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Abstract—This paper presents a method for the design of refines a variable-resolution mesh until a given error speci-
discrete abstract models of nonlinear continuous-state systems fication is met. However, the method has limitations that it
under the framework of approximate bisimulation. First, the 5 garantee error specifications only in finite time steps

notion of quantizer embedding, which transforms a continuous- d that it . tsi | lied to t
state system into a finite-state system, is extended to a variable- an at it assumes common Input signais are applied to two

resolution setting. Next, it is shown that the series of conditions SYStems.
for approximate bisimulation can be converted into a set of The method presented in this paper is an extension to

Iin_ear inequalities, whi_ch can be verified_by a Iinear_program- our previous method, which is capable of design discrete

ming solver. From this result, we obtain an algorithm that — ,pqact models under conditions much closer to approxi-
repeatedly refines a variable-resolution mesh until approximate bisimulation: that is. i handle infini

bisimulation with a prescribed error specification is achieved. ~Mate bisimulation; that Is, it can handle Infinite-step error

specification, and moreover, the control input signals of the

. INTRODUCTION two systems may be different. In addition, it provides us

. . . with a new view of discrete abstraction problems based on
This paper proposes a method for the design of d'scremathematical programming

abstractions of nonlinear systems using variable-resolutign

) . . Notation: For a functionf and a setC, we write f(C) =
guantizers. Recently, discrete abstraction methods based )|z € C}. Similar notation is used for multivariate

approximate bisimulation [1][2] has gained growing attenTunctions. The symboR denotes the field of real numbers

t|9r'1. App.roxmate b|§|mulat|on IS an e'xtenspn of the ongNal, g the symbo¥Z+ denotes the set of non-negative integers.
bisimulation to metric space. It admits equivalence relation

between two systems if the distance of output signals can|; A pproxIMATE BISIMULATION OF DISCRETETIME

be kept within a given threshold. Until now, it has been SYSTEMS

shown that discrete abstractions of a wide range of sys- ) ) )
tems can be obtained based on approximate bisimulation!n this paper, we address the discrete abstraction of
(see [3][4][5]). Discrete abstraction based on approxima@scr_ete-tlme continuous-state systems. A Q|screte—tlme Sys-
bisimulation is especially suitable for control problems witd€M is & tuple(X, Xo,U, ), where X C R" is the set of

a quantitative performance measure. It also has an advant&aes-Xo € X is the set of initial stated/ C R™ is the set
that it does not require expensive geometric computations f8f control inputs andf : X x U — X is the state transition
constructing a discrete abstract model. To date, however,anCt'On- The state and the control input of the system at time
has the following limitations. First, the error specification irf € Z" are expressed as, € X andu, € U, respectively.
the conventional approximate bisimulation has to be unifornd.n€ state transition at timeis expressed as

From a practical perspective, it is desirable to support non- -

; PR . pr1 = f(@e, ut). Q)
uniform error specification (for an example, error margin
proportional to the norm of the signal itself). Second, th&e assume that the sef§ and U are both bounded and
distribution of discrete states is also uniform. This meange functionf is smooth. Moreover, we assume that any
that the number of discrete states grows exponentially witlajectory ofX starting fromz, € X, will never exceedX.
respect to the dimension of the state space. As the third point,|n the following, we introduce the notion of approximate
it requires the global incremental stability [5]. Since manyisimulation for the class of systems defined above. Ap-
nonlinear systems may have local incrementally unstablgoximate bisimulation ([1]) is a framework for comparing
regions, this requirement may severely limit the range &f symbolic system with a continuous-state system in a
application. The use of variable-resolution quantizers enablggantitative sense. It admits an equivalence relation between
the design of discrete abstract models with non-uniformlgyo systems if each system caimulatethe other while

distributed states and control inputs. maintaining a given error criterion imposed on their signals.
In [7], the authors have presented a computational method

for the design of discrete abstract models that iterativelyqfinition 1 Approximate Bisimulation
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if and only if the following conditions hold:
1) for anyz € X, there exists a: € X such that

