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ABSTRACT

Recently, Independent Component Analysis (ICA)
has been applied to not only problems of blind sig-
nal separation, but also feature extraction of images
and sounds. However, it is not easy to obtain high-
performance features from real data by using conven-
tional ICA algorithms. This might be originated in
the fact that class information is not taken into con-
sideration when feature extraction is conducted. It is
considered that a remedy for this problem is to intro-
duce a supervisor into ICA. Hence, in this paper, we
shall study the effectiveness of Umeyama’s Supervised
ICA (SICA) for feature extraction of handwritten char-
acters. Two types of control vectors (supervisor) are
examined in SICA: (1) average patterns (Type-I) and
(2) square/line patterns (Type-1I). To demonstrate the
usefulness of SICA, recognition performance is evalu-
ated for handwritten digits that are included in the
MNIST database. From the results of recognition ex-
periments, we certify that SICA is effective for feature
extraction if supervisor is designed properly. Further-
more, SICA features using Type-I control vectors are
more effective than those using Type-II control vectors.
Therefore, one can say that control vectors should be
designed such that class information is reflected.
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1. INTRODUCTION

Recently, independent component analysis (ICA)
has been widely known as a decorrelation technique
based on high-order moment of input signals [1].
ICA has been so far applied to problems of blind
signal separation such as sound/image separation
and EEG signal separation. On the other hand,

feature extraction of images and sounds has been
also focused as one of prominent applications of
ICA [2, 3, 4, 5]. Bartlett & Sejnowski extracted fea-
ture vectors from images of human faces using ICA,
and showed that these feature vectors had greater
viewpoint invariance for human faces as compared
with Principal Component Analysis (PCA) ones [6].
(For notational convenience, we denote feature vec-
tors obtained by ICA and PCA as ICA features
and PCA features, respectively.) Since PCA decor-
relates only the second order statistics of input sig-
nals, this result indicates that higher-order features
are useful for capturing invariant features of face
patterns as well as the second-order features. Such
invariant characteristics of ICA features might be
attractive for other pattern recognition problems.

In our previous works [7], we have presented two
types of feature selection based on the cumulative
proportion of eigenvalues and kurtosis. The former
selection is carried out for principal components
(PCs) of inputs and the latter is done for indepen-
dent components (ICs). Through the recognition
experiments, we have shown that a hybrid method,
in which feature selection was carried out for ICs as
well as for PCs, had attractive characteristics when
low-dimensional feature vectors were used in recog-
nition. However, the recognition performance was
not always high from the practical point of view.
It might be originated in the fact that class infor-
mation is not taken into consideration when feature
extraction is carried out.

Recently, Umeyama has proposed supervised
ICA (SICA) [8], in which class information can be
considered in the learning of a separation matrix.
To overcome the above problem, we shall study the
effectiveness of Umeyama’s SICA for feature extrac-
tion of handwritten characters.



2. INDEPENDENT COMPONENT
ANALYSIS (ICA)

Unsupervised ICA

Several ICA algorithms have been proposed so
far, which are different in objective functions (or
contrast functions) for statistical independence and
how to derive ICA algorithms [1, 9, 10]. In gen-
eral, estimated independent components obtained
by these algorithms are different each other. How-
ever, it is difficult to discuss which algorithms are
most appropriate for feature extraction. Therefore,
we are not concerned here with the adequacy for
ICA algorithms. In the followings, we shall adopt
the bigradient algorithm proposed by Karhunen
and Oja [11] because supervised ICA adopted here
is a extended version of this algorithm.

