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Abstract— When the environment is dynamically changed for
agents, knowledge acquired from an environment might be
useless in the future environments. Therefore, agents should
not only acquire new knowledge but also modify or delete
old knowledge. However, these modification and deletion are
not always efficient in learning. Because the knowledge once
acquired in the past can be useful again in the future when
the same environment reappears. To learn efficiently in this
situation, agents should have memory to store old knowledge.
In this paper, we propose an agent architecture that consists
of four modules: resource allocating network (RAN), long-term
memory (LTM), association buffer (A-Buffer), and environmental
change detector (ECD). In LTM, not only acquired knowledge
but also the information about which knowledge was produced
in the same environment is stored. This information is utilized
for recalling the knowledge acquired in the past when the same
environment reappears. To evaluate the adaptability in a class of
dynamic environments, We apply this model to a simple problem
that some target functions to be approximated are changed in
turn. As a result, we verify the following adaptability of RAN-
ALTM: (1) incremental learning can be stably carried out, (2)
environmental changes are correctly detected, (3) fast adaptation
is realized by training some of the accumulated knowledge when
the past environments reappear.

I. INTRODUCTION

In general, real-world environments surrounding agents
have a lot of uncertain and dynamical properties. In the
environments, all of the knowledge acquired in the past is
not always effective; hence the agents have to acquire new
knowledge incrementally.

Several approaches to the agent learning under dynamic
environments have been proposed so far [1], [2]. In many ap-
proaches, the adaptability of agents is realized by reconstruct-
ing their models when the environment changes. However,
when the same (or similar) environments appear repeatedly
over a long period of time, one can say that it is not effective
to discard or modify the current knowledge to adapt to new
environments. In this situation, even if the knowledge is
useless at some point, agents should keep it themselves so as to
retrieve it in the future if necessary. Furthermore, it is desired
to store only essential knowledge because the quantity of
knowledge could be huge for large tasks, e.g. continuing tasks.
To do this, we should present a new agent architecture that is
different from the conventional memory-based (or instance-
based) learning approaches [3], [4].

In order to extract essential knowledge from training sam-
ples, multi-layer neural networks have been often used. In

neural networks, however, knowledge is distributedly stored in
their connection weights. Hence, when a new training sample
is given to a network, the input-output relations acquired in
the past are easy to be collapsed by the learning of the new
sample. This disruption in neural networks is called ‘catas-
trophic interference’ that is caused by excessive adaptation of
connection weights for a new training sample [5].

To solve the problem of catastrophic interference, there have
been proposed several approaches [5], [6], [7], [8], [9]. A
promising approach is that some representative input-output
pairs are extracted from sequentially given training samples
and some of them are trained with a current training sample.
Based on this approach, we have proposed an extended version
of RBF networks called Resource Allocating Network with
Long-Term Memory (RAN-LTM) [9]. RAN-LTM does not
need so much memory capacity and it realizes robust incre-
mental learning ability. In this sense, RAN-LTM has some of
the characteristics suitable for real-world environments except
that RAN-LTM is not designed for dynamic environments.

In this paper, several new functions are introduced into
the original RAN-LTM so that it can work well under dy-
namic environments. In Section 2, the assumption for dynamic
environments is described, and then we propose new agent
architecture in Section 3. In Section 4, the adaptability of
the proposed model is evaluated through some simulation
experiments. Finally we state conclusions in Section 5.

II. A MODEL OF LEARNING AGENT

A. Assumption for Dynamical Environments

In this paper, we assume a class of dynamic environments
where a stationary environment continues for a while and then
it changes to another stationary environment in turn. And it is
assumed that the duration of an environment is long enough
to be learned but it is unknown for agents. Furthermore, we
assume that stationary environments appear repeatedly over
a long period of time. That is to say, if agents hold their
knowledge acquired in the past and retrieve it to learn in
the future, the agents could adapt quickly to the reappeared
environments.

B. Agent Architecture

In order to adapt efficiently under the dynamic environment
defined in II-A, agents must possess at least the following
capabilities:
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Fig. 1. Architecture of RAN-ALTM.

1) the capability to acquire knowledge from training sam-
ples given incrementally,

2) the capability to store the acquired knowledge in mem-
ory and to retrieve proper knowledge,

3) the capability to detect environmental changes.