(x,2) € R* (2) o ||o
and for anyi € X,, there exists az € X, such that (2) °
holds. o o
2) for any (z, %) € R*, the following holds: for any. € U o o
, there exists ai such that °
(u, @) € R", (f(x,u), f(Z,10)) € R¥ A3)

holds, and for anyi € U, there exists au such that (3) | |
holds. F—otf—o—tofof——o—F—o—ff
3) the following holds: '

R* C R (4) Fig. 1. _ State transition of a finite-state system obtained by quantizer-
embedding.
In Definition 1, Condition 1 requires that for any initial

state of one system, there should exist an initial state of
the other system satisfying the relatidi®. Condition 2 e call a subset of\/* a sub-mesfof A/*. A mesh A/
requires that if a state pair is in the relatidt, then for defines a quantization function dom(M™) as shown below.
any control input of one system, there should exist a control QM) : dom(M™) — {&,&..... &5},
input of the other system that satisfies the relativh and QMY (z) = £ if e C
drives the state so that the relatidtr is satisfied at the s s
next time instant. In other words, the two systems shoulfl quantization functionQ[M*](-) =: Q*(-) maps an arbi-
be able tosimulateeach other. The relatioR" encodes an trary pointz € dom(M*) to a node whose corresponding
error specificationmposed on control input variables of thecell includesz. Let us call this function the state quantizer.
two systems. Note that the input selected first must be &lmilarly, a mesh defined in the input space is denoted by

element of the bounded input set, but the input selected later
may be outside this set as long as it satisfies the relation ~ M" ={(£y,Cp), (61 CY), - -+ (€4, Cla))}

R" with the input selected first. In this sense, the d8ts : , W L gy L
and U should be understood as an input range consider&ﬁ]d the input quantize[M*](-) =: Q"() is defined in the

) . L . : . same way as the state quantizer. From now on, we call a
in approximate bisimulation rather than as a set in whic

the inputs must be strictly constrained. Finally, Condition par of a state mesh and an Input mem, = (M, M), .
: . L . simply a mesh. A discrete-time system is transformed into
requires that any state pair, &) that satisfies the relation

R* should satisfy the relatiod?™, which encodes an error a finite-state system by embedding a pair of quantizers into

e ; its state-transition function.

specification imposed on the state variables.

A simple example ofR* is a uniform error condition; o i . i )
RB* = {(2,2) |||z — &|| < ¢}, wheree is a positive constant. Definition 2 Quantizer Embedding of Discrete-time Systems
Only this type of error condition has been considered in thk8t > = (X, )50’ U&f> be a discrete-time system. Moreover,
conventional approximate bisimulation. On the other handet M = (M*,M*) be a mesh. The quantizer embedding
B = {(,2) ]|z — #|| < nmin{|z|, |z} + ¢}, where (QE in short) of%, denoted byQE(3, M), is a system
(l::g::j?ﬂaor;dn are positive constants, expresses a relative error $— (QX(X), 0% (Xo), Q*(U), f>

(6)

whose state transition function is defined as
I1l. QUANTIZER EMBEDDING

f($7u) = Qx(f(xvu)) (7)

As illustrated in Fig. 1, the control input &f is chosen from
the nodes ofM“. Moreover, the state of is reset to the
node of a cell ofM* in which the state immediately after
X _ [(¢X (XY (X (X x O the transition made by is included. Therefore, as long as

M7 =18, o), (&, G0, (s Cis )} ) the meshe$/* and M are composed of a finite number of
EachC¥ (s € [1 : |S]]) is a compact subset dR” and cells, a system with a state-transition of the form (7) can be
called acell of the mesh. The cells are mutually disjoint;viewed as a finite automaton. In fact, the state transition of
CynNCy = 0 (i # j). A region covered by the cells is called  can be rewritten in a symbolic form as
thedomainof the mesh and denoted bym(M*) = | J, C¥. o ‘o N
Each¢, € C, is called thenodeof the s-th cell. Moreover, s—s o [f(E&8&) ey (8)