Suppose that we observe a m-dimensional zero-
mean input signal at time ¢, v(t) = {v1, -, vm},
where / means the transposition of matrices and
vectors. Then the n-dimensional whitening signal,
x(t), is given by the following equation:

z(t) = Mv(t) = D"V2E'v(t), (1)

where M means a nxm (n < m) whitening matrix
that is given by a matrix of eigenvalues, D, and a
matrix of eigenvectors, E. Here, assume that v(t)
is composed of n statistically independent compo-
nents (ICs), s(t) = {s1(t), -+, sn(t)}’. Then, the
following linear transformation from x(t) to s(¢)
exists:

s(t) = Wa(t). 2)

W={wi,---,w,} is often called a separation ma-
trix, and it can be obtained through the training
of a two-layer feedforward neural network. This
neural network has n outputs denoted as 3(t)
={51(t), -+, 5,(t)} and the ith row vector, w(i =
1,--+,n), of W corresponds to a weight vector from
inputs to the ith output, §;.

The term ‘independent’ is used here according to
the following definition in statistics:

p[sl(t)a T Sn(t)] = Hpi[si(t)]a (3)
i=1

where p[-] is a probability density function. Since
the above probability density function is not prelim-
inary unknown, suitable objective functions should
be devised such that neural outputs, §;, are satis-
fied with Eq. (3) as much as possible, i.e. §(t) ~
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Figure 1: Schematic diagram of information pro-
cessing in SICA.

s(t). Karhunen and Oja have proposed the follow-
ing contrast function [11], J(-), to be maximized in
terms of output signals, s:

J(8) = Z |B[57] - 3{E[5]}?], (4)

where E[-] means expectation. As well known, Eq.
(4) corresponds to the fourth-order cumulants of
5;(t), called kurtosis. The following learning algo-
rithms for a separation matrix, W, are derived from
the gradient of Eq. (4) and the orthonormality con-
straints of W' [12]:

Wk;Jrl =W, + u(tanhék)azﬁv
+ (I =W W)Wy,  (5)

where k means time step.

Supervised ICA

Umeyama has proposed a supervised version of
ICA (SICA), in which a separation matrix is trained
such that the contributions of ICs to input patterns
could be controlled by supervisor. In other words,
the training of SICA is carried out by maximizing
correlations between each IC and specific sets of
inputs as well as by strengthening independency of
ICs.

Let us describe the details of SICA. From Egs.
(1) and (2), the relation between inputs and esti-
mated ICs is rewritten as follows:

v=(EDY*W )3 = (ED'*W')s = A3, (6)



where we should note that W is an orthogonal ma-
trix. Here, A corresponds to an estimated mixture
matrix. The ith column vector, a; (i = 1,---,n),
of A is called an adjoint vector whose element val-
ues mean the contribution of the ith IC, §;, to an
input pattern, v (see Fig. 1). Therefore, if we
want to control the contributions of the ith IC, we
should give desired signals to these adjoint vectors.
In SICA, as shown in Fig. 1, a normalized con-
trol vector, f, = {fi1, -, fim}, is given to a; as
its desired signal, and the following correlation, p;,
between f, and a; is maximized:

(7)

The update rule of a separation matrix, W, at
time k is shown as follows:

Wii1 = Wy + u(tanh 8;) ),
+ (I - W W)W+ AG,  (8)

where
G:[gl7"'7gp507'”)0]/' (9)

Here, p is the number of ICs to be controlled. In
Eq. (9), g, is obtained from the derivative of p;
with W in Eq. (7), and A is a matrix of learning
coefficients shown below:

A:diag(Al,"',Ap70a"'70)7 (10)
where )\; is given by

anh §;x ||

t
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Here, )\L is a negative constant that determines the
balance between the independence term (the second
term) and the correlation term (the fourth term) in

the right hand side of Eq. (8) (see [8] for details).

3. FEATURE EXTRACTION OF
HANDWRITTEN CHARACTERS

Feature Extraction Using Unsupervised
ICA

As described in Section 2, ICA algorithms allow
us to decompose input signals into their indepen-
dent components such that they are satisfied with
Eq. (3) as much as possible. Such characteristics of
ICA can be applied to feature extraction of hand-
written characters.

