
Learning Action-Value Functions Using Neural
Networks with Incremental Learning Ability

Naoto SHIRAGA Seiichi OZAWA Shigeo ABE

Graduate School of Science and Technology, Kobe University, Kobe 657-8501, JAPAN
shiraga@chevrolet.eedept.kobe-u.ac.jp {ozawa, abe}@eedept.kobe-u.ac.jp

Abstract. When the distribution of given training data is biased and
temporally varied, it is well known that the learning of neural networks
becomes difficult in general. In Reinforcement Learning (RL) problems,
such situations often arise. In this paper, an incremental learning sys-
tem, which has been devised for supervised learning, is implemented as
an RL agent that can acquire an action-value function properly even
in the above difficult situations. The proposed RL agent is applied to
an extended mountain-car task in which learning domains are tempo-
rally expanded. Through computer simulations, we demonstrate that
the proposed agent can acquire a right policy in this task.

1 Introduction

In Reinforcement Learning (RL) problems, an RL agent adapts itself to the environment so
as to maximize the total amount of reward it receives over the long run [1]. Through the
interaction with the environment, the agent learns an appropriate policy that maps a state to
a right action. In general, instead of learning the policy directly, action-values are introduced
into the agent and they are modified based on the error between the estimated reward and
the immediate reward called Temporal Difference (TD) error. The action-values are defined
for each state-action pair and they give the estimation of the total reward that the agent
will earn in the future. In tasks with small and finite state sets, it is possible to form these
action-values with a lookup table. In many cases of practical interest, however, there are far
more states than could possibly be entries in this table. In this case, a continuous function is
used for approximating action-values.

Neural networks have been often adopted to approximate action-value functions. However,
it is well known that the learning of neural networks becomes difficult when the distribution
of given training data is biased and temporally varied. In such a situation, the input-output
relations acquired in the past are easily to be collapsed by the learning of newly given data.
This disruption in neural networks is called interference that is caused by excessive adaptation
of connection weights for new data. This interference can also arise in RL problems because
similar trials might not be conducted in a short period.

We have proposed an incremental learning system [2], in which Long-Term Memory (LTM)
was introduced into Resource Allocating Network (RAN) [3]. For the notational convenience,
this system is denoted as RAN-LTM. In RAN-LTM, storage data in LTM (denoted as LTM
data) are produced from inputs and outputs of RAN whose relationships are accurately ap-
proximated. When the learning is carried out, some LTM data are retrieved and they are
simultaneously trained to suppress the interference. Although RAN-LTM has been devised
for supervised learning, it can be also applied to RL problems by introducing TD errors.

In Section 2, RAN-LTM is implemented as an RL agent (called RAN-LTM agent) that
can acquire proper action-value functions even when the learning domains are temporally
expanded. In Section 3, the RAN-LTM agent is applied to an extended mountain-car task,
in which a car driver (RL agent) has to learn a right policy on the throttle operation to reach
a goal as soon as possible. The agent’s ability in approximation of action-value functions is
evaluated through computer simulations. Section 4 presents conclusions of this work.

2 RL Agent with Incremental Learning Ability

The proposed RL agent consists of two parts: Resource Allocating Network (RAN) [3] and
Long-Term Memory (LTM). RAN is used for approximating an action-value function. The
inputs of RAN at time t, xti, i = 1, · · · , I, are composed of the current agent’s states sti′ ,
i′ = 1, · · · , S, and the previously selected actions at−1,i′′ , i′′ = 1, · · · , A: i.e. (xt1, · · · , xtI) =
(st1, · · · , stS , at−1,1, · · · , at−1,A). Here, S and A are the numbers of agent’s states and actions,
respectively. The outputs ztk, k = 1, · · · ,K, correspond to the action-values, which are utilized
for determining agent’s actions at time t. Note that the number of input units of RAN, I, is
equal to S+A and the number of output units, K, is equal to A. In the followings, the inputs
and outputs of RAN are denoted as vectors: i.e. xt = {xt1, · · · , xtI}′ and zt = {zt1, · · · , ztK}′.