The capability 1) is necessary to extract only essential knowl-
edge from many training samples. The capability 2) is in-
dispensable to do stable incremental learning under dynamic
environments and to adapt quickly to the reappeared envi-
ronments. The capability 3) is necessary to detect when a
stationary environment changes to another environment.

As one of the learning agent models with the capabilities
1) and 2), we have proposed Resource Allocating Network
with Long-Term Memory (RAN-LTM). To realize all of the
above capabilities, we have to augment the capability 3) as
well as modify the capability 2) in RAN-LTM. Here, we
propose Resource Allocating Network with Associative Long-
Term Memory (RAN-ALTM) whose architecture is depicted in
Fig. 1. As you can see from Fig. 1, RAN-ALTM is composed
of four modules. First, we briefly explain the basic functions
of each module.

a) Resource Allocating Network (RAN)
Resource allocating network (RAN) [10] is an extended
version of radial-basis function network (RBFN) [11],
[12]. RAN can adaptively add its hidden units to extend
the approximation ability when unknown training samples
are given. When training samples are given incrementally,

the forgetting caused by the interference is often problem-
atic in the original RAN. To suppress the interference,
some ‘memory items’ stored in long-term memory are
learned with a training sample.

b) Long-Term Memory (LTM)
LTM is a memory whose items {M̃1, · · · , M̃n1} are stored
for a long time. Here, n1 is the number of memory items
in LTM. Under a dynamic environment, many memory
items generated under different stationary environments
are mingled in LTM. Memory items which were generated
in the same environment as a current training sample
are moved to Association Buffer using the association
function.

c) Association Buffer (A-Buffer)
A-Buffer is a place where associated memory items of
LTM are stored temporarily. Associated memory items
in A-Buffer is denoted as {M̂1, · · · , M̂n2}. Here, n2 is
the number of memory items in A-Buffer. Some memory
items that are effective in suppressing the interference are
retrieved from A-Buffer and they are trained in RAN.
When an environmental change is detected by Environ-
mental Change Detector, A-Buffer is initialized.

d) Environmental Change Detector (ECD)
ECD is a module which detects environmental changes
by checking the inconsistency between a training sample
and the memory items in A-Buffer.

Next we describe the detail information processing of the
above modules a) ∼ d).

C. Resource Allocating Network (RAN)

Let the numbers of units in input, hidden, and output
layers be I , J , and K , respectively. When an input x =
{x1, · · · , xI}′ is given to RAN (see Fig. 1 (a)), the jth hidden
output yj and the kth network output are calculated as follows:

yj = exp

(
−‖ x− cj ‖2

2σ2
j

)
, j = 1, · · · , J (1)

zk =
J∑

j=1

wkjyj + γk, k = 1, · · · , K (2)

where cj = {cj1, · · · , cjI}′ and σ2
j are the center and variance

of the jth hidden unit. And wkj and γk are respectively a
connection weight from the jth hidden unit to the kth output
unit and a bias of the kth output unit.

In RAN, connection weights and RBF centers can be
modified to improve the approximation accuracy of network
outputs. The modification of connection weights and centers
is carried out based on the gradient descent method. After
the mean squared error E between outputs z and targets T
is evaluated, the training of RAN is conducted as follows:

(1) If E is larger than a positive constant ε and the distance
between input x and its nearest center vector c∗ is larger
than a positive value δ(t) (i.e., E > ε and ‖x − c∗‖ >
δ(t)), then add a hidden unit to RAN (i.e., J ← J +



1). Set the following values to the network parameters
for the J th hidden unit (center vector cJ , connection
weights wkJ , and variance σJ ):

cJi = xi, i = 1, · · · , I (3)

wkJ = Tk − zk, k = 1, · · · , K (4)

σJ = κ‖x− c∗‖ (5)

where κ is a positive constant. Decrease δ(t) with time
t as follows:

δ(t) = max
[
δmax exp

(
t

τ

)
, δmin

]
> 0 (6)

where τ is a decay constant.
(2) Otherwise

Modify the network parameters as follows:

wNEW
kj = wOLD

kj + α(Tk − zk)yj (7)

cNEW
ji = cOLD

ji +
α

σj
(xp− cji)yj

∑
k

(Tk− zk)σkj (8)

γNEW
k = γOLD

k + α(Tk − zk) (9)

where α is a positive learning ratio.