ICA
character , PCs .12 | ICs
. — FE > WD™'* [~ feature
1mage ‘ .. vector
feature feature
selection selection

Figure 2: A block diagram of feature extraction of
characters using ICA.

Based on Egs. (1) and (2), the relation between
inputs and outputs of ICA is given by

5(t) = WD Y2E'v(t) = Bo(t), (12)

where W is a separation matrix trained by an ICA
algorithm and B = WD Y2E'is a n x m matrix.
When an input, v(t), corresponds to the tth presen-
tation of character images, the ICA output, §(t),
can be considered as its feature vector (see Fig. 1).
Here, the ¢th row vector, B; (it=1,---,n),of B cor-
responds to a base vector spanning n-dimensional
feature space (such base vectors are called ICA-
bases for convenience). Since E’v(t) corresponds
to principal components (PCs) of v(t), one can say
that an ICA feature vector is given with transforma-
tion WD ™2 of a PCA feature vector. Therefore,
we can consider that the process of feature extrac-
tion using ICA consists of two types of transforma-
tions (see Fig. 2). One is the transformation from
an input image to PCA features, and the other is
the transformation from PCA features to ICA fea-
tures.

Different feature selection (dimension reduction)
can be applied to outputs of the above transfor-
mations: that is, we can reduce dimensions PCA
features and/or ICA features. In our previous work
[7], however, it is not easy to extract useful features
by reducing dimensions of ICA features. Therefore,
feature selection is carried out only for PCA fea-
tures in this paper.

Cumulative proportion has been often used in
feature selection for PCA features as a criterion
of determining useful features. For convenience,
eigenvalues of a covariance matrix of training sam-
ples are denoted in order of their magnitude: Ay >
-+« > Ap. Then, the cumulative proportion, ¢, is
defined as follows:

o — iz i (13)
Z:'n:d Ai’

where n is the number of large eigenvalues to be



selected. Let us introduce an upper bound of
cumulative proportion, cg, that gives a threshold
value of determining what feature vectors should
be adopted, then the largest value of m can be
determined such that ¢, < c¢o holds. We select
n eigenvectors with the largest n eigenvalues as
PCA-bases; that is, we consider a n-dimensional
subspace spanned by eigenvectors with Aq,---, A,.
After this feature selection is carried out, a n-
dimensional vector of PCs, E'v(t), is obtained, then
a n-dimensional ICA feature vector, §(t), is calcu-
lated from Eq. (12).

Feature Extraction Using Supervised ICA

In pattern recognition problems, it is more desir-
able that extracted features belonging to different
classes are mutually separated as much as possible
in the feature space. Conventional ICA is, how-
ever, categorized in unsupervised learning; there-
fore, good separatability for extracted features is
not always ensured. To overcome this problem, we
should utilize class information (teacher signals) for
extracting good features. Hence, supervised ICA
(SICA) shown in the previous section is adopted
here for feature extraction of handwritten charac-
ters.

As stated in Section 2, an adjoint vector, a;
(i =1,---,n), in SICA indicates the contribution
of the ith IC, §;, to an input pattern (character
image), v. Through the learning of SICA, this con-
tribution can be controlled by varying a control vec-
tor, f;. However, it is not clear how these control
vectors should be designed in order to extract good
independent features. As seen from Eq. (6), one
can say that an input pattern is given by weighted
sum of some adjoint vectors. Therefore, control vec-
tors should be designed such that input patterns are
approximated by weighted sum of the control vec-
tors (note that adjoint vectors are trained so as to
maximize the correlation with control vectors).