While the agent takes actions to achieve a goal, useful pairs of inputs and the associated
action-values (called LTM data) are automatically produced and accumulated inside the agent.
The agent can retrieve these LTM data and learn them in order to sustain its proper action-
value function. In learning action-values, the production and retrieval of LTM data are
simultaneously carried out inside the agent. The details of these procedures are shown below.

2.1 Resource Allocating Network

RAN is an extended model of Radial Basis Function networks [4]. At the beginning, the
number of hidden units is set to one; hence, RAN possesses simple approximation ability at
first. As the agent experiences many trials, the approximation ability of RAN is developed
by allocating additional hidden units.

The outputs of RAN are calculated as follows:

ytj = exp(−‖ xt − cj ‖2
σj

2
) (j = 1, · · · , J) (1)

ztk =
J∑

j=1

wkjytj + θk (k = 1, · · · ,K), (2)

where ytj is the output of the jth hidden unit at time t, J is the number of hidden units,
cj = {cj1, · · · , cjI}′ is a center vector of the jth hidden unit, σ2

j corresponds to variance of
the jth radial basis function, wkj is a connection weight from the jth hidden unit to the kth
output unit and θk is a bias of the kth output unit.

Assume that the kth output for xt corresponds to an action-value of the kth action,
Q(xt, atk): i.e. ztk = Q(xt, atk). Then, the agent’s action is selected based on the following
probability function in Stochastic Action Selector (SAS):

Prob(atk) =
exp(Q(xt, atk)/T)∑K
l=1 exp(Q(xt, atl)/T)

=
exp(ztk/T)∑K
l=1 exp(ztl/T)

, (3)

where T is a parameter that controls the randomness of action selection. At the beginning, T
is set to a large value, and then it is gradually reduced. Now we assume that the k′th action
is selected at time t in SAS, and then the agent’s states are changed to st+1,1, · · · , st+1,S and
an immediate reward rt+1 is given. The following TD error Etk for the kth output is defined:

Etk =

{
rt+1 + γ maxl z̃t+1,l − ztk (k = k′)

0 (otherwise),
(4)

where z̃t+1,l is the lth output calculated by using the next state xt+1 and the current network
connections. Based on the value of Etk′ , either of the following procedures is conducted:

1) If Etk′ > ε and ‖xt − c∗‖ > δ, a hidden unit is added to RAN (i.e. J ← J + 1). Here,
c∗ is the nearest center vector to xt. ε and δ are positive constants. The network
parameters for the Jth hidden unit are set to as follows: cJ = xt and wkJ = Etk′ .

2) Otherwise, the network connections are modified as follows:

wNEW
kj = wOLD

kj + αEtkytj (5)

cNEW
ji = cOLD

ji + 2
α

σj
(xti − cji)ytj

∑
k

Etkσkj , (6)

where α is a positive learning ratio.

2.2 Long Term Memory

Each LTM datum is composed of an agent’s state and the associated action-value. They are
respectively used as an input and its target in the learning of RAN. Therefore, LTM data
should be produced from inputs and outputs of networks whose relationships are accurately
approximated. In reinforcement learning, however, the approximation accuracy of an action-
value function cannot be measured by only TD errors. Hence, the average number of actions
taken to achieve a goal is also considered as a criterion for producing LTM data. The average
number of actions is estimated occasionally during the learning of the agent; and if it is small
enough, the following procedure is carried out to produce LTM data:

1) If all outputs of hidden units ytj, j = 1, · · · , J , for xt are less than a threshold value θc,
then go to Step 5. Otherwise, go to Step 2.

2) Obtain all indices j of hidden units whose outputs ytj are larger than θc, and we define
a set I1 of these indices. The variable qj is updated for all j ∈ I1 as follows: qj ←
qj + 2 exp(ρEtk′) − 1, where k′ means the index of the selected action. Etk′ is the TD
error for the k′th output ztk′ and ρ is a positive constant.