D. Long-Term Memory (LTM)

1) Structure of Memory Item: As mentioned before, mem-
ory items are extracted from the mapping function of RAN.
The purpose of learning these memory items is as follows:

(1) to suppress the forgetting caused by learning incremen-
tally,

(2) to retrieve memory items generated in the past environ-
ments that are the same as (or similar to) the current
environment, and to adapt to the current environment
quickly.

To realize the above functions, memory items, M̃j (j =
1, · · · , n1), are composed of not only an input-output pair but
also some information for the interference suppression and
the association. The jth memory item, M̃j (j = 1, · · · , n1),
consists of the following information:

i) Input-Output Pair, (x̃j , z̃j)
An input-output pair extracted from the mapping function
acquired by RAN.

ii) Curvature Information, H(x̃j)
Curvature information of the mapping function at x̃j .
In general, many RBF centers tend to be allocated in
a complicated domain; hence, the interference could
be serious in this domain. Therefore, we quantify the
functional complexity by the curvature. If this curvature
information is large, the corresponding memory item is
recalled with high probability.

iii) Linkage Information Table (LIT)
A set of memory items, M̃k (k �= j), which were
generated in the same environment as M̃j , are registered
in LIT. The degree of relations Qk with the jth memory
item M̃j is also resisted in LIT. If Qk is large, it means

that M̃j has strong relations with M̃k. Several M̃k with
large Qk are moved to A-Buffer.

iv) Validity Information, Vj

This information Vj is set to a constant value when
M̃j is moved to A-Buffer. If M̃j is the most similar
memory item to the current training sample, Vj is set
to a large value. Otherwise, Vj is set to a small value
that decreases by the times of recursive associations
(see also II-D.3). This value corresponds to the term
of validity within A-Buffer. Whenever a new training
sample is given, Vj decreases by 1. If Vj becomes 0, the
corresponding memory item M̃j is move back to LTM.
When an environmental change is detected in ECD, all
Vj are initialized and all memory items in A-Buffer are
restored to LTM.

v) Association Flag, Fj

This flag indicates whether the association of M̃j is
permitted or not: Fj = 1 (permitted), Fj = 0 (not
permitted).

2) Generation of Memory Items: The generation of
memory items is carried out only for the input domain where
the accuracy of function approximation is ensured. In order
to prevent memory items from increasing too much, it is
generated only when the distance from any other memory
items is more than a constant value. If the above conditions
are satisfied, the RBF center c∗j of the most activated hidden
unit is given to RAN, and the output z is calculated. This
input-output pair (c∗j , z) is generated as a new memory item.
The procedure of generating memory items is shown below.

[Procedure of Generation]

(1) When a training sample (x, T ) is given to RAN, calcu-
late the hidden outputs, yj (j = 1, · · · , J).

(2) If all hidden outputs are less than a threshold value θc,
then go to Step 7. Otherwise, go to Step 3.

(3) Obtain all indices j of hidden units whose outputs yj

are larger than θc, and define a set I1 of these indices.
Update the following approximation criterion rj for all
j ∈ I1:

rNEW
j = rOLD

j + 2 exp(−ρ|E|)− 1

where E is the output error and ρ is a positive constant.
(4) If rj > β for j ∈ I1, then initialize rj and go to Step 5.

Otherwise, go to Step 7. Here, β is a positive constant.
(5) Calculate the minimum distance between the jth center

cj and memory items x̃m (m = 1, · · · , M) as follows:

d∗j = min
m
‖cj − x̃m‖.

If d∗j > η for j ∈ I1, then go to Step 6. Otherwise go
to Step 7.

(6) Increase the number of memory items M by one (i.e.,
M ← M + 1). Give the jth center vector cj to RAN
as its input, and obtain the output z. Calculate the
determinant H(cj) of Hessian matrix whose element



(i, i′) is given as follows:

∂2z̃k

∂cji∂cji′
=

1
σ2

i σ2
i′

J∑
l=1

wkl(cji− cli)(cji′ − cli′)yl + γk.

Store the triplet (cj , z, H(cj)) in LTM as the M th
memory item (x̃M , z̃M , H(x̃M )). Initialize LIT, Vj , and
Fj .

