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Abstract—This paper presents an approximate semi-offline sampling time interval is discribed by a continuous-time
approach to model predictive control of continuous-time piece- affine system, while the transition of the mode (the discrete
wise affine (CTPWA) systems. The proposed method computes giat6) js determined at each sampling time. It was shown,

in the offline phase a controllable set and a minimum transition . .
cost associated with each discrete state sequence. Then at eacﬁhat the optimal .Co.ntro'l problem of SDPWA §ystems IS
sampling time in the online phase, the controller determines the reduced to an optimization over sequences of discrete states
optimal sequence of intermediate target states over a prediction during each sampling time interval, together with sequences
horizon, taking advantage of the information precomputed of continuous states to be passed at each sampling time.
off line. By effectively distributing the computation over the In physical systems, however, a discrete state such as a

offline phase and the online phase, real-time control is achieved, . - . .
striking a good balance between the amount of precomputed contact configuration between two rigid bodies, may change

data and the online computation time. The proposed method NOt only at prescribed sampling times but at any point of
has been applied to a simple CTPWA system, obtained by time according to the continuous state and the input of the

piecewise linear approximation of a pendulum. system. This means that if such a continuous-time system
_Index Terms—Model Predictive Control, Continuous-time  js modeled as a discrete-time system or a sampled-data
Piecewise Affine Systems system, the discrete state (and therefore the dynamics) of the
actual system and the one of the model may differ at some
) ) _ oints in time. In order to avoid such phenomena, explicit
Hybrid systems are a class of systems involving bOtgonsideration for holding the discrete state constant over the
continuous dynamics and discrete events, and therefore Gampling time intervals should be included in the controller
pable of modeling a wide range of real world plants. Thigjesign.
paper studies model predictive control of a subclass of hybrid |, light of the above background, this paper proposes
systems called continuous-time piecewise affine systems. Ap approximate semi-offline implimentation of MPC for
model predictive control (MPC), a finite-horizon optimal;ontinyous-time piecewise affine (CTPWA) systems, which
control problem is solved at each sampling time, and thgyyicitly considers the constant mode condition during sam-
obtained input is applied until the next sampling time. Thigjing time intervals. The method is called semi-offline, since
procedure is repeated from the next sampling time. Varioyge computation is effectively distributed over the offline
control objectives can be specified by means of cost functiong,ase and the online phase.
and it is also possible to handle state and input constraintS1pq rest of this paper is organized as follows. In Section

in an explicit manner. 2, we formalize the finite-time optimal control problem

Recently, there has been growing research interest i crpwa systems and discuss basic control strategies.

applying MPC to a class of systems that exhibits relatively, geqtion 3, the notion of the controllability of a mode
rapid motion, such as _robot;:_ to t_h's aim, reduqng real't'mg"equence is introduced. Then, in Section 4, we present an
computational burden is a critical issue. The offline approachyg; o algorithm for computing the controllable set and

which executes the major portion of the required computatiome minimum transition cost associated with each of the

in advance, is effective for this purpose [1][2]. Most of the,,qe sequences, and an online algorithm which performs

existing offline approaches, however, suffer from the rapifypc taking advantage of information precomputed offline.
growth of 'Fhe size of the precomputed information. We woulgl, Section 5, the proposed method is applied to a simple
like to point out that one can find a balance between therpya system and numerical results are presented. Section

size of precomputed information and the online computatiog .,ncjydes the paper with several notes for future research.
time if the computation is distributed over the offline and the

online phase, mstead of being prc_Jcessed entirely in advanCﬁ._ PROBLEM FORMALIZATION AND BASIC STRATEGIES
Imura [3] discussed the optimal control problem of

sampled-data piecewise affine (SDPWA) systems. In theseln this section, we formalize the finite-horizon optimal

systems, the dynamics of the continous state during eacbntrol problem of CTPWA systems. First, consider the