In this section, we introduce the notion @fuantizer
embedding([7]). First of all, we introducemeshstructure
defined in a bounded region R™. A meshM* is a finite
collection of pairs denoted by



From now on, we focus on a class of discrete abstract modeiere f¢(z,u) = f(z,u + ¢(x,£5)), ds(x) = ¢(x, £Y).

that are obtained by means of the quantizer embedding 81 for all s € S,

the original system. This reduces the discrete abstraction R C R (12)

problem to the problem of designing a state mesh and an s =

input mesh. Proof: Using the interface for initial states, Condition
Although not discussed in detail, in order for the behaviot in Definition 1 is expressed as:

of the quantizer-embedded system to be well-defined in the « «

context of approximate bisimulation, it is required that the (2, Q%(x)) € Ry for any z € Xo,

domain of the state mesh and that of the input mesh includehich is equivalent to Condition 1'.

X andU, respectively, with certain “margins”. Next, (11a)(11b) is rewritten as
IV. DERIVATION OF CONDITIONS FORAPPROXIMATE V(z, &) € RY, v’ € dom(M"™),
BISIMULATION (flz, v+ ¢(z,2)), Q"0 f(2,Q"(v))) € R*, (13)
In this section, we will transform a series of conditions (u' + ¢(x,2),Q"(v)) € R™

in Definition 1 into a more tractable form that is well _. Ucd
suited to computational methods. First, we observe that thal'ceU ¢ dom
existence quantifiers appear several times in the definition of  V(z,%) € R*, 4 € Q"(U),

approximate bisimulation, which are quite difficult to handle { (f(z,a+ ¢z, 2)), 0% o f(#,4)) € R, (14)

(M), this immediately implies

directly in the design of discrete abstraction. To transform R o —

them into tractable forms, we replace these quantifiers with (@ +¢(z,2),a) € B*.

explicit maps. We call these mapserfaces borrowing the  Next, define: = v’ + ¢(z, #). Thenu’ = u+ ¢(&, z). Since
term from [6]. For Condition 1 in Definition 1, we assumewe assume the input mesh is sufficiently large, the range of
that the initial state of one system is given by an explici, given byu = ' + ¢(z, &), v’ € dom(M"), includesU.
function of the initial state of the other system; that is, givemmhus we have

an initial statexy of X%, thg initial state .ofli. is given py V(z,2) € RS, ue U,

o = @*(xo). In the opposite case, the initial state Xfis

set aszy = #o. Similarly, for Condition 2, the simulating (f(z,u), @ o f(2,Q"(u+ ¢(2,2))) € R*,  (15)
input of one system is given by an explicit function of both (u,Q"(u+ ¢(2,2)) € R™

states and the input of the other system; given i, and From (14) and (15), we obtain Condition 2. Finally, Condi-

ey G = Q" (uy + ¢(i,24)), and in the opposite case, ;a5 obviously equivalent to Condition 3. This concludes
ug = Uy + ¢(xy,34), where ¢ is a smooth function that the proof -

satisfiesp(x, 2) = —¢(Z, ). We call ¢ the input interface
In general, the use of an input interface enables discrete Theorem 1 still involves nonlinear set transformations,
abstraction in coarser resolution, compared to the commathich are generally quite difficult to handle. In the next step,
control input setting ¢(z, &) = 0). we recast these conditions in terms of errors between the
The next step is to decompose the approximate bisimgtates and inputs of the two systems. First, we restrict our
ulation relation with respect to the states and inputs dittention to finding{ R¥} that are expressed in the following
the discrete abstract model. To this aim, we introduce thgpecific form:
following symbols:

R =A{x|flz - &I <673 (16)
]_%f( = e (x’ff() < i}’ . R ©) Here, || -|| denotes a norm, anif is a positive constant. The
RY =LAz (z, &) € R}, Ry = {u|(u,&g) € R"}. variables* describes how much the stateof 3 can deviate

The following theorem transforms the original conditions of 0™ the state of X. Given a norm i is parameterized by
approximate bisimulation into a collection of set inclusionsds - Moreover, let us denote by(C’, p) the maximum radius
of a ball centered gp included in a seC. Similarly, let us
denote by7(C,p) the minimum radius of a ball centered
at p that includesC. Furthermore, we introduce a mild

assumption on error specification. Let us define the following

Theorem 1 Let X be a discrete-time system and &1 =
(M*, M*") a mesh. A binary relatior?* is an approximate
bisimulation betweert. and the quantizer-embedding =

QE(X, M) if the following conditions hold: functions:
1) for all s € Sy, Ai(z,u) = {8]2- + O 8¢] (7, u),
Oxr  Ou Ox
RXDCX. (10) of; 9¢i G
ora s s = G e meo =[]
s — 85,

FO(RE,CY) C RY, (11a) Moreover, IgtA(x,u), B(x,u) and F'(x) _be functions that
e return matrices whose-th rows are given byA;(x,u),
¢s(R3) +Cy C Iy (11b) B, (2, u) and F;(z), respectively.



Assumption 1 There exists a constamt > 1 such that :[he o o
following holds: for any(z, #,u, ) such that(z, 1) € R* o > o o || o » o

and (u,4) € R", ° oo
[A' < s A@, @), |1B']] < & IB@, )|, |F']] < & | F(@)]-

Here. thei-th row of A’. B’ and F’ are given byAi (x/ u’) Fig. 2. An example of variable-resolution mesh

B;(«',v') and F;(«',u'), wherez’ = & + (x — £)6; and
v =4+ (u— 4)d; for somed; € [0,1]. Moreover, norms

1 X
for matrices are induced norms. other symbolic states. The terfpA|, ., 6* expresses the

error of s being propagated to its successdr the term
This assumption states that, for state-input pairs that afid|s,. . expresses the input quantization error, and the
equivalent under the error specificatioi*, "), local linear term || f(&X, &) — & || expresses the state quantization error.
systems obtained around their neighborhood should not difféherefore, we can tell from Theorem 2 that approximate
significantly. For linear systems, one can simply sets1.  bisimulation is achieved if there exists a certain error dis-
The next theorem gives a sufficient condition for approxtribution over the states of the discrete model that does
imate bisimulation. not violate the error specification and satisfies the error
propagation condition. In particular, an essential necessary
Theorem 2 Let{d*} (s € S) be a set of variables satisfying condition for approximate bisimulation is that there does not

the following conditions: exist a cycle on the discrete abstract model whose “loop
1”) for all s € S, gain” (the product of||A|s .S along the cycle) is greater
than1.
o5 = 7(CF, &), (18)

V. COMPUTATIONAL METHODS FOR VERIFICATION AND

” a A
2") for all s = &, DESIGN OFDISCRETEABSTRACTIONS

|Alls,0 05 + | Blls,a 0n + I F(EX,&0) — &5 < 0%, (19a) In the previous section, we have derived a condition on a
| F|ls 6% + 6% < r(RY,€Y) (19b) mesh that defines a quantizer-embedding satisfying a given
3 error specification. Based on this result, in this section, we
whered; =7(Cy,&;), and present practical methods for the verification and design of
3") forall s €S, discrete abstract models.
oy < r(RY, €Y. (20)  A. variable-resolution Quantizers
Here, In this subsection, we characterize the notion of variable-

< ou < ou resolution mesh. A variable-resolution mesh is a mesh with
1Alls.0 = K1 € [1Blls.a = w1 B, €l refinement operation. Refinement of a mesh is to partition
[Flls = & [|F(E]]- a specified cell into two sub-cells. Moreover, it should be