Hence, we shall present two types of control vec-
tors whose two-dimensional representation corre-
sponds to (1) average patterns (Type-I) and (2)
square/line patterns (Type-1T). As shown in Fig.
3, Type-I control vectors are obtained by simply
averaging training samples belonging to the same
category; hence, the number of control vectors is
equivalent to the number of categories. On the
other hand, as shown in Fig. 4, Type-II control vec-
tors are defined as square-shaped and line-shaped
patterns. In the following recognition experiments,
a 28x28-pixel character image is divided into 16
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Figure 3: Examples of Type-I control vectors.
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Figure 4: Examples of Type-II control vectors.

blocks (see Fig. 4), each of which is composed
of 7x7 pixels. Twenty-four Type-II control vectors
are constructed by combining these 16 blocks: 16
square fragments, 4 horizontal lines, and 4 vertical
lines. In Fig. 4, all pixels included in a shaded block
have +1 and others have 0. The above two types of
control vectors are normalized such that their aver-
age and variance are equal to 0 and 1, respectively.
We should notice that Type-II control vectors are
defined regardless of digit classes, but each Type-I
control vector includes class information.

4. SIMULATIONS

To demonstrate the usefulness of SICA, recogni-
tion performance is evaluated for handwritten dig-
its. A thousand of digit patterns in the MNIST
database are used for training, and ten thousands of
digit patterns are used for evaluation. Although the
MNIST database originally includes 60,000 train-
ing samples, we use only 100 samples for each digit
in order to reduce training time. Each image of
handwritten digits is composed of 28x28 pixels and
no preprocessing is carried out before feature ex-
traction. Training samples are used for generating
prototype vectors as well as learning ICA-bases. In
classification, we adopt the similarity as a measure
of distance between an input image and the pro-



totypes. After calculating similarities with all pro-
totypes, recognition is conducted based on the k-
nearest neighbor (k-NN) method, where k is set to
5 in the following simulations.

In SICA, the dimensions of feature vectors are
the same as the number of control vectors; hence,
the dimensions of feature vectors for Type-I and
Type-II control vectors are 10 and 24, respectively.
Dimension reduction is carried out only by spher-
ing of input patterns. For comparative purpose,
we evaluate the performance of feature vectors that
are obtained by using conventional (unsupervised)
ICA. In order to examine the independency of ex-
tracted features, § = {31, -, §,}, the following ab-
solute value of kurtosis is evaluated:

hure(3) = 37 1B - 3{BIRY. (14)

If s has larger kurtosis, one can say that this feature
vector is more statistically independent.

The results of recognition accuracy and absolute
values of kurtosis for SICA with Type-I and Type-I1
control vectors are shown in Tables 1 and 2, respec-
tively*. As you can see from Table 1, the perfor-
mance of SICA with Type-I control vectors is higher
than that of ICA and it improves with the decrease
of )\L, which determines the balance between the
independence term and the correlation term (see
Egs. (8) ~ (11)). If the absolute value of X}, is
large, the effect of supervisor becomes large in the
training of ICA-bases. This means that the Type-I
supervisor in SICA works effectively in feature ex-
traction. Although absolute values of kurtosis for
SICA features are slightly smaller than those for
ICA features, one can say that the values are fairly
high for any \J,.

On the other hand, when Type-II control vectors
are introduced into SICA, the extracted features
have quite small kurtosis as compared with ICA
(see Table 2); this means that Type-II control vec-
tors are not suitable to maintain the independency
of ICA features. Furthermore, the recognition per-
formance of SICA with Type-II control vectors is
worse than that of ICA.

The above results lead to the following conclu-
sions:

1. If control vectors are designed properly in
SICA, high-performance features could be ex-
tracted from handwritten digits.

*We should note that dimensions of evaluated feature vec-
tors are different in these two experiments. Therefore, we
cannot simply compare the results in Tables 1 and 2.