continuous-time piecewise affine (CTPWA) system
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wherex € R™ is the continuous statey € R™ is the
continuous input, and € M(= {1,2,...,M}) is the
mode (the discrete state). Furthermore; € R™*" and A
B € ™™™ are constant matrices, angd € R" is a constant u g X
vector. A subregion ofx, u) assigned to the modeis given
by the closed polyhedral cell 9de

r i § de 3 Ly
Oy /)q

X —T— OOy Qv — &% T >N

whereC; € ®pr>x(tm) d, ¢ ®P1 and the vector inequality L —1

z < 0 indicatesz; < 0 for each element. It is assumed e "
that eachS; has a pairwise disjoint interior but a common
boundary, that isintS; N intS; = ® and S; N Sy (if

it exists) is included in the boundary &;(S;), where ) (b)

int S expresses the interior af. In this paper, the well-

posedness of the system is assumed to be guaranteed Higr 1. lilustration of the control strategy applied to a simple CTPWA
brevity. Refer to [4][5][6] for a more detailed discussion.system. (a) Entire view of ther1, z2, u) space. (b) Projected onfa:1, z2)
We further assume that the affine system assigned to edff’® (upper) andz1,u) plane (lower).

mode is controllable. For the above system, we consider the

following finite horizon optimal control problem.

[Problem 1] Suppose the initial state, the target state, (z1,x2,u), while arrowe_d curves with dashed lines express
the positive definite matri® € %™, and the prediction the Same trajectory projected onto the, x2) plane.

horizonT > 0 are given. Then, for system (1), find an input It should be mentioned, that for continuous-time PWA

sequences that minimizes the cost function systems, restricting the mode transitions to lie one a set of
totT equally distributed points in time is unnecessary, and doing
J(u) :/ w(t) Ru(r)dr (3) so could lead to merely a suboptimal solution. This time,
to however, we accept this artificial constraint in order to keep
while satisfyingz:(t) = , andx(ty + T) = ;. the problem tractable.

This paper applies the method for the optimal control prob- It should gls_o be cons_idered, that th(.a.pair of state gnd Input
lem of SDPWA systems proposed in [3] to CTPWA systemQWSt.Stay within th_e region of th_e specn‘lc_eq mode during each
with some modifications. The method decomposes the Whoﬁ'élqe interval; that s, the following condition must hold.
controller design process into the following three steps.

Step 1Determine the sequence of mod@s, 1, ..., In_1} k=0,1,....,N -1,

wherel(t) = I, "t € [ty, tit1]- z(t

. . . . Clk |:u( )} < dfk vt € [tkvtk-i-l]' (4)
Step 2 Determine the sequence of waypoints (intermediate

target states{xg, x1,...,zn} Wherexy = xz,, xny = ¥,

andx(ty) = xy. .
2(tx) = 2 Now, let us for now assume that condition (4) holds,

Step 3Generate a continuous-time input sequencevhich  though it will be explicitly considered later. Then, for each
drives the state fronx;, to ;. through the regiors;, for time interval [t;,tx11], the plant is expressed as a time-

eachk =0,1,...,N — 1. invariant affine system corresponding to the mdgex =

Here, the sequencg; } on the time axis is given by, = A, x +a;, + By, u. This enables Step 3 to be formalized as
kh whereh is a positive constant. The symbdl refers to  a fixed terminal optimal control problem of an affine system
the number of prediction steps and is given By= T'/h. as below.

Fig. 1 illustrates this strategy applied to a CTPWA system
with 2 states,1 input, and4 modes. The state, the input, [ Problem 2] For an affine systetia = A, x+ay, + B u,
and the modes are denoted y= (z1,22), u, andI € find u that minimizes the cost function
M = {1,2,3,4}, respectively. Each mode is assigned a
cuboid region in thez, 22, u) space. In this example, four test
waypoints o, 1, 2, anda;) are placed on the state space. J(u) = / w(r) Ru(r)dr (5)
The waypointz; is placed on the boundary of mode 1 and th
mode 2, ande; is placed on the boundary of mode 1 and
mode 4. The mode between each subsequent pair of thesﬁ.I tistvi ) = ’ B
waypoints isly = 2,1, = 1 and I, = 4, respectively. V"¢ 5@ Isfyingz (ty,) = oy, ®(tr+1) = i1,
Arrowed curves with solid lines express the trajectory oft is well known that the solution of Problem 2 is given in



