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Abstract

We explore an approach to recognizing Japanese Hiragana
characters utilizing independent components of input im-
ages (we call this method ICA-matching). These compo-
nents are extracted by Fast ICA algorithm proposed by
Hyv�arinen and Oja. We propose several formats of inputs,
which are di�erent in how a character image is transformed
into time sequences. From recognition experiments, we
show that ICA-matching outperforms conventional meth-
ods in some cases. However, in order to realize high perfor-
mance, we have to pay attention to the following parame-
ters: dimensions of feature vectors and rate of noise added
to training data. In discussions, we try to study how these
parameters are related to the performance of ICA-matching.

1. Introduction

Independent component analysis (ICA) has been devel-
oped as a decorrelation technique for high-order mo-
ment of input signals[1][2][3]. Using such characteris-
tics, ICA has been so far applied to problems of blind
signal separation such as sound/image separation and
EEG signal separation. Recently, feature extraction
and pattern recognition have been also focused as one
of prominent applications of ICA. For example, Bartlett
& Sejnowski showed that feature vectors extracted by
ICA had greater viewpoint invariance for human faces
as compared with PCA (principal component analysis)
ones[4]. Since PCA feature vectors decorrelate only the
second order statistics, this result means that higher-
order features as well as second order ones are impor-
tant for high-performance pattern recognition in spe-
ci�c problem domains.

In this paper, we will study the potential of ICA in
pattern recognition tasks, especially for hand-written
Japanese Hiragana characters. In Section 2, we will
give a brief explanation of our adopted ICA algorithm.
In Section 3, we will propose an approach to pattern
recognition utilizing ICA feature vectors, then we will
show the experimental results in the next section. In
Section 5, we will state two key points to obtain high

performance in this approach.

2. Independent Component Analysis

Several ICA algorithms have been proposed so far that
are di�erent in objective functions (or contrast func-
tions) to obtain separation matrices. Therefore, esti-
mated independent components are usually di�erent
depending on adopted ICA algorithms. However, at
current state, it is di�cult to discuss which algorithms
are most appropriate for feature extraction. Consider-
ing convergence speed and usability, we adopt Fast ICA
algorithm proposed by Hyv�arinen and Oja[5].

Suppose that we observe a m-dimensional input sig-
nal at time t, v(t) = fv1; � � � ; vmg

T , where T means
the transposition of matrices and vectors. Then the
n-dimensional whitened signal, x(t), is given by the
following equation:

x(t) =Mv(t); (1)

where M means a n�m whitening matrix. Here, we
assume that x(t) is composed of n statistically inde-
pendent signals, s(t) = fs1(t); � � � ; sn(t)g, and they are
obtained by the following linear transformation:

s(t) =Wx(t): (2)

W is often called separating matrix and it can be
trained by a two-layer feedforward neural network with
n outputs. In this case, the ith column vector, wT

i (i =
1; � � � ; n), of W corresponds to a weight vector from
inputs to the ith output.

To obtain a separating matrix, Hyv�arinen has proposed
the following objective function, J(�), to be maximized
or minimized in terms of output signals, si = w

T
i x:

J(wi) = Ef(wT
i x)

4g � 3[Ef(wT
i x)

2g]2 + F (k wi k
2);
(3)

where Ef�g means expectation. The �rst two terms in
the right-hand side of Eq.(3) correspond to fourth-order



statistics of si(t), called kurtosis. The third term, F (�),
is a penalty function so as to limit k wi k to a constant
value (see [5] for details). The learning algorithm of the
ith weight vector is derived from the gradient of Eq.(3)
with respect to wi as follows:

wi(t + 1) = wi(t)� �(t)[x(t)(wi(t)
T
x(t))3

�3 k wi(t) k
2
wi(t) + f(k wi(t) k

2)wi(t)]; (4)

where f is the derivative of F=2. Hyv�arinen & Oja have
proposed an on-line (or batch) algorithm to obtain �xed
points of Eq.(4), called Fast ICA algorithm.

3. Pattern Recognition

Let us de�ne the following n�m matrix, B:

B =WM : (5)

As you can see from Eqs.(1)(2), B represents the re-
lation between inputs (pixel data) and outputs (inde-
pendent components, ICs). In other words, B corre-
sponds to a transformation matrix from input space to
another feature space. Hence, the ith column vector,
b
T
i (i = 1; � � � ; n), of B can be considered as a base
vector spanning n-dimensional feature space (this base
vector is called ICA-base for convenience). Note that
b
T
i s are not orthogonal each other in many cases. The
ith output, si(t), is a projection of inputs to the ith
ICA-base; hence we shall use s(t) as a feature vector.

Here, we adopt ETL-4 database sets of hand-written
Japanese Hiragana characters in recognition tasks.
Each data set consists of 46 Hiragana characters, and
each character image is composed of 76�72 binary val-
ues (PBM format). These images are preprocessed
through centralization and size normalization before
they are converted to 15�15 16-bit gray-scale images.
When an input image is presented to ICA algorithm,
several formats of inputs can be considered which are
di�erent in how a character image is transformed into
time sequences. Let us consider the following input
formats.

[Type-I] The whole pixels of a character image is
simultaneously presented as an input, x(t). In this case,
the dimensions of an input vector are 225 and the length
of an input sequence is 46 for each data set.

[Type-II] A subimage is extracted by imposing
(S�S)-pixel window on an original 15�15 character
image. This subimage is used as an input at time t,
x(t). The window is shifted by S pixels to the right,
then next input vector x(t + 1) is extracted from the
window. When the window reaches the end of the line,
it goes down S pixels and scans from the leftmost. Such

a scan procedure is continued until the window reaches
the right bottom corner of a character image. This
format of ICA inputs is represented by a sequence of
46�(15=S)2 (S�S)-dimensional vectors.