Table 1: Experimental results for SICA with Type-I
control vectors and conventional ICA. The dimen-
sions of feature vectors and the number of control
vectors are 10.

accuracy [%)] | kurtosis
SICA | X, =1 85.47 1.03
A, =—10 85.53 0.99
A, = =50 85.65 1.00
/\L = —100 85.82 1.04
ICA 85.46 1.32

Table 2: Experimental results for SICA with Type-
IT control vectors and conventional ICA. The di-
mensions of feature vectors and the number of con-
trol vectors are 24.

accuracy [%] | kurtosis
SICA )\L =-1 88.86 0.305
A, =10 89.04 0.341
A, =30 89.05 0.328
N, =50 89.09 0311
ICA 89.84 3.08

2. SICA features using Type-I control vectors are
more effective than those using Type-II con-
trol vectors. Therefore, one can say that con-
trol vectors should be designed such that class
information is included in them.

3. In general, features with high independency
are effective. However, as we can see from
the recognition results for ICA features, fea-
tures that simply increase their independency
are not always effective. This suggests that
increasing independency and introducing su-
pervisor into ICA is a key to enhancing the
performance of feature extraction.

5. CONCLUSIONS

We applied Supervised Independent Component
Analysis (SICA) to feature extraction of handwrit-
ten digits. Two types of control vectors were intro-
duced into SICA in order to examine the effective-
ness of supervisor. From the results of recognition
experiments, we certified that one of the control
vectors worked effectively in SICA; that is, If con-
trol vectors are designed properly, increasing inde-



pendency and introducing supervisor into ICA can
realize high-performance feature extraction.

(1]

2]

3l

(4]

5]

(8]

(9]

REFERENCES

A. Hyvérinen: “Survey on independent component
analysis”, Neural Computing Surveys, 2, 94-128,
1999.

J. Karhunen, A. Hyvérinen, R. Vigario, J. Hurri,
and E. Oja: “Applications of neural blind separa-
tion to signal and image processing”, Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 131-134,
1997.

M. Kotani, Y. Shirata, S. Maekawa, S. Ozawa,
and K. Akazawa: “Application of indepen-
dent component analysis to feature extraction
of speech”, Proc. of Int. Joint Conf. on Neural
Networks (IJCNN99-Washington DC), CD-ROM
#704, 1999.

S. Ozawa, T. Tsujimoto, M. Kotani, and N. Baba:
“Application of independent component analy-
sis to hand-written Japanese character recogni-
tion”, Proc. of International Joint Conf. on Neural
Networks (IJCNN99-Washington DC), CD-ROM
#462, 1999.

Y. Watanabe, M. Hirahara, and T. Nagano: “Fea-
ture extraction of palm prints using supervised in-
dependent component analysis”, CD-ROM Proc.
of 7th Int. Conf. on Neural Info. Processing, 2000.

M. S. Bartlett, H. M. Lades, and T. J. Sejnowski:
“Independent component representations for face
recognition”, Proc. of the SPIE, 3299, 528-539,
1997.

S. Ozawa, M. Kotani: “A study of feature extrac-
tion and selection using independent component
analysis”, Proc. of 7th Int. Conf. on Neural Info.
Processing, I, 369-374, 2000.

S. Umeyama, S. Akaho, Y. Sugase: “Supervised
independent component analysis and its applica-
tions to face image analysis” (in Japanese), Tech.
Report of IEICE, NC99-2, 9-16, 1999.

A. J. Bell and T. J. Sejnowski: “An informa-
tion maximization approach to blind separation
and blind deconvolution”, Neural Computation, 7,
1129-1159, 1995.

S. Amari, A. Chichocki, and H. Yang: “A new
learning algorithm for blind signal separation”, Ad-
vances in Neural Information Processing Systems,
8, MIT Press, Cambridge, MA, 757-763, 1996.

J. Karhunen and E. Oja: “A class of neural net-
works for independent component analysis”, IEEE
Trans. on Neural Networks, 8, 3, 486-503, 1997.

L. Wang, J. Karhunen, and E. Oja: “A bigradient
optimization approach for robust PCA, MCA, and
source separation”, Proc. IEEE Int. Conf. on Neu-
ral Networks (ICANN95-Perth), 1684-1689, 1995.



