
A Fast Incremental Learning Algorithm of RBF Networks with Long-Term Memory

Keisuke Okamoto, Seiichi Ozawa, and Shigeo Abe
Graduate School of Science and Technology, Kobe University

1-1 Rokko-dai, Nada, Kobe 657-8501, JAPAN
Email: okamoto@frenchblue.scitec.kobe-u.ac.jp

{ozawa, abe}@eedept.kobe-u.ac.jp

Abstract— To avoid the catastrophic interference in incremen-
tal learning, we have proposed Resource Allocating Network
with Long Term Memory (RAN-LTM). In RAN-LTM, not only
a new training sample but also some memory items stored in
Long-Term Memory are trained based on a gradient descent
algorithm. In general, the gradient descent algorithm is usually
slow and can be easily fallen into local minima. To solve these
problems, we propose a fast incremental learning algorithm of
RAN-LTM, in which its centers are not trained but selected based
on output errors. This model does not need so much memory
capacity and it also realizes robust incremental learning ability.
To verify these characteristics of RAN-LTM, we apply it to
two function approximation problems: one-dimensional function
approximation and prediction of Mackey-Glass time series. From
the experimental results, it is verified that the proposed RAN-
LTM can learn fast and accurately without large main memory
unless incremental learning is conducted over a long period of
time.

I. INTRODUCTION

When we construct intelligent systems like person identi-
fication systems or stock price prediction systems, we often
encounter a situation where a complete set of training samples
is not given initially. In that case, we must construct a
provisional system that works well in some limited conditions,
and then the system will be improved incrementally using
training samples given in the future. In this sense, incremental
learning has been one of the most important issues in machine
learning research so far.

The memory-based learning approach is one of the most
promising strategy for incremental learning. In this approach,
(almost) all training samples are accumulated in a memory,
and then all of them are utilized for learning at every step.
Locally Weighted Regression (LWR) [2] and Radial-Basis
Function (RBF) networks [3], [4], [5] are successful examples
of memory-based learning approach. In LWR, linear regression
is conducted for all (or a part) of stored training samples so that
a mean squared error weighted by the distance from a query
point is minimized. Since LWR is substantially based on linear
regression using only local samples around a query point, the
training speed is quite fast. However, the regression might be
inaccurate if a suitable weight function is not selected. On
the other hand, RBF networks can learn any functions if the
number of hidden units is sufficiently large, and the learning
algorithm can be easily extended in an incremental fashion
[4].

A serious drawback of the memory-based learning model
of RBF networks is that it often needs large memory capacity
to store the RBF centers. To avoid this problem, RBF centers

should be selected automatically from training samples that are
given incrementally. If sufficient training samples are initially
given, several selection strategies like random selection and
unsupervised selection of centers could be adopted [5]. In
many incremental learning problems, however, these strategies
are useless because we do not know when we will get sufficient
training samples. The supervised selection of centers is another
solution for RBF networks. In this approach, RBF centers are
moved adaptively based on output errors and consequently the
approximation accuracy could be held even if so many RBF
centers are not allocated. In incremental settings, however,
catastrophic interference might be a serious problem when
the supervised selection of centers is introduced into RBF
networks. This interference is caused by modifying connec-
tion weights and RBF centers, which hold the input-output
relationships acquired from the past training samples, to adapt
for new training samples.

To avoid the catastrophic interference, there have been
proposed several approaches [6], [7], [8], [9]. A promising
approach is that some representative input-output pairs are
extracted from sequentially given training samples and some
of them are trained with a current training sample. Based on
this approach, we have proposed an extended version of RBF
networks called Resource Allocating Network with Long-Term
Memory (RAN-LTM) [9]. RAN-LTM does not need so much
memory capacity and it realizes robust incremental learning
ability. However, the training often needs long time because
RBF centers are trained based on the gradient descent method.

In this paper, we propose a variant of RAN-LTM in which
its centers are not trained but selected based on the output
errors. Hence, the proposed RAN-LTM is a memory-based
learning model of RBF networks in which the supervised
selection of centers is introduced. In Section 2, the original
RAN-LTM is briefly explained at first, and then the variant
of RAN-LTM is presented in Section 3. To evaluate the
learning speed and approximation accuracy, we apply it to
some function approximation problems in Section 4. Finally
we state conclusions and one of our future works in Section
5.

II. RESOURCE ALLOCATING NETWORK

WITH LONG-TERM MEMORY

A. Architecture of RAN-LTM

Figure 1 shows the architecture of RAN-LTM [9]. As
seen from Fig. 1, RAN-LTM is composed of two modules:
Resource Allocating Network (RAN) and Long-Term Memory

c1

c2

x1

w 11

w1J

wK1

wKJ

z1

RAN

retrieve generate

(xM, zM , H '(xM))(x1 , z1 , H'(x1))

LTM

item 1 item M

x I zK

cJ

....~ ~~ ~ ~~

Fig. 1. Architecture of RAN-LTM.

(LTM). RAN learns desired input-output relations from given
training samples. However, if training samples are given incre-
mentally, RAN might forget the input-output relations acquired
in the past due to ‘catastrophic interference’ caused by learning
a new training sample. To avoid the forgetting, representative
input-output pairs are extracted from the mapping function
of RAN. Then, these pairs are stored in LTM and some of
them are trained with a new training sample to suppress the
interference. In the followings, these pairs stored in LTM are
called ‘memory items’ for notational convenience.

B. Resource Allocating Network

Resource Allocating Network (RAN) proposed by Platt [10]
is an extended version of RBF networks. RAN can adaptively
add its hidden units to extend the approximation ability when
unknown training samples are given.

Let the numbers of units in input, hidden, and output
layers be I , J , and K , respectively. When an input x =
{x1, · · · , xI}′ is given to RAN, the jth hidden output yj and
the kth network output are calculated as follows:

yj = exp

(
−‖ x− cj ‖2

2σ2
j

)
, j = 1, · · · , J (1)

zk =
J∑

j=1

wkjyj + γk, k = 1, · · · , K (2)

where cj = {cj1, · · · , cjI}′ and σ2
j are the center and variance

of the jth hidden unit. And wkj and γk are respectively a
connection weight from the jth hidden unit to the kth output
unit and a bias of the kth output unit.

In RAN, connection weights and RBF centers are modified
to improve the approximation accuracy of network outputs.
The modification of connection weights and centers is carried
out based on the gradient descent method. After the error
E between outputs z and targets T is evaluated, training of
RAN is conducted as follows:

(1) If E is larger than a positive constant ε and the distance