
Approximately Bisimilar Discrete Abstractions of Nonlinear Systems
Using Variable-resolution Quantizers

Yuichi Tazaki and Jun-ichi Imura

Abstract— This paper presents a method for the design of
discrete abstract models of nonlinear continuous-state systems
under the framework of approximate bisimulation. First, the
notion of quantizer embedding, which transforms a continuous-
state system into a finite-state system, is extended to a variable-
resolution setting. Next, it is shown that the series of conditions
for approximate bisimulation can be converted into a set of
linear inequalities, which can be verified by a linear program-
ming solver. From this result, we obtain an algorithm that
repeatedly refines a variable-resolution mesh until approximate
bisimulation with a prescribed error specification is achieved.

I. I NTRODUCTION

This paper proposes a method for the design of discrete
abstractions of nonlinear systems using variable-resolution
quantizers. Recently, discrete abstraction methods based on
approximate bisimulation [1][2] has gained growing atten-
tion. Approximate bisimulation is an extension of the original
bisimulation to metric space. It admits equivalence relation
between two systems if the distance of output signals can
be kept within a given threshold. Until now, it has been
shown that discrete abstractions of a wide range of sys-
tems can be obtained based on approximate bisimulation
(see [3][4][5]). Discrete abstraction based on approximate
bisimulation is especially suitable for control problems with
a quantitative performance measure. It also has an advantage
that it does not require expensive geometric computations for
constructing a discrete abstract model. To date, however, it
has the following limitations. First, the error specification in
the conventional approximate bisimulation has to be uniform.
From a practical perspective, it is desirable to support non-
uniform error specification (for an example, error margin
proportional to the norm of the signal itself). Second, the
distribution of discrete states is also uniform. This means
that the number of discrete states grows exponentially with
respect to the dimension of the state space. As the third point,
it requires the global incremental stability [5]. Since many
nonlinear systems may have local incrementally unstable
regions, this requirement may severely limit the range of
application. The use of variable-resolution quantizers enables
the design of discrete abstract models with non-uniformly
distributed states and control inputs.

In [7], the authors have presented a computational method
for the design of discrete abstract models that iteratively

Y. Tazaki is with the Department of Mechanical Sci-
ence and Engineering, Nagoya University, Nagoya, Japan.
tazaki@nuem.nagoya-u.ac.jp

J. Imura is with the Department of Mechanical and Environmen-
tal Informatics, Tokyo Institute of Technology, Meguro, Tokyo, Japan.
imura@mei.titech.ac.jp

refines a variable-resolution mesh until a given error speci-
fication is met. However, the method has limitations that it
can guarantee error specifications only in finite time steps
and that it assumes common input signals are applied to two
systems.

The method presented in this paper is an extension to
our previous method, which is capable of design discrete
abstract models under conditions much closer to approxi-
mate bisimulation; that is, it can handle infinite-step error
specification, and moreover, the control input signals of the
two systems may be different. In addition, it provides us
with a new view of discrete abstraction problems based on
mathematical programming.
Notation: For a functionf and a setC, we write f(C) =
{f(x) |x ∈ C}. Similar notation is used for multivariate
functions. The symbolR denotes the field of real numbers
and the symbolZ+ denotes the set of non-negative integers.

II. A PPROXIMATE BISIMULATION OF DISCRETE-TIME

SYSTEMS

In this paper, we address the discrete abstraction of
discrete-time continuous-state systems. A discrete-time sys-
tem is a tuple〈X,X0, U, f〉, whereX ⊂ Rn is the set of
states,X0 ⊆ X is the set of initial states,U ⊂ Rm is the set
of control inputs andf : X ×U 7→ X is the state transition
function. The state and the control input of the system at time
t ∈ Z+ are expressed asxt ∈ X and ut ∈ U , respectively.
The state transition at timet is expressed as

xt+1 = f(xt, ut). (1)

We assume that the setsX and U are both bounded and
the function f is smooth. Moreover, we assume that any
trajectory ofΣ starting fromx0 ∈ X0 will never exceedX.

In the following, we introduce the notion of approximate
bisimulation for the class of systems defined above. Ap-
proximate bisimulation ([1]) is a framework for comparing
a symbolic system with a continuous-state system in a
quantitative sense. It admits an equivalence relation between
two systems if each system cansimulate the other while
maintaining a given error criterion imposed on their signals.