(7) Go back to Step 1.
3) Association of Memory Items: When a training sample

(x, T ) is given to RAN-ALTM, the most similar memory item
M̃j : (x̃j , ỹj) is moved from LTM to A-Buffer. Then, the LIT
of M̃j is referred, and memory items M̃k with the largest m1

of Qk are associated and moved to A-Buffer. For every M̃k,
the same association is conducted recursively and m2 memory
items are moved to A-Buffer. Such a recursive operation is
repeated designated times. Note that the association is not done
for memory items with association flag Fk = 0.

Using this association mechanism, many memory items
related to a given training sample are move to A-Buffer,
and some of them are retrieved and learned with the train-
ing sample. The associated memory items correspond to the
knowledge acquired in the past environment similar to the
current environment. Hence, we can say that this is the key
mechanism to adapt quickly to new environments in RAN-
ALTM.

E. Association Buffer (A-Buffer)

1) Retrieval of Memory Items: To suppress the forgetting
by incremental learning, memory items in A-Buffer are
retrieved and trained with a training sample in RAN.
However, it is not efficient to retrieve and train all the
memory items. Thus we should restrict the memory items
which can suppress the interference effectively. The algorithm
of retrieving memory items is shown below.

[Procedure of Retrieval]
(1) When a training sample x is given to RAN, calculate

hidden outputs, yj (j = 1, · · · , J).
(2) For the jth hidden unit, find a memory item

(x̃j , z̃j , H(x̃j)) whose input vector x̃j is the nearest
to the jth RBF centers cj . Repeat the above operation
for all hidden units.

(3) For each hidden unit, calculate the recall probability Pj

from yj and H(x̃j):

Pj =
1

1 + exp[−ν{yj + H ′(x̃j)}+ λ]
.

Here, ν and λ are positive constants, and H ′(x̃j) is
Hessian information obtained as follows:

H ′(x̃j) = min{ |H(x̃j)|
H0

, 1}
where H0 is a positive constant.

(4) Retrieve input-output pairs, (x̃j , z̃j) (j = 1, · · · , J),
with probability Pj , and train the retrieved pairs as well
as the current training sample (x, T ) in RAN.

(5) Go back to Step 1.

2) Update of LIT: Usually, it is considered that memory
items in A-Buffer were generated in the same (or similar)
environments. Therefore, they should be mutually registered
into LIT and increase the degree of relation Qk each other.
However, if an associated memory item in A-Buffer simulta-
neously belongs to several different environments, the memory
items associated from the above memory item are not ensured
that all of them belong to the current environment. Therefore,
for this misleading memory item the recursive association
should be prohibited. To find misleading memory items, check
the consistency among the input-output pairs of all memory
items in A-Buffer. If such memory items are found, the
association flags Fj are set to 0.

F. Environmental Change Detector (ECD)

Environmental changes are detectable by checking the
inconsistency between a training sample and memory items
in A-Buffer. The procedure in ECD is shown below.

[Procedure in ECD]

(1) Find the most similar memory item in A-Buffer, M̂∗ :
(x̂∗, ẑ∗), to the training sample (x, T ).

(2) The index B for detecting environmental changes is
updated as follows:
i) If ‖x− x̂∗‖ < k1/g′(x̂∗),

BNEW = ‖T − ẑ∗‖+ k2B
OLD,

otherwise BNEW = k2B
OLD

where g′(·) is the derivative of the RAN’s mapping
function, k1 and k2 are positive constants.

(3) If B > k3σz , then an environmental change is detected.
A-Buffer is reset. Here, σz is the variance of ẑj in A-
Buffer and k3 is a positive constant.

(4) Go back to Step 1.

III. SIMULATION EXPERIMENTS

A. Evaluation Method

As stated before, we assume here a class of dynamic
environments where a stationary environment continues for
a while and then it changes to another stationary environment
in turn. To evaluate the adaptability under such dynamic
environments, let us examine the following capabilities of
RAN-ALTM:

(1) whether incremental learning can be stably carried out,
(2) whether environmental changes are correctly detected,
(3) whether the fast adaptation is realized by training some

of the accumulated knowledge when the past environ-
ments reappear.

