Simple Efficient Algorithm for \textit{MPQ}-tree of an Interval Graph

Toshiki SAITOH Masashi KIYOMI Ryuhei UEHARA

Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science
Interval Graphs

- Have interval representations
 - Each interval corresponds to a vertex on graph $G=(V, E)$ ($|V|=n$, $|E|=m$)
 - Two intervals intersect \iff corresponding two vertices are adjacent

![Diagram of intervals and graph]

$0 1 2 3 4 5 6$

I_1, I_2, I_3, I_4
Applications of Interval Graphs

- bioinformatics
- scheduling problems

DNA sequence

\[x_1: \text{ACGGTTTA} \]
\[x_2: \text{ATCGGAACG} \]
\[x_3: \text{AACGTTTAC} \]
\[x_4: \text{TTCGACGTGGT} \]

interval graph

ATCGGGAACGGTTTACGTGGT

interval representation
Our Problem

- Input: An interval representation of an interval graph
- Output: An MPQ-tree
 - canonical and compact
 - Isomorphism, (random generation, enumeration)
PQ-tree (Booth and Lueker 1979)

- Auxiliary data structure for interval graph
 - Ordered tree
 - Internal nodes are labeled ‘P’ or ‘Q’
 - Leaf ↔ maximal clique
 - $O(n)$ space
- Interval graph recognition
 - $O(n+m)$ time
- Only partial information
 - No information for vertices
MPQ-tree (Korte and Möhring 1989)

- Data structure for interval graph
 - Modified PQ-tree
 - node \leftrightarrow vertices
 - $O(n)$ space
- Interval graph recognition
 - $O(n+m)$ time
- Interval graph isomorphism
 - $O(n+m)$ time
Are the two interval graphs corresponding to these interval representations isomorphic?
Are the two interval graphs corresponding to these interval representations isomorphic?
Known Algorithms for constructing (M)PQ-trees

 - Input: a graph representation
 - Output: an MPQ-tree
 - $O(n+m)$ time
 - Many conditional branches

 - Input: an interval representation
 - Output: a PQ-tree
 - $O(n \log n)$ time
 - When inputs are sorted, $O(n)$ time
 - Too generalized
MPQ-tree from interval representation

Graph representation

Interval representation

MPQ-tree

PQ-tree
MPQ-tree from Interval Representation

Our approach

$O(n+m)$ time

$O(n log n)$ time

MPQ-tree

$O(n)$ space

PQ-tree

$O(n)$ space
Outline of Our Algorithm

An interval representation
\[O(n) \text{time} \]

A compact interval representation
\[O(n) \text{time} \]

\(P \)-nodes, \(Q \)-nodes and leaves
\[O(n) \text{time} \]

An \(MPQ \)-tree
Characterization of nodes

Theorem

- Leaves
 - Intervals of length 0
- Q-nodes
 - Overlapped intervals
- P-nodes
 - Other intervals
Order of Sweep

- Sweep intervals from left to right
- Left endpoints precede right endpoints
 - When left endpoint, long interval precedes short intervals
 - When right endpoint, short interval precedes long intervals
Finding Q-nodes

for each endpoint i do

 if i is a left endpoint, PUSH(S,i)

 if i is a right endpoint, compare the stack top with i

 if they don’t match, the intervals from the stack top to i on stack belongs to a Q-node
Outline of Our Algorithm

An interval representation \(O(n) \) time

A compact interval representation \(O(n) \) time

\(P \)-nodes, \(Q \)-nodes and leaves \(O(n) \) time

An \(MPQ \)-tree \(O(n) \) time
Conclusion

- New algorithm for MPQ-trees from interval representations
 - simple
 - $O(n \log n)$
 - When inputs are sorted, $O(n)$ time (theoretically optimal)

Future Works

- Applications of MPQ-trees
 - Enumeration and random generation of interval graphs