Definition 1 Approximate Bisimulation
Let Σ = 〈X,X0, U, f〉 and Σ̂ = 〈X̂, X̂0, Û , f̂〉 be discrete-
time dynamical systems and letR̄x ⊂ Rn × Rn be a binary
relation of states and̄Ru ⊂ Rm × Rm be a binary relation
of control inputs. A binary relationRx ⊂ Rn × Rn is an
approximate bisimulation relation with respect to(R̄x, R̄u)

if and only if the following conditions hold:
1) for anyx ∈ X0, there exists âx ∈ X̂0 such that

(x, x̂) ∈ Rx (2)

and for any x̂ ∈ X̂0, there exists ax ∈ X0 such that (2)
holds.
2) for any (x, x̂) ∈ Rx, the following holds: for anyu ∈ U
, there exists âu such that

(u, û) ∈ R̄u, (f(x, u), f̂(x̂, û)) ∈ Rx (3)

holds, and for anyû ∈ Û , there exists au such that (3)
holds.
3) the following holds:

Rx ⊆ R̄x. (4)

In Definition 1, Condition 1 requires that for any initial
state of one system, there should exist an initial state of
the other system satisfying the relationRx. Condition 2
requires that if a state pair is in the relationRx, then for
any control input of one system, there should exist a control
input of the other system that satisfies the relationR̄u and
drives the state so that the relationRx is satisfied at the
next time instant. In other words, the two systems should
be able tosimulateeach other. The relation̄Ru encodes an
error specificationimposed on control input variables of the
two systems. Note that the input selected first must be an
element of the bounded input set, but the input selected later
may be outside this set as long as it satisfies the relation
R̄u with the input selected first. In this sense, the setsU
and Û should be understood as an input range considered
in approximate bisimulation rather than as a set in which
the inputs must be strictly constrained. Finally, Condition 3
requires that any state pair(x, x̂) that satisfies the relation
Rx should satisfy the relation̄Rx, which encodes an error
specification imposed on the state variables.

A simple example ofR̄x is a uniform error condition:
R̄x = {(x, x̂) | ‖x− x̂‖ ≤ ε}, whereε is a positive constant.
Only this type of error condition has been considered in the
conventional approximate bisimulation. On the other hand,
R̄x = {(x, x̂) | ‖x − x̂‖ ≤ η min{‖x‖, ‖x̂‖} + ε}, where
both ε andη are positive constants, expresses a relative error
condition.

III. QUANTIZER EMBEDDING

In this section, we introduce the notion ofquantizer
embedding([7]). First of all, we introducemeshstructure
defined in a bounded region inRn. A meshMx is a finite
collection of pairs denoted by

Mx = {(ξx
0 , Cx

0), (ξx
1 , Cx

1), . . . , (ξx
|S|, C

x
|S|)}. (5)

Each Cx
s (s ∈ [1 : |S|]) is a compact subset ofRn and

called acell of the mesh. The cells are mutually disjoint;
Cx

i ∩Cx
j = ∅ (i 6= j). A region covered by the cells is called

thedomainof the mesh and denoted bydom(Mx) =
∪

s Cx
s .

Eachξs ∈ Cs is called thenodeof the s-th cell. Moreover,

Fig. 1. State transition of a finite-state system obtained by quantizer-
embedding.

we call a subset ofMx a sub-meshof Mx. A meshMx

defines a quantization function indom(Mx) as shown below.

Q[Mx] : dom(Mx) 7→ {ξx
0 , ξx

1 , . . . , ξx
|S|},

Q[Mx](x) = ξx
s if x ∈ Cx

s .
(6)

A quantization functionQ[Mx](·) =: Qx(·) maps an arbi-
trary point x ∈ dom(Mx) to a node whose corresponding
cell includesx. Let us call this function the state quantizer.
Similarly, a mesh defined in the input space is denoted by

Mu = {(ξu
0 , Cu

0), (ξu
1 , Cu

1), . . . , (ξu
|A|, C

u
|A|)}

and the input quantizerQ[Mu](·) =: Qu(·) is defined in the
same way as the state quantizer. From now on, we call a
pair of a state mesh and an input mesh,M = (Mx,Mu),
simply a mesh. A discrete-time system is transformed into
a finite-state system by embedding a pair of quantizers into
its state-transition function.