Here, we define a simple form of dynamic environments;
i.e., three one-dimensional target functions f1 ∼ f3 in Fig.
2 are temporally interchanged. That is, each function corre-
sponds to the desired input-output relations for agents under a
stationary environment. A training sample (x, z) is randomly
drawn from one of the target functions (f1 ∼ f3), and it
gives to RAN-ALTM incrementally. The learning of this target
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corresponds to the desired input-output relations for agents under a stationary
environment.

function continues for a while, and then the target function
is changed to another (this means that an environmental
change occurs). Here, we should note that agents do not
know the duration of stationary environments and when the
environmental changes occur at all.

To check the above three capabilities of RAN-ALTM, we
adopt the modified RAN-LTM in which only environmental
detector is introduced. For notational convenience, this modi-
fied RAN-LTM is simply called RAN-LTM.

B. Experimental Results

Simulation experiments are conducted for 25 different series
of three target functions f1 ∼ f3: the series are different in
the order of target functions to be presented and their duration.
The order of target functions and the duration are determined
at random. Needless to say, agents do not know what series
are presented.

In the experiments, the following parameters of RAN-
ALTM are adopted:

[RAN] δ = 0.05, σ = 0.1, ε = 0.0001, α = 0.0001,
κ = 0.1
[LTM] θ = 0.9, β = 9.75, η = 0.05, ρ = 1.0
[A-Buffer] ν = 9.75, λ = 8.0
[ECD] k1 = 0.02, k2 = 0.3, k3 = 3.0

Figures 3 (a)-(c) show the temporal transitions of the
average errors for the following three series:

(a) f2 → f3 → f2 → f3 → f1

(b) f1 → f2 → f3 → f2 → f3

(c) f1 → f3 → f1 → f3 → f2.

The vertical dotted lines in Figs. 3 (a)-(c) indicate the time of
environmental changes.

As you can see from Figs. 3 (a)-(c), although the error
suddenly increases after environmental changes, the error
decreases immediately. From the results, we can say that
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Fig. 3. Temporal transitions of average errors for three different dynamic
environments.

environmental changes are correctly detected in ECD. Fur-
thermore, after environments change, the output errors al-
most always decrease monotonously. This result suggests that
both RAN-LTM and RAN-ALTM can learn stably even in
incremental settings under dynamic environments. Comparing
RAN-ALTM with RAN-LTM, you can see that the former
can adapt quickly to the reappeared environments (e.g., f2

and f3 in Fig. 3 (a)). To verify this result more precisely, the
averages and standard deviations of the speedup enhancement
for 25 different dynamic environments. The results are shown
in Table I. As seen from Table I, about 27-29 % speedup



TABLE I

THE IMPROVEMENT IN ADAPTATION SPEED OF RAN-ALTM.

f1 f2 f3

Average (%) 27.13 27.65 29.23
Std. Dev. (%) 2.452 2.333 2.666

enhancement is attained for f1 ∼ f3 on average.
From the above experiments, we can conclude that RAN-

ALTM has the high-performance adaptability under dynamic
environments.

IV. CONCLUSION

In this paper, we propose an incremental learning model
under dynamic environments called Resource Allocating Net-
work with Associative Long-Term Memory (RAN-ALTM).
The dynamic environment assumed here is that a stationary
environment continues for a while and then it changes to
another stationary environment in turn. And it is assumed that
the duration of an environment is long enough to be learned
but it is unknown for agents. Furthermore, we assume that
stationary environments appear repeatedly over a long period
of time. Hence, if agents hold their knowledge acquired in the
past and retrieve it properly in learning, the agents should be
able to adapt quickly to the successive environments.

To verify such adaptation ability of the proposed RAN-
ALTM, we defined a simple form of dynamic environments;
i.e., three one-dimensional target functions were temporally
interchanged. From the experimental results under these dy-
namic environments, we verified the following adaptability of
RAN-ALTM: (1) incremental learning could be stably carried
out, (2) environmental changes were correctly detected, (3)
fast adaptation was realized using the accumulated knowledge
when the past environments reappeared.

However, several problems are still left. One is that we need
to adjust adequately the parameter of ECD depending on the
complexity of target functions. Hence, we cannot say that ECD
is a robust model at the current state. We will improve this
point in near future.
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