an explicit form as follows. [ di, - Ci, glk gk; |
’ I \k
u?k (t7 mk,$k+1) = _RilBlIkeAIk (h_t)WIk (h‘)ilnfka d] OI CII« (tkl)
k k
* . _ LA (t—h) _ -1 .
wlk(t, xk})wk-‘rl) =e Iy {Wfk(h t)WIk(h) nlk d B CIk(tk+1)
"y Tk L€ (Bet1)
—/ e*eTdrar, +xy @) - k -
0 where N, is a positive constant. Although (12) is merely a
J} @k, pg1) = 07, Wi, (h) ", (8) necessary condition to (11), it can be made arbitarily close
. o to (11) by increasingVy.
Here, Wy, (t) = [y e*" By, R™'B} ¢ dr and n;, = Based on the above strategy, Problem 1 is transformed into
eAthay — @y + [ AT dr g, . Rearranging (6) and (7) an approximate optimization problem of mode sequences and
yields waypoint sequences formalized as below.
uj (t; @, Tpgr) = B, () @ + Fr, (8) Tpgr + (1. (0), [Problem 3] Suppose the initial state,, the target state
' (9) =y, and the number of prediction steps are given. Then,
x (. _ for system (1), find a mode sequerite- {Iy, I1,...,In_1}
t; xp, =Gy, (t Hy (t) zy (t _
@y, (¢ Tp, Trr1) = Gr, (8) wp + Hp, () g1 + &k(()lo) and a waypoint sequenéé = {xo, z1, ...,y } minimizing
the cost function
where Ey, (t), Fi, (t), Gy, (t), and Hy, (t) are time varying N_1
matrices, and(;, (t),&r, (t) are timejvary.ing vectors. As J(T,X) = Z Ji (®p, T (13)
shown above, so far as the mode invariance condition (4) =0
holds, the solution to Problem 2 (and hence, to Step 3) \iﬁhile satisfyin
given by the explicit function of waypointsy,, .1, mode 9
I, and timet. Ty = X, Ty = Xy, (14)
We now turn our attention to considering condition (4) in - - ~
the controller design. The most straightforward way of doing Cr [xkij <d;, (k=0,1,...,N—-1). (15)

this is by treating the condition in Step 3, that is, adding (4)
into Problem 2, as a constraint. In this way, however, Problem
2 is no longer expected to be given an explicit solution lik@otice that Problem 3 requires the optimization of mode
(6) and (7). In light of this observation, we give (6) and (7sequence, while at the same time optimizing the waypoint
as a solution to Step 3, and keeping this in mind, guarantgequence for a given mode sequence. The waypoint opti-
condition (4) to hold in Step 1 and Step 2. First, substitutmization subproblem is a quadratic programming problem.

(9) and (10) into (4). Then we have Let us define this subproblem for future reference as below.
o [Efk(t) sz(t)} {wk ] <dy — O [ka(t)} [Problem 4] Suppose the system (W), x;, and the
MG () Hp ()| || — F )] mode sequenc& € MY are given. Then, find the optimal
(11)  waypoint sequenc&’ = {xo,x1,..., N} Minimizing the

This recasts condition (4) into a constraint with respect t50St function (13) while satisfying (14) (15).

waypointszy, x1, and model,. Since condition (11) has

nonlinear terms on timeé, we approximate (11) by a time-  The model predictive controller should solve Problem 3
invariant linear inequality by means of discretization. Introat each sampling time with ¢, = ¢ and z, = x(t). Here,
ducing a sequence of time points; =t + (h/Nq)i (i = we assume for simplicity that the sampling period of MPC