Definition 2 Quantizer Embedding of Discrete-time Systems
Let Σ = 〈X,X0, U, f〉 be a discrete-time system. Moreover,
let M = (Mx,Mu) be a mesh. The quantizer embedding
(QE in short) ofΣ, denoted byQE(Σ,M), is a system

Σ̂ = 〈Qx(X), Qx(X0), Qu(U), f̂〉

whose state transition function is defined as

f̂(x, u) := Qx(f(x, u)). (7)

As illustrated in Fig. 1, the control input of̂Σ is chosen from
the nodes ofMu. Moreover, the state of̂Σ is reset to the
node of a cell ofMx in which the state immediately after
the transition made byf is included. Therefore, as long as
the meshesMx andMu are composed of a finite number of
cells, a system with a state-transition of the form (7) can be
viewed as a finite automaton. In fact, the state transition of
Σ̂ can be rewritten in a symbolic form as

s
a−→ s′ ⇔ f(ξx

s , ξu
a) ∈ Cx

s′ . (8)

From now on, we focus on a class of discrete abstract models
that are obtained by means of the quantizer embedding of
the original system. This reduces the discrete abstraction
problem to the problem of designing a state mesh and an
input mesh.

Although not discussed in detail, in order for the behavior
of the quantizer-embedded system to be well-defined in the
context of approximate bisimulation, it is required that the
domain of the state mesh and that of the input mesh include
X andU , respectively, with certain “margins”.

IV. D ERIVATION OF CONDITIONS FORAPPROXIMATE

BISIMULATION

In this section, we will transform a series of conditions
in Definition 1 into a more tractable form that is well
suited to computational methods. First, we observe that that
existence quantifiers appear several times in the definition of
approximate bisimulation, which are quite difficult to handle
directly in the design of discrete abstraction. To transform
them into tractable forms, we replace these quantifiers with
explicit maps. We call these mapsinterfaces, borrowing the
term from [6]. For Condition 1 in Definition 1, we assume
that the initial state of one system is given by an explicit
function of the initial state of the other system; that is, given
an initial statex0 of Σ, the initial state ofΣ̂ is given by
x̂0 = Qx(x0). In the opposite case, the initial state ofΣ is
set asx0 = x̂0. Similarly, for Condition 2, the simulating
input of one system is given by an explicit function of both
states and the input of the other system; givenxt, x̂t and
ut, ût = Qu(ut + φ(x̂t, xt)), and in the opposite case,
ut = ût + φ(xt, x̂t), where φ is a smooth function that
satisfiesφ(x, x̂) = −φ(x̂, x). We call φ the input interface.
In general, the use of an input interface enables discrete
abstraction in coarser resolution, compared to the common
control input setting (φ(x, x̂) ≡ 0).

The next step is to decompose the approximate bisim-
ulation relation with respect to the states and inputs of
the discrete abstract model. To this aim, we introduce the
following symbols:

Rx
s := {x | (x, ξx

s) ∈ Rx}, (9)

R̄x
s := {x | (x, ξx

s) ∈ R̄x}, R̄u
a := {u | (u, ξu

a) ∈ R̄u}.

The following theorem transforms the original conditions of
approximate bisimulation into a collection of set inclusions.

Theorem 1 Let Σ be a discrete-time system and letM =
(Mx,Mu) a mesh. A binary relationRx is an approximate
bisimulation betweenΣ and the quantizer-embeddinĝΣ =
QE(Σ,M) if the following conditions hold:
1’) for all s ∈ S0,

Rx
s ⊇ Cx

s . (10)

2’) for all s
a−→ s′,

fφ
s (Rx

s , Cu
a) ⊆ Rx

s′ , (11a)

φs(Rx
s) + Cu

a ⊆ R̄u
a (11b)

wherefφ
s (x, u) = f(x, u + φ(x, ξx

s)), φs(x) = φ(x, ξx
s).

3’) for all s ∈ S,

Rx
s ⊆ R̄x

s . (12)

Proof: Using the interface for initial states, Condition
1 in Definition 1 is expressed as:

(x,Qx(x)) ∈ Rx
0 for any x ∈ X0,

which is equivalent to Condition 1’.
Next, (11a)(11b) is rewritten as

∀(x, x̂) ∈ Rx, u′ ∈ dom(Mu),{
(f(x, u′ + φ(x, x̂)), Qx ◦ f(x̂, Qu(u′))) ∈ Rx,

(u′ + φ(x, x̂), Qu(u′)) ∈ R̄u.