Then, a binary relationR* given by (9) and (16) is an possible, by a proper sequence of refinements, to make the
approximate bisimulation betweeh and 3. guantization error at any specified point arbitrarily small.
Proof: The conditions (18) and (20) directly imply (10) Basically any type of meshes satisfying this requirement

and (12), respectively. Let € R* andu € C". From the is applicable to the discrete abstraction design. One typical
mean value theorem. we have “ example of variable-resolution mesh is a mesh in which each

cell is an orthogonal hyper-rectangle (Fig.2). Initially, the
fezu) = F(E,6) + A (2 — &)+ B (u—&). mesh is composed of a single cell representing the entire
domain whose node is place at the origin. A subdivision can
be made in one of, directions. For an example, in the 2-
dimensional case, a cell can be divided either horizontally
or vertically. Each of newly created cells has its node in its
middle.

Here, thei-th row of A’ and B’ are given byA;(a/,u’)
and B;(z',u’), respectively, where' = £ + (z — £%)6;,
u =&+ (u—E&Y)H; with somed; € [0, 1]. From Assumption
1, [|A']| < ||Alls.. @and||B’|| < ||B||s,q- Therefore we have:

¢ _¢x
113 (@) = &5 B. lterative Mesh Refinement Algorithm

— X u A _ X B _ u _ X/ . . .
”f(gf(’gi) + X(x &)+ X(u $a) fs | . Before proceeding to the design problem, we discuss how
< NF(E 60D = &Ml + [[Alls,ad3 + 1Blls,ada < 65, to verify whether a given mesh defines a discrete abstraction
thus f(z,u) € RY. Therefore, (19a) implies (11a). From under a given error specification. A verification method is
a similar discussion, we can show that (19b) implies (11bpbtained almost directly based on Lemr@a Notice that

Therefore, from Theorem R is an approximate bisimula- the conditions given in Lemma? are expressed by a set of
tion. m linear inequalities. In fact, each condition given in (18)-(20)

is expressed in a general form of
In Theorem 2, equation (19a) describes how the ac-

cumulated error of one symbolic state is propagated to 0 <Az <O. (21)



TABLE |

is which portion of the mesh should be refined. To answer
PARAMETERS AND VARIABLES OF LINEAR INEQUALITIES

this question, we focus on thdual variablesof LP(M). It

is well known in the field of linear programming that the
optimal solution of the dual problem can be used to measure
Vs € So 5, I F(CX, %) o0 the sensitivity of the minimum objective value against the
change of constraint parameters. Letand A be the the

T A 0 ©

Va € A o I ™(Ca,€a) o0 dual variables corresponding to the inequality constraints
5% 1 T Ax + 0y and Az < O, respectively. Then the dual problem
V(s L ) [5,(} _|Am} IIf(f??E"ii) 0o of (22) is given as
5a —I1Blisa ¢ maximize 6T\ - ©TA
5 ARE A>0,A>0, 23
[65} {” 1”‘} —oo  r(RY,E) sub. to AT(A— ) <0 @3)
VseS o3 I —00 (R, €Y) When the primal problem is feasible, the dual problem is

also feasible and the optimal objective values of these two
problems coinside; we have

Here,z denotes a variable or a vector of variablagjenotes y* =0T\ —0TA* (24)
a scalar constant or a constant row vecfiolenotes a lower

bound and® an upper bound. Precise mapping betwee
the actual symbols that appear in each condition and tho
used in (21) is summarized in Table I. Therefore, all th
atomic conditions (18)-(20) can be aggregated into a sing
large linear inequality, which is also of the form (21) excep

that A is now a matrix. As a result, the problem of finding

an approximate bisimulation is formulated as a feasibilit?f @ C€ll and therefore it can be reduced monotonically by

verification problem of a set of linear inequalities. Thissubdividing the corresponding cell. There is one difficulty in