0,1,...,Ng) over the intervalts, t,+1] and evaluating (11) is equal to the partition length , although these may differ
at each of these points yields in general. Problem 3 should be solved in a shorter time
- ) ~ than the sampling period in order to perform the MPC.
% L’CHJ <dy,, (12)  with this requirement and keeping the discussion given in
the introduction in mind, the method proposed in this paper
_ i precomputes the controllable set and the lower bound of the
C, [Elk (te) F, (tk)} transition cost for everyV-step mode sequence. The notion
G, (tk) Hr, (tk) of controllability associated with a mode sequence will be
) Cr. [Elk (trk1)  Fr, (tkl)} defined at the beginning of the next section. Moreover, the
Cr, = Gr(tk1)  Hi(tr1) , minimum transition cost is given as a solution to the relaxed
version of Problem 4 as below.
o, |:E1k (te+1)  F, (tk+1)} [Problem 4'] For system (1) and a given mode sequence
"G (ter1)  Hi(tesr) T € MYV, find the optimal waypoint sequenc& =




{xg,x1,...,zN} Minimizing cost function (13) while sat- controllable sets of its subsequenciésZ; are related in
isfying (15). terms of (20). That is,

The only difference between Problem 4 and Problem 4’ is E(T) = &) - E(T) (21)
that constraint (14) has been removed. Thus the minimum

cost of Problem 4’ provides a good lower bound to Problet¥"€réZ = {Zo,Z1}. Moreover, for a mode sequende=
4, and moreover, Problem 4’ is suitable for precomputatioh!0: /1: - - In-1}, the following relation holds.

since it is independent of specifi; andx. E@)=E()-E(IL) - ... - EIn_1). (22)

Ill. CONTROLLABLE SETS OFMODE SEQUENCES From (16) and (17)F(Z) is given by a linear inequality on

In this section, we introduce the notion of controllability%(Nzl)"- It follows that&(7) is given by a linear inequality
associated with a mode sequence and derive some us&yft™": we denote this by

properfties. To begin with, let us denote t_he set of pairs of E(T) = (Hy, K1) . (23)
waypoints (xg, 1) subject to (12) for a given modé as
below. Here, (H, K) is defined as

F(I) ::{ B‘j e R | O [i‘j < d } (16) (HK):={ze® |Hz<K } (24)

where s is the number of columns off. It follows that

Similarly, denote the set of waypoint sequenc&s = onceH; and K7 are known, one can test the controllability
{zo,@1,..., @} satisfying (12) according to a given modeof a pair (., z;) with respect toZ by simply evaluating
sequence = {Iy, I;,...,In_1} as follows. Hy(z! m})/ < Ky

F():= { X = (zhx) ... 2ly) € RAN+D)n ‘ For numerically computingHz and Kz, this paper

- employs a projection algorithm proposed in [7] and
L} }Ef([k) (kzo,l,...,N—l)}. (A7) [8]. This algorithm takes a linear inequality represen-
Rt tation (H,K) as an input, and outputs the linear in-
Next, consider the projection ¢f(Z) onto the space of pairs equality representatiofH,, K;) of the projection{x €
of the first and the last waypoints: NPy € R dst H(z'y') < K}. Let us denote this
by (Hyq, Kg) = projection({H, K),d). This projection
E(I) = r"N(F(D)). (18) algo<rithm re>peatedly finds ar(1<extre2ne )point of the projection
Here, the function®" (X) projects the set ofN-step Py solving a linear programming problem oR®, until
waypoint sequenceg’ onto the space of pairs of the first€Very extreme point is found. This indicates that directly

and the last waypoints. That is, projecting F(Z) to £(Z) is likely to become prohibitively
slow asN grows. To overcome this problem, (21) and (22)
N (X) = {[m’o xy] € R | provide a way to reduce the projection 8f¥+1" to R2"