(13)

SinceU ⊂ dom(Mu), this immediately implies

∀(x, x̂) ∈ Rx, û ∈ Qu(U),{
(f(x, û + φ(x, x̂)), Qx ◦ f(x̂, û)) ∈ Rx,

(û + φ(x, x̂), û) ∈ R̄u.

(14)

Next, defineu = u′ +φ(x, x̂). Then,u′ = u+φ(x̂, x). Since
we assume the input mesh is sufficiently large, the range of
u given byu = u′ + φ(x, x̂), u′ ∈ dom(Mu), includesU .
Thus we have

∀(x, x̂) ∈ Rx, u ∈ U,{
(f(x, u), Qx ◦ f(x̂, Qu(u + φ(x̂, x))) ∈ Rx,

(u,Qu(u + φ(x̂, x)) ∈ R̄u.

(15)

From (14) and (15), we obtain Condition 2. Finally, Condi-
tion 3’ is obviously equivalent to Condition 3. This concludes
the proof.

Theorem 1 still involves nonlinear set transformations,
which are generally quite difficult to handle. In the next step,
we recast these conditions in terms of errors between the
states and inputs of the two systems. First, we restrict our
attention to finding{Rx

s} that are expressed in the following
specific form:

Rx
s = {x | ‖x − ξx

s‖ ≤ δx
s}. (16)

Here,‖ ·‖ denotes a norm, andδx
s is a positive constant. The

variableδx
s describes how much the statex of Σ can deviate

from the statêx of Σ̂. Given a norm,Rx
s is parameterized by

δx
s . Moreover, let us denote byr(C, p) the maximum radius

of a ball centered atp included in a setC. Similarly, let us
denote byr(C, p) the minimum radius of a ball centered
at p that includesC. Furthermore, we introduce a mild
assumption on error specification. Let us define the following
functions:

Ai(x, u) =
[
∂fi

∂x
+

∂fi

∂u

∂φ

∂x

]
(x, u),

Bi(x, u) =
[
∂fi

∂u

]
(x, u), Fi(x) =

[
∂φi

∂x

]
(x).

(17)

Moreover, letA(x, u), B(x, u) and F (x) be functions that
return matrices whosei-th rows are given byAi(x, u),
Bi(x, u) andFi(x), respectively.

Assumption 1 There exists a constantκ ≥ 1 such that the
following holds: for any(x, x̂, u, û) such that(x, x̂) ∈ R̄x

and (u, û) ∈ R̄u,

‖A′‖ ≤ κ ‖A(x̂, û)‖, ‖B′‖ ≤ κ ‖B(x̂, û)‖, ‖F ′‖ ≤ κ ‖F (x̂)‖.

Here, thei-th row ofA′, B′ andF ′ are given byAi(x′, u′),
Bi(x′, u′) and Fi(x′, u′), where x′ = x̂ + (x − x̂)θi and
u′ = û + (u − û)θi for someθi ∈ [0, 1]. Moreover, norms
for matrices are induced norms.

This assumption states that, for state-input pairs that are
equivalent under the error specification(R̄x, R̄u), local linear
systems obtained around their neighborhood should not differ
significantly. For linear systems, one can simply setκ as1.

The next theorem gives a sufficient condition for approx-
imate bisimulation.

Theorem 2 Let {δx
s} (s ∈ S) be a set of variables satisfying

the following conditions:
1”) for all s ∈ S0,

δx
s ≥ r(Cx

s , ξx
s), (18)

2”) for all s
a−→ s′,

‖A‖s,a δx
s + ‖B‖s,a δu

a + ‖f(ξx
s , ξu

a) − ξx
s′‖ ≤ δx

s′ , (19a)

‖F‖s δx
s + δu

a ≤ r(R̄u
a, ξu

a) (19b)

whereδu
a = r(Cu

a , ξu
a), and

3”) for all s ∈ S,

δx
s ≤ r(R̄x

s , ξx
s). (20)

Here,

‖A‖s,a = κ ‖A(ξx
s , ξu

a)‖, ‖B‖s,a = κ ‖B(ξx
s , ξu

a)‖,
‖F‖s = κ ‖F (ξx

s)‖.

Then, a binary relationRx given by (9) and (16) is an
approximate bisimulation betweenΣ and Σ̂.

Proof: The conditions (18) and (20) directly imply (10)
and (12), respectively. Letx ∈ Rx

s and u ∈ Cu
a . From the

mean value theorem, we have

fφ
s (x, u) = f(ξx

s , ξu
a) + A′ (x − ξx

s) + B′ (u − ξu
a).