problem can be solved numerically by means of a Iinee{pﬁ"I tgi)rddcase, whelréi - ||f(d§,€E)F— §k|1| subdividing thi
programming (LP) solver. Moreover, the inequality (21) has 5 ]f' h o;as nc;]ta? ways re E@" dog tb 1S rg:asealwe@l;na} €
clear structure; the matriX is determined solely by system’s Ese of the fact tha; is upper-bounded by the radius Of;;

dynamics, the lower bound is determined by the mesh r(C3, €5), which can always be r_educed by Sl_deiViO.mg'
resolution and the upper bour@ comes from the error Now we come to the following refinement rule; subdivide the

specification. Therefore, each component ofn be reduced bottleneck cellwhich is a cell of eithen/™ or M™ such that

by a refinement of the corresponding cell. On the other hanEEe product of the change in its radiu_s by a subdivision and
A and© cannot be directly manipulated. the value of corresponding dual variable takes the largest

. lue.
Now, Let us proceed one step further and consider 2 . . . .
to design a feasible mesh (a mesh satisfying (21)), Frora Based on the above discussion, we obtain [teeative

- . . : efinement Algorithmlisted in Table Il. The algorithm is
a practical perspective, we would like to have a discrete ™" . T
Prowded with a systenk, an error specificatiofR", R")
abstract model composed of as small number of symbolic e - ) .
S . and a constartspecifying the minimum resolution. First, the
states as possible; in other words, we would like a mesh ngt ~ o o .
orithm initializes each of the mesh pair with a single cell

only to be feasible but also to be as coarse as possible. 3

achieve this goal, we take an iterative and greedy approac ceven.ng the wholg reglon. At every iteration, It construch a
L(J]antlzer-embeddmg using the current mesh. More precisely,

starting from a state mesh and an input mesh both compos . : . :
: ; : . . the algorithm computes symbolic state transition relations,
of a single cell, at each iteration, we make a refinement whic - ) .

the coefficient matrices of a local linear system for each

seems to bring the mesh towards feasibility most efficiently. mbolic state-inout pai as well as their induced
For this purpose, we need some continuous measure of how put pail(s, a)

far the current mesh is from feasibility. Now, let us add ar? ](\)4r)r(n jw;r)h € Ae::gosrgn rgr t:;: ggnjéggtfoyzg;l\xvnheﬁf; as
extra variable to (21) to obtain the following LP problem: ’ - ANy 9 !

long as it provides access to the values of dual variables

Where(~)* denotes the optimal value. We observe in this
%]guation that the influence &, the ¢:-th element off, on

e optimal cost is measured by the productfpfand the
Fé)rresponding dual variable?. Coming back to Table 1§;
s one of the following three terms(C%, £X), #(CY, &) or
hf( X, E0)—E5 |- Inthe first two cases),; is simply the radius

minimize y at the optimal solution. As discussed earlier, if the optimal
LP(M) 2>0,y>0, (22) cost of LP(M) is 0, the mesh is verified and therefore it is
sub. to output without further refinements. Otherwise, the algorithm

< <e. X
< Avtly, Avs© refines the mesh. Heré¢, C') denotes the bottleneck cell.

This LP has a new decision variable If y is seen as a Superscripts{or ") and subscripts,(or ,) are omitted since
parameter, LR{1) becomes equivalent to (21) when= 0. it could be a cell of eithedM* or M". If the size of the
Therefore, if the optimal cost of the LR{) is 0, the mesh cell C, 7(C,¢), is smaller thare, the algorithm terminates
is feasible. Otherwise, the mesh does not have high enoutife refinement process and outpulksindicating that the
resolution and thus needs further refinement. A question heagorithm failed to construct a proper mesh.



