examples. The CTPWA
system shown here is obtained by a piecewise linear approxi-
mation of a pendulum. More precisely, the original nonlinear
state equation of the pendulum is discribed as

ẋ =
[

q̇
g
l sin q

]
+

[
0
1

ml2

]
u x =

[
q
q̇

]
(26)

whereq [rad] is the joint angle,̇q [rad/s] is the joint velocity,
and u [Nm] is the joint torque. Moreover,m = 0.1[kg]
is the point mass attached to the tip of the arm,l =
0.3[m] is the length of the arm, andg = 9.8[m/s2] is the
gravitational acceleration. For this system, consider a region
given by {(q, q̇, u) ∈ <3 | q ∈ [−(7/4)π, (7/4)π] ∧ q̇ ∈
[−15π, 15π] ∧ u ∈ [−0.8mgl, 0.8mgl]} divided it into 7
subregions with equal widths along theq-axis. Then, assign
a time-invariant affine system to each subregion, which is
obtained by calculating the taylor series expansion of the
right hand side of (26) at the center of the subregion and
ignoring the nonlinear terms:

ẋ =
[

0 1
g
l cos q̄ 0

]
x +

[
0

g
l (sin q̄ − q̄ cos q̄

]
+

[
0
1

ml2

]
u (27)

whereq̄ refers to the value ofq at the center of each subre-
gion. Fig. 2 shows the phase map of the original pendulum
system and that of the CTPWA system.
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Fig. 2. phase map of (a) the original pendulum system and (b) the piecewise
linearized system.

First, Algorithm 1 is tested for the above CTPWA system.
Here, the sampling periodh is given by 0.3[s] and the
number of prediction stepsN is given by6. The total amount
of time required for this computation is1468[s] with Intel
Xeon Processor 2GHz with 2GBytes of memory and the
output size is9.85MBytes. Table I shows the comparison
between the number of controllable mode sequences and the
number of all possible mode sequences.

Fig. 3 shows the result of model predictive control (Al-
gorithm 2) performed on (27) for 10 steps by numerical
simulation. The initial statexs and the target statexf is set
to [π, 0] and [0, 0], respectively. Each row of Fig. 3 shows,
from the upper most row, the trajectory ofq(t), q̇(t), u(t),
and I(t), respectively. It is observed in the figure that the
pendulum is swung in the opposite direction at the beginning,
in order to gain enough velocity for reaching the target
state under input limitation. The average time required in
each sampling time for processing Step 1 through Step 6 of
Algorithm 2 is116[ms]: the computation time is treated as 0,
however, in the numerical simulation. It should be noted that
the precomputed information is not restricted to a specific
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Fig. 3. trajectory of the state, the input, the mode.

initial state or target state, but is able to handle arbitrary pairs
of initial and target states, as long as the pair is controllable
with respect to at least one of theN -step mode sequences.

VI. CONCLUSION

This paper has presented semi-offline model predictive
control for continuous-time piecewise affine systems. The
proposed method computes controllable sets and minimum
transition costs for mode sequences in the offline phase,
then at each sampling time in the online phase, determines
the optimal waypoint sequence by solving a quadratic pro-
gramming problem for each controllable mode sequence. By
distributing the computation over the offline phase and the
online phase, real-time control is achieved while saving the
size and the complexity of the precomputed structure in an
acceptable level. The proposed method has been applied to
a simple CTPWA system, obtained by piecewise linear ap-
proximation of a pendulum, to demonstrate the effectiveness
of the proposed approach.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua and E.N. Pistikopoulos: The Explicit
Linear Quadratic Regulator for Constrained Systems, Automatica, 38-
1, 3/20(2002)

[2] A. Bemporad, F. Borrelli and M. Morari: Piecewise Linear Optimal
Controllers for Hybrid Systems, Proc. of the 2000 American Control
Conference, 1190/1194(2000)

[3] J.Imura : Optimal control of sampled-data piecewise affine systems,
Automatica, Vol.40, No.4, pp.661-669, 2004.

[4] J. Imura and A.J. van der Schaft. Characterization of well-posedness of
piecewise linear systems. IEEE Trans. on Automatic Control, Vol.45,
No.9, 1600/1619(2000).

[5] J. Imura. Classification and stabilizability analysis of bimodal piece-
wise affine systems. Int. J. Robust and Nonlinear Control, Vol.12,
No.10, 897/926(2002).

[6] J. Imura. Well-posedness analysis of switch-driven hybrid systems.
IEEE Trans. on Automatic Control Vol.48, No.11, 1926-1935(2003).

[7] S. Azuma and J. Imura. A Probabilistic Approach to Controlla-
bility/Reachability Analysis of Hybrid Systems. Proceedings of the
43rd IEEE Conference on Decision and Control (CDC04), Bahamas,
December 14-17, pp. 485-490 (2004)

[8] Multi-Parametric Toolbox for MATLAB.
http://control.ee.ethz.ch/˜mpt/