Here, the i-th row of A′ and B′ are given byAi(x′, u′)
and Bi(x′, u′), respectively, wherex′ = ξx

s + (x − ξx
s)θi,

u′ = ξu
a +(u−ξu

a)θi with someθi ∈ [0, 1]. From Assumption
1, ‖A′‖ ≤ ‖A‖s,a and ‖B′‖ ≤ ‖B‖s,a. Therefore we have:

‖fφ
s (x, u) − ξx

s′‖
= ‖f(ξx

s , ξu
a) + A (x − ξx

s) + B (u − ξu
a) − ξx

s′‖
≤ ‖f(ξx

s , ξu
a) − ξx

s′‖ + ‖A‖s,aδx
s + ‖B‖s,aδu

a ≤ δx
s′ ,

thus fφ
s (x, u) ∈ Rx

s′ . Therefore, (19a) implies (11a). From
a similar discussion, we can show that (19b) implies (11b).
Therefore, from Theorem 1,Rx is an approximate bisimula-
tion.

In Theorem 2, equation (19a) describes how the ac-
cumulated error of one symbolic state is propagated to

Fig. 2. An example of variable-resolution mesh

other symbolic states. The term‖A‖s,a δx
s expresses the

error of s being propagated to its successors′, the term
‖B‖s,a δu

a expresses the input quantization error, and the
term‖f(ξx

s , ξu
a)− ξx

s′‖ expresses the state quantization error.
Therefore, we can tell from Theorem 2 that approximate
bisimulation is achieved if there exists a certain error dis-
tribution over the states of the discrete model that does
not violate the error specification and satisfies the error
propagation condition. In particular, an essential necessary
condition for approximate bisimulation is that there does not
exist a cycle on the discrete abstract model whose “loop
gain” (the product of‖A‖s,as along the cycle) is greater
than1.

V. COMPUTATIONAL METHODS FOR VERIFICATION AND

DESIGN OFDISCRETEABSTRACTIONS

In the previous section, we have derived a condition on a
mesh that defines a quantizer-embedding satisfying a given
error specification. Based on this result, in this section, we
present practical methods for the verification and design of
discrete abstract models.

A. Variable-resolution Quantizers

In this subsection, we characterize the notion of variable-
resolution mesh. A variable-resolution mesh is a mesh with
refinement operation. Refinement of a mesh is to partition
a specified cell into two sub-cells. Moreover, it should be
possible, by a proper sequence of refinements, to make the
quantization error at any specified point arbitrarily small.
Basically any type of meshes satisfying this requirement
is applicable to the discrete abstraction design. One typical
example of variable-resolution mesh is a mesh in which each
cell is an orthogonal hyper-rectangle (Fig. 2). Initially, the
mesh is composed of a single cell representing the entire
domain whose node is place at the origin. A subdivision can
be made in one ofn directions. For an example, in the 2-
dimensional case, a cell can be divided either horizontally
or vertically. Each of newly created cells has its node in its
middle.

B. Iterative Mesh Refinement Algorithm

Before proceeding to the design problem, we discuss how
to verify whether a given mesh defines a discrete abstraction
under a given error specification. A verification method is
obtained almost directly based on Lemma??. Notice that
the conditions given in Lemma?? are expressed by a set of
linear inequalities. In fact, each condition given in (18)-(20)
is expressed in a general form of

θ ≤ Ax ≤ Θ. (21)

TABLE I

PARAMETERS AND VARIABLES OF LINEAR INEQUALITIES

x A θ Θ

∀s ∈ S0 δx
s,0 I r(Cx

s , ξx
s) ∞

∀a ∈ A δu
a I r(Cu

a , ξu
a) ∞

∀(s
a−→ s′)

2

4

δx
s′

δx
s

δu
a

3

5

2

4

1
−‖A‖s,a

−‖B‖s,a

3

5

T

‖f(ξx
s , ξu

a)
−ξx

s′‖
∞

»

δx
s

δu
a

– »

‖F‖s

I

–T

−∞ r(R̄u
a, ξu

a)

∀s ∈ S δx
s I −∞ r(R̄x

s , ξx
s)