TABLE I

ITERATIVE REFINEMENT ALGORITHM /
/
Algorithm refine_mesh i
Inputs \T ‘@7 L
5 system X N /?\>
(R*, RY) error specification N uil BN
€ miminum resolution \A ){1 X% A\
Outputs \ A7 4 :%vx x
(M*, M™) mesh <
M* := {(0,dom(M*)}, M := {(0, dom(M"))} 4 \ k\
loop %¢ 7§ / \
create quantizer embedding= QE(X, M) — S/
solve LP(M).
if y* =0,
returm M. (a) State mesh
end
(&, C) = the bottleneck cell.
it 7(C.€) < ¢ (b) Input mesh
return(). Fig. 3. Discrete abstraction of a linear system
end
refine mesh at¢, C). 10
end

VI. NUMERICAL RESULTS

This section shows a simple example. Consider the fol-
lowing 2-dimensional linear system:

0.68 —0.14 0
i1 = Axy + Buy, A= [0.14 0.68 } B = [0.1] : Fig. 4. Error histories of the discrete model and the concrete model
The state set is given a& = [—1,1] x [-1,1] and the
input set is given ad/ = [—1,1]. For this system, we in finite iterations. In the future, the algorithm should be

compute a discrete abstraction using the error specificatipmovided with a proof that it always outputs a discrete
R* = {(z,%) ||z — #|| < 0.25 + 0.5||2||}. We assume abstract model if the original system satisfies a certain
common control inputs are applied to both systems and rexistence condition.
error specification is imposed on them. The result is shown in

Fig. 3 (a),(b). The discrete abstraction obtained is composed
of 94 states and 6 inputs. [1] A. Girard and G.J. Pappas : Approximation metrics for discrete and

: : : continuous systems, IEEE Transactions on Automatic Control, 52(5),
Fig. 4 shows300 sample error histories of the state 782/798, 2007,

variables. Initial states and input trajectories are samplegk] A.A. Julius and G.J. Pappas: Approximate Equivalence and Approxi-
uniformly at random. The horizontal axis represents the time  mate Synchronization of Metric Transition Systems, in the Proc. 45th

. ] . . . IEEE Conf. Decision and Control 2006, San Diego, USA.
intervalt € [O : 10] and the vertical axis plots the normalized [3] A. Girard : Approximately Bisimilar Finite Abstractions of Stable

error; ||z: — ¢||/(0.25 + 0.5||Z¢]|). We can see that the Linear Systems, Hybrid Systems: Computation and Control, vol 4416
normalized error is below.0 at every time instant, indicating " IIQLTNES,d231/§44, Sprlngerézo(JI?-_ Relat d Finite Ab
PR fof . Tabuada : Approximate Simulation Relations and Finite Abstrac-
that the error specmcatlon is satisfied. tions of Quantized Control Systems, Hybrid Systems: Computation
Vil. C and Control, vol 4416 in LNCS, 529/542, Springer, 2007.
: ONCLUSION [5] G. Pola, A. Girard and P. Tabuada: Symbolic models for nonlinear
In this paper, we have presented a computational method control systems using approximate bisimulation, 46th IEEE Confer-
.p P . P . P . . ence on Decision and Control, 4656/4661, 2007.
for the discrete abStracuonl Pf nonlinear sy-stems. .FI.I‘St, It haﬁS] A. Girard and G.J. Pappas : Hierarchical control system design using
been shown that the conditions of approximate bisimulation  approximate simulation, Automatica, 45(2), 566/571, 2009.

is transformed into a set of linear inequalities which can bé?] Y. Tazaki and J. Imura : Discrete-State Abstractions of Nonlinear Sys-
’ tems Using Multi-resolution Quantizer, 12th International Conference

verified using a linear programming solver. Next, the Iterative  on Hyprid Systems: Computation and Control (HSCC'09), pp.351-
Refinement Algorithm, which refines a variable-resolution 365, San Francisco, CA, USA, April, 2009.

mesh for quantizer embedding based on the information
of active constraints provided by the LP solver, has been
presented. The proposed algorithm is guaranteed to terminate
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