S . into the projection ofR3" to R?". More precisely, if the
zieR" (1=12...,N-1) controllable sets of two mode sequenggsandZ; are given,
st [z} o, ... l‘?v]/ cXcC §R(N+1)n} . (19) the controllable set of = {Z,,Z,} is obtained by means of
(21). Furthermore, notice that (21) is rewritten in terms of
Clearly, in the case of step, the sef(I) is equivalent to linear inequality representations as
F(I). By definition, if (xo,xzx) € £(Z) holds for a mode

sequence = {ly, I1,...,In_1}, then it follows that there (H,K) = ([Ho1 Hoz], Ko) - ([H11 Hyz], K1)
exists an intermediate waypoint sequeagex,, ...,y _1 — proiection Hyy O Hp| |Ko on
that satisfies (12). This leads us to define the controllability ~~ ©' O Hiy Hy|'|Ki]/’

of mode sequences as follows.

[ Definition 1] A mode sequencgé € MY is controllable iff where £(Z) = (H,K), £(Zo) = ([Ho1 Hoz], Ko), and

E(Z) # 0. Moreover, if a pair(z,, z;) satisfies(zs, z;) €  E(Z1) = ([Hi1 Hiz), K1). With this in place, an algorithm
E(Z), then the pairfzs, z) is said to be controllable with which computes the controllable sets of mode sequences, by
respect tar. extending the length of mode sequences step by step starting

N from 1 step, will be presented in the next section.
In the sense of Definition 1, we cafl(Z) the controllable P P

set of Z. Now, let us define the following set operation. IV. ALGORITHMS OF SEMI-OFFLINE MPC
[ Definition 2] For a set, c #2" and&; © ®2", In this section, we construct a model predictive control
law based on the discussions of the preceding sections. The
& - & =72 ((E x R™) N (R x &)). (20)  outline of the method is as follows: In the offline phase, for

every mode sequence with length frdnto N, compute the
linear inquality representation of the controllable set and
Then, the controllable set of a mode sequeficand the the minimum transition cost. Then at each sampling time



in the online phase,
i) enumerate allV-step mode sequences controllable to

TABLE |
COMPARISON OF THE NUMBER OF MODE SEQUENCES

the state pailx(t), x ). steps 1 2 3 4 5 6
" . P ( ( )’. f) . . controllable mode sequences 7 19 46 107 247 583
i) determine the optimal waypoint sequence by solving possible mode sequences 7 1o 53 149 421 1193

Problem 4 for each of the enumerated mode sequences.
iil) generate a continuous-time input*(x(¢t), 1) where
x; is the first element of the optimal waypoint se- 0:

t — to, (tg) «— xs.

guence obtained in ii). 1. @0
We call the method “semi-offline” since the optimization of 2: for eachZ € O
waypoints is left to be processed on line. 3 if Hr(=(t)' )" < K7 then addZ into ©.
4: end
The algorithm given below computes the controllable sets5: Sort© in ascending order by using(Z) as a compar-
and the minimum transition costs of mode sequences offline.  ison key.
6: J* «— .
7. for eachZ € ©
[Algorithm 1] 8: if J(Z) < J* then
Inputs: X, R, h, N 9: solve Problem 4 for:(t), 7, andZ. Denote the
Outputs: ©; (kK = 1,2,...,N):set of controllablek- obtained minimum cost by.
step mode sequences. 10: if J < J*thenJ* « J.
(Hz,K7z):linear inequality representation of  11: end
the controllable set associated with the mode 12: end
sequence. 13: Denote by{ly,I,...,Iy_1} and {xo,x1,...,xN}
J(Z) :minimum transition cost of the mode the mode sequence and the waypoint sequence that give
sequence. the optimal cost/*. Generate continuous time input
Compute controllable sets of mode sequences. u} (z(t),z1) by (6) and apply it to the plant during
1: ©; 0. the sampling time intervak.
2: for eachl € M 14: t — t + h.
3 if F(I) #0 then 15: Go to Step 1.
4 add! into ©;.
5: (H{I}vK{I}) — (C],d]).
? eneijnd V. NUMERICAL EXAMPLES
8: for eachk € [2, N] This section shows numerical examples. The CTPWA
o: O — 0. system shown here is obtained by a piecewise linear approxi-
10: for eachZ € ©,_; mation of a pendulum. More precisely, the original nonlinear
11: for eachJ € M state equation of the pendulum is discribed as
13: <HJ,KJ> — <HI,KI> . <H{J},K{J}> (25). T = |:g Sinq:l + l:l:l U = |:(]:| (26)
14: If (Hy,K)+# 0, then add7 into ©. ! mi?
15: end wheregq [rad] is the joint angleg [rad/s] is the joint velocity,
16: end and «[Nm] is the joint torque. Moreoverm = 0.1[kg]
17: end is the point mass attached to the tip of the arin=