3) If qj > β for j ∈ I1, then qj is initialized and go to Step 4. Otherwise, go to Step 5.
Here, β is a positive constant.

4) If no LTM datum for the jth hidden unit had been produced yet, then the jth center
vector cj is given to RAN as its input x̃M and the output z̃M is calculated. The input-
output pair (x̃M , z̃M) is stored into LTM. The number of LTM data, M , increases by
one (i.e. M ←M + 1).

5) t← t + 1 and go to Step 1.

LTM data are retrieved and utilized for learning the RL agent. In order to learn as efficiently
as possible, the suitable number of LTM data should be recalled. Here, based on the activation
of hidden units, LTM data to be retrieved are determined as follows:

1) Obtain all indices j of hidden units whose outputs ytj are larger than θr, and define a
set of these indices as I2.

2) If I2 	= φ, then go to Step 3. Otherwise, no LTM datum is retrieved. Go to Step 5.
3) Obtain LTM data nearest to the center vectors cj for all j ∈ I2.
4) Recall these LTM data and the output errors are calculated for each LTM datum. Based

on the errors, connection weights of RAN are modified.
5) t← t + 1 and go to Step 1.

3 Simulations

3.1 Extended Mountain-Car Task

To examine the performance of the proposed RL agent, we apply it to an extended version of
Mountain-Car Task, in which a car driver (RL agent) learns an efficient policy to reach a goal
located on the hill between two basins shown in Fig. 1. In the original Mountain-Car Task
[1], only the left basin (B1) is adopted in learning. Here, the right basin (B2) is also adopted
as an additional learning domain. Suppose that a stationary car is positioned in either of
two basins at the beginning of an episode. The goal of the RL agent is to successfully drive
up the steep incline and to reach a goal state at the top of the hill as soon as possible. The
difficulty is that gravity is stronger than the car’s engine, and even at full throttle the car
cannot accelerate up the steep slope. Therefore, the RL agent has to learn a policy that it
first moves away from the goal and up the opposite slope. Then, by applying full throttle the
car can build up enough inertia to carry it up the steep slope.

The state of the RL agent is the car’s position and velocity. Three actions at are available
to the agent in each state: full throttle forward (+1), full throttle reverse (−1), and zero
throttle (0). The reward is −1 for all state transitions except the transition to the goal state,
in which case a zero reward is returned. The car moves according to a simplified physics. Its
position xt and velocity ẋt are updated by the following dynamics:

xt+1 = bound[xt + ẋt+1], ẋt+1 = bound[ẋt + 0.001at − 0.0025cos(3xt)],

goal

car

B1 B2

x-1.2 0.5 2.2

Figure 1: An extended mountain-car task.

Table 1: The average number of steps obtained through 100 episodes and the total time to
learn B1 and B2. In the column of B1, ’before’ and ’after’ respectively correspond to the
results of average steps evaluated for B1 before and after the learning for B2 converges.

B1 B2 Learning Time
before after (sec.)

RAN agent 811 1595 679 110
RAN-LTM agent 790 541 922 250

where the bound operation enforces −1.2 ≤ xt+1 ≤ 2.2 and −0.07 ≤ ẋt+1 ≤ 0.07. When
xt+1 reaches the left and right bound (i.e. xt+1 = −1.2 and 2.2), ẋt+1 is reset to zero. In
each episode, the agent starts from a random position with velocity uniformly chosen from
the above range. When the agent reaches the goal, the episode is terminated.

3.2 Results

Here, we shall apply the proposed RL agent to the extended mountain-car task in which the
learning of the action-value function is conducted only for B1 at first, and then the learning
for B2 is carried out. That is to say, at first, the RL agent repeatedly experiences episodes
in which initial positions are randomly chosen only from B1, and the learning is continued
until the TD error becomes small enough. After the learning for B1 converges, the RL
agent experiences new episodes in which initial positions are randomly chosen only from B2.
Therefore, the episodes experienced in the former learning never occur in the latter learning.
After the learning for B2 is completed, we evaluate the interference by examining the average
number of steps needed until the RL agent reaches the goal. Here, the number of steps is
equivalent to the number of agent’s actions taken in an episode.