Here,x denotes a variable or a vector of variables,A denotes
a scalar constant or a constant row vector,θ denotes a lower
bound andΘ an upper bound. Precise mapping between
the actual symbols that appear in each condition and those
used in (21) is summarized in Table I. Therefore, all the
atomic conditions (18)-(20) can be aggregated into a single
large linear inequality, which is also of the form (21) except
that A is now a matrix. As a result, the problem of finding
an approximate bisimulation is formulated as a feasibility
verification problem of a set of linear inequalities. This
problem can be solved numerically by means of a linear
programming (LP) solver. Moreover, the inequality (21) has a
clear structure; the matrixA is determined solely by system’s
dynamics, the lower boundθ is determined by the mesh
resolution and the upper boundΘ comes from the error
specification. Therefore, each component ofθ can be reduced
by a refinement of the corresponding cell. On the other hand,
A andΘ cannot be directly manipulated.

Now, Let us proceed one step further and consider how
to design a feasible mesh (a mesh satisfying (21)). From
a practical perspective, we would like to have a discrete
abstract model composed of as small number of symbolic
states as possible; in other words, we would like a mesh not
only to be feasible but also to be as coarse as possible. To
achieve this goal, we take an iterative and greedy approach;
starting from a state mesh and an input mesh both composed
of a single cell, at each iteration, we make a refinement which
seems to bring the mesh towards feasibility most efficiently.
For this purpose, we need some continuous measure of how
far the current mesh is from feasibility. Now, let us add an
extra variable to (21) to obtain the following LP problem:

LP(M)
minimize y

sub. to
x ≥ 0, y ≥ 0,

θ ≤ Ax + θy, Ax ≤ Θ.

(22)

This LP has a new decision variabley. If y is seen as a
parameter, LP(M) becomes equivalent to (21) wheny = 0.
Therefore, if the optimal cost of the LP(M) is 0, the mesh
is feasible. Otherwise, the mesh does not have high enough
resolution and thus needs further refinement. A question here

is which portion of the mesh should be refined. To answer
this question, we focus on thedual variablesof LP(M). It
is well known in the field of linear programming that the
optimal solution of the dual problem can be used to measure
the sensitivity of the minimum objective value against the
change of constraint parameters. Letλ and Λ be the the
dual variables corresponding to the inequality constraintsθ ≤
Ax + θy andAx ≤ Θ, respectively. Then the dual problem
of (22) is given as

maximize θTλ − ΘTΛ

sub. to
λ ≥ 0, Λ ≥ 0,

AT(λ − Λ) ≤ 0.

(23)

When the primal problem is feasible, the dual problem is
also feasible and the optimal objective values of these two
problems coinside; we have

y∗ = θTλ∗ − ΘTΛ∗ (24)

where (·)∗ denotes the optimal value. We observe in this
equation that the influence ofθi, the i-th element ofθ, on
the optimal cost is measured by the product ofθi and the
corresponding dual variableλ∗

i . Coming back to Table I,θi

is one of the following three terms:r(Cx
s , ξx

s), r(Cu
a , ξu

a) or
‖f(ξx

s , ξu
a)−ξx

s′‖. In the first two cases,θi is simply the radius
of a cell and therefore it can be reduced monotonically by
subdividing the corresponding cell. There is one difficulty in
the third case, whereθi = ‖f(ξx

s , ξu
a)−ξx

s′‖; subdividing the
cell Cx

s′ does not always reduceθi. For this case, we make
use of the fact thatθi is upper-bounded by the radius ofCx

s′ ;
r(Cx

s′ , ξx
s′), which can always be reduced by subdividingCx

s′ .
Now we come to the following refinement rule; subdivide the
bottleneck cell, which is a cell of eitherMx or Mu such that
the product of the change in its radius by a subdivision and
the value of corresponding dual variable takes the largest
value.

Based on the above discussion, we obtain theIterative
Refinement Algorithm, listed in Table II. The algorithm is
provided with a systemΣ, an error specification(R̄u, R̄u)
and a constantε specifying the minimum resolution. First, the
algorithm initializes each of the mesh pair with a single cell
covering the whole region. At every iteration, it constructs a
quantizer-embedding using the current mesh. More precisely,
the algorithm computes symbolic state transition relations,
the coefficient matrices of a local linear system for each
symbolic state-input pair(s, a) as well as their induced
norms. The algorithm then constructs LP(M), whereM =
(Mx,Mu). Any solver can be used for solving the LP, as
long as it provides access to the values of dual variables
at the optimal solution. As discussed earlier, if the optimal
cost of LP(M) is 0, the mesh is verified and therefore it is
output without further refinements. Otherwise, the algorithm
refines the mesh. Here,(ξ, C) denotes the bottleneck cell.
Superscripts (x or u) and subscripts (s or a) are omitted since
it could be a cell of eitherMx or Mu. If the size of the
cell C, r(C, ξ), is smaller thanε, the algorithm terminates
the refinement process and outputs∅, indicating that the
algorithm failed to construct a proper mesh.