0.3[m] is the length of the arm, ang = 9.8[m/s?] is the
gravitational acceleration. For this system, consider a region
given by {(q,¢,u) € W [q € [-(7/4)m, (T/)7] N g €

Compute minimum transition cost of mode sequences.
18: for eachZ € O (k € [1, N])

19: Solve Problem 4’ fof then store the minimum cost N\ 2
to J(T). [-157,157] A uw € [—0.8mgl,0.8mgl]} divided it into 7
20: end subregions with equal widths along theaxis. Then, assign

a time-invariant affine system to each subregion, which is
The symbol«— refers to substitution from the right hand obtained by calculating the taylor series expansion of the
side to the left hand side. right hand side of (26) at the center of the subregion and
ignoring the nonlinear terms:

. 0 1 0 0
= {‘{cosq O]x+ [?(sinq—qcosq} + [mllz}u 27)
wheregq refers to the value of at the center of each subre-

gion. Fig. 2 shows the phase map of the original pendulum
system and that of the CTPWA system.

The following algorithm implements the model predictive
controller utilizing the output of Algorithm 1.

[Algorithm 2]
Inputs:  x,, s, h, N
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Fig. 3. trajectory of the state, the input, the mode.

initial state or target state, but is able to handle arbitrary pairs
of initial and target states, as long as the pair is controllable
with respect to at least one of thé-step mode sequences.

VI. CONCLUSION

This paper has presented semi-offline model predictive
control for continuous-time piecewise affine systems. The
proposed method computes controllable sets and minimum
transition costs for mode sequences in the offline phase,
then at each sampling time in the online phase, determines
the optimal waypoint sequence by solving a quadratic pro-
gramming problem for each controllable mode sequence. By
distributing the computation over the offline phase and the
online phase, real-time control is achieved while saving the

Fig. 2. phase map of (a) the original pendulum system and (b) the piecewi§iZ€ and the complexity of the precomputed structure in an

linearized system.

First, Algorithm 1 is tested for the above CTPWA system
Here, the sampling period is given by 0.3[s] and the
number of prediction step¥ is given by6. The total amount
of time required for this computation is168[s] with Intel
Xeon Processor 2GHz with 2GBytes of memory and th
output size is9.85MBytes. Tablel shows the comparison

between the number of controllable mode sequences and the

number of all possible mode sequences.
Fig. 3 shows the result of model predictive control (Al-

gorithm 2) performed on (27) for 10 steps by numerical(4]

simulation. The initial statec; and the target state is set
to [m, 0] and [0, 0], respectively. Each row of Fig.3 shows,
from the upper most row, the trajectory ¢ft), ¢(t), u(t),

and I(t), respectively. It is observed in the figure that the .
pendulum is swung in the opposite direction at the beginning[,
in order to gain enough velocity for reaching the target[7]

state under input limitation. The average time required i
each sampling time for processing Step 1 through Step 6

Algorithm 2 is116[ms]: the computation time is treated as 0,
however, in the numerical simulation. It should be noted that

acceptable level. The proposed method has been applied to
a simple CTPWA system, obtained by piecewise linear ap-

proximation of a pendulum, to demonstrate the effectiveness
of the proposed approach.
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