[Type-III] The scan procedure to generate input
sequences is the same as Type-II format except that
the frame window moves either leftward or downward
by half size of a frame window (i.e. S=2 pixels). This
format of ICA inputs is represented by a sequence of
46�f(15� S=2)=(S=2)g2 (S�S)-dimensional vectors.

The data sets of twenty di�erent testees are used for
recognition: ten data sets are used for reference pat-
terns and the other ten sets are used for test patterns.
Training patterns are generated from reference patterns
by adding random noise to them. Ten di�erent random
series are added to each of reference patterns, hence the
number of training patterns is ten times of reference
patterns (except for a noiseless case). Using these train-
ing patterns, ICs and ICA-bases are calculated based
on Fast ICA algorithm. After training, ICs for ref-
erence patterns are calculated by using the obtained
ICA-bases. These ICs are used as reference vectors in
pattern matching. ICs for test patterns are also calcu-
lated, and the most matching reference vector for a test
vector is searched based on the conventional similarity
matching. We call this method ICA-matching.

4. Experimental Results

Figures 1(a)-(c) respectively show the recognition re-
sults for Type-I, II, III data sets. Horizontal axis
means the rate of noise added to training patterns,
�, and vertical axis means the rate of correct recog-
nition. The recognition accuracy is calculated by av-
eraging performances for �ve test pattern sets. Three
lines in Figs.1(b)(c) correspond to the results for di�er-
ent sizes of frame window, S. To show the usefulness of
our approach, we also examine the recognition perfor-
mances of two conventional methods: one is the sim-
ilarity matching between pixel data of reference and
test patterns, and the other is the similarity match-
ing between feature vectors that are given by principal
component analysis (PCA). For convenience, the for-
mer method is called pixel-matching and the latter is
called PCA-matching. The recognition rate for pixel-
matching is 82% and that for PCA-matching is shown
by dotted lines in Figs.1(a)-(c).

In Fig.1(a), one can say that the performance for Type-
I training data greatly depends on the rate of adding
noise and they are lower than both pixel-matching and
PCA-matching except for � = 0:4. Especially, in case
of � = 0:0, the performance is crucially poor. On the
other hand, the performances for Type-II and Type-III
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Figure 1: Recognition results for (a)Type-I (b)Type-II
(c)Type-III training data.

training data are fairly good except for � = 0:0. Al-
though performance dependency on � still remains, one
can say that ICA-matching outperforms PCA-matching
as well as pixel-matching in some cases.

From the results in Figs.1(a)-(c), characteristics of ICA-
matching are summarized as follows:

1. When training data are not contaminated by
random noise (i.e. training patterns are equal
to reference patterns), the performance of ICA-
matching is degraded as compared with other
noise-added cases. Furthermore, it is inferior to the
performances of both pixel-matching and PCA-
matching.

2. In general, when window size is small (i.e. the
dimensions of ICs are small), the performance of
ICA-matching tends to be high. This suggests
that feature vectors should be represented in small
dimensional space. However, small size of win-
dows causes the increase in the length of input
sequences. Considering the computational costs,
S = 4 is preferred in our experiments.

3. When window size is large, the performance is
largely a�ected by the rate of adding noise, �.
Roughly speaking, �=0.3�0.4 is preferred for all
S.

4. Obtaining ICA-bases from Type-I data sets is
unsuitable for high-performance ICA-matching.
The di�erence in recognition performance between
Type-II and Type-III training data is not so
distinctive. Although the best performance is
achieved when Type-III training data are adopted,
the length of training data is much longer than
that of Type-II ones because every window frame
is overlapped each other. Therefore, considering
the computational costs, Type-II training data are
preferred.

5. Discussions

From the experimental results, the following questions
arise:

1. Why is the performance of ICA-matching high
when small dimensional ICs are adopted as feature
vectors?

2. Why is the performance of ICA-matching high
when ICA-bases are obtained from noise-added
training data?

Although we have not had exact answers to these ques-
tions yet, we can show what factors are related to the
performance improvement. Let us study these factors
in the followings.

Figure 2 shows the �rst sixteen ICA-bases that are ob-
tained from noiseless Type-I training data. Each square
box with 16�16 light and shade pixels represents a
ICA-base. A light and shade pixel shows a value of a

Figure 2: The �rst 16 ICA-bases obtained from noise-
less Type-I training data.
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Figure 5: The ICA-bases obtained from noiseless Type-
II training data (S = 8).

tion a�ects ICA-bases in this case. This is our open
question.

6. Conclusions

We presented an approach to recognizing Japanese
Hiragana characters utilizing independent components
of input images (we call this method ICA-matching).
From recognition experiments, we demonstrated that
ICA-matching outperformed two conventional ap-
proaches (pixel-matching and PCA-matching) when
the following parameters were adjusted properly: di-
mensions of feature vectors and rate of noise added to
training data. We found that reducing ICs' dimensions
and adding noise to training data were e�ective in per-
formance improvement. When dimensions of ICs are
large, ICA-bases generated from noise-added training
data are apt to extract local features of input images.
One can say that such characteristics of ICA-bases real-
ize robustness for structural noises (e.g. invariance for
shift, rotation, distortion, etc.). When dimensions of
ICs are small, it seems that ICA-bases generated from
noise-added training data extract somewhat global fea-
tures. However, the recognition accuracy increases in
opposition to the previous case. This reason has not
been clari�ed yet, hence it is left as our future works.
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