TABLE II

ITERATIVE REFINEMENT ALGORITHM

Algorithm refine mesh
Inputs

Σ system
(R̄x, R̄u) error specification
ε miminum resolution

Outputs
(Mx,Mu) mesh

Mx := {(0,dom(Mx)}, Mu := {(0,dom(Mu))}
loop

create quantizer embeddinĝΣ = QE(Σ,M)
solve LP(M).
if y∗ = 0,
returnM.

end
(ξ, C) := the bottleneck cell.
if r(C, ξ) < ε

return∅.
end
refine mesh at(ξ, C).

end

VI. N UMERICAL RESULTS

This section shows a simple example. Consider the fol-
lowing 2-dimensional linear system:

xt+1 = Axt + But, A =
[
0.68 −0.14
0.14 0.68

]
, B =

[
0

0.1

]
.

The state set is given asX = [−1, 1] × [−1, 1] and the
input set is given asU = [−1, 1]. For this system, we
compute a discrete abstraction using the error specification
R̄x = {(x, x̂) | ‖x − x̂‖ ≤ 0.25 + 0.5‖x̂‖}. We assume
common control inputs are applied to both systems and no
error specification is imposed on them. The result is shown in
Fig. 3 (a),(b). The discrete abstraction obtained is composed
of 94 states and16 inputs.

Fig. 4 shows300 sample error histories of the state
variables. Initial states and input trajectories are sampled
uniformly at random. The horizontal axis represents the time
intervalt ∈ [0 : 10] and the vertical axis plots the normalized
error; ‖xt − x̂t‖/(0.25 + 0.5‖x̂t‖). We can see that the
normalized error is below1.0 at every time instant, indicating
that the error specification is satisfied.

VII. C ONCLUSION

In this paper, we have presented a computational method
for the discrete abstraction of nonlinear systems. First, it has
been shown that the conditions of approximate bisimulation
is transformed into a set of linear inequalities, which can be
verified using a linear programming solver. Next, the Iterative
Refinement Algorithm, which refines a variable-resolution
mesh for quantizer embedding based on the information
of active constraints provided by the LP solver, has been
presented. The proposed algorithm is guaranteed to terminate

(a) State mesh

(b) Input mesh

Fig. 3. Discrete abstraction of a linear system

0 5 10

1.0

0.0

Fig. 4. Error histories of the discrete model and the concrete model

in finite iterations. In the future, the algorithm should be
provided with a proof that it always outputs a discrete
abstract model if the original system satisfies a certain
existence condition.

REFERENCES

[1] A. Girard and G.J. Pappas : Approximation metrics for discrete and
continuous systems, IEEE Transactions on Automatic Control, 52(5),
782/798, 2007.

[2] A.A. Julius and G.J. Pappas: Approximate Equivalence and Approxi-
mate Synchronization of Metric Transition Systems, in the Proc. 45th
IEEE Conf. Decision and Control 2006, San Diego, USA.

[3] A. Girard : Approximately Bisimilar Finite Abstractions of Stable
Linear Systems, Hybrid Systems: Computation and Control, vol 4416
in LNCS, 231/244, Springer, 2007.

[4] P. Tabuada : Approximate Simulation Relations and Finite Abstrac-
tions of Quantized Control Systems, Hybrid Systems: Computation
and Control, vol 4416 in LNCS, 529/542, Springer, 2007.

[5] G. Pola, A. Girard and P. Tabuada: Symbolic models for nonlinear
control systems using approximate bisimulation, 46th IEEE Confer-
ence on Decision and Control, 4656/4661, 2007.

[6] A. Girard and G.J. Pappas : Hierarchical control system design using
approximate simulation, Automatica, 45(2), 566/571, 2009.

[7] Y. Tazaki and J. Imura : Discrete-State Abstractions of Nonlinear Sys-
tems Using Multi-resolution Quantizer, 12th International Conference
on Hybrid Systems: Computation and Control (HSCC’09), pp.351-
365, San Francisco, CA, USA, April, 2009.