Table 1 shows the average number of steps obtained through 100 episodes and the to-
tal time to learn B1 and B2. In each episode, the RL agent starts from a randomly chosen
position in B1 or B2. To show the usefulness of the proposed agent (denoted as RAN-LTM
agent), the performance of the agent using the original RAN (denoted as RAN agent) is also
examined. The parameters of RAN and Long-Term Memory (LTM) are given as follows:

[RAN] ε = 1.0, κ = 1.0, δmax = δmin = 0.5, τ = 50, α = 0.00001, σj = 0.21, γ = 0.99
[LTM] θc = 0.9, θr = 10−2, ρ = 1, β = 0.01, η = 0.01.

The average number of steps are evaluated for B1 before and after the learning for B2 is
carried out. As we can see in Table 1, the number of needed steps in B1 excessively increases
in the RAN agent after the learning for B2; on the other hand, it decreases in the RAN-LTM
agent. Considering that there is not so much difference between the RAN agent and the RAN-
LTM agent in terms of needed steps before the learning for B2, this result suggests that the
RAN-LTM agent can sustain proper action-values acquired in the past even if lately presented
episodes are quite different from those presented in the past. This result is also certified from
Fig. 2, in which the variations of action-values are shown for different positions x in B1.
These variations are given by differences between action-values acquired before and after the
learning of B2. As seen in Fig. 2, due to the interference, the action-values of the RAN agent

0

0.2

0.4

0.6

RAN-LTM

-1.2 0.5
Position x

0.0-1.0 -0.5

V
ar

ia
tio

ns

RAN

Figure 2: The variations of action-values in B1.

are varied seriously especially around the boundary between B1 and B2 (i.e. x = 0.5). On the
other hand, the variations are fairly suppressed in the RAN-LTM agent; this suggests that a
proper policy for B1 is maintained.

However, it seems that the larger number of steps in B2 is needed for the RAN-LTM
agent. Since the learning for B2 was carried out with the fixed number of iterations, it is
supposed that the TD error in the RAN-LTM agent did not become small enough within the
repetitions, and then the larger number of steps was needed to reach the goal. Furthermore,
the learning time of the RAN-LTM agent is two times longer than that of the RAN agent.
This is because not only immediate reward but also retrieved LTM data should be learned
in the RAN-LTM agent. Therefore, we should devise a more efficient retrieval mechanism for
LTM data in order to speed up learning.

4 Conclusions

In this paper, Resource Allocating Network with Long-Term Memory (RAN-LTM) was ex-
tended to reinforcement learning. In RAN-LTM, significant pairs of inputs and the associated
action-values are automatically stored into Long-Term Memory (LTM). These LTM data are
retrieved and utilized for the learning such that the agent holds good approximation accuracy
of action-value functions. We evaluated the performance of the RAN-LTM agent in an ex-
tended mountain-car task, in which a car driver (RL agent) should learn an efficient policy to
reach a goal located on the hill. The learning was conducted only for one basin at first, and
then the learning for the other basin was carried out. From the simulation results, we certified
that the proposed RAN-LTM agent could suppress the interference and learn a proper policy
as compared with the RAN agent.

Acknowledgement

This research has been supported by the Kayamori Foundation of Informational Science Ad-
vancement.

References

[1] R. S. Sutton and A. G. Barto: Reinforcement learning – An introduction, The MIT Press
(1998).

[2] M. Kobayashi, A. Zamani, S. Ozawa, and S. Abe: “Reducing computations in incremental
learning for feedforward neural network with long-term memory”, Proc. 2001 Int. Joint
Conf. on Neural Networks (in press).

[3] J. Platt: “A resource allocating network for function interpolation”, Neural Computation,
3, 213/225 (1991).

[4] T. Poggio and F. Girosi: “Networks for approximation and learning”, Proc. IEEE Trans.
on Neural Networks, 78, 9, 1481/1497 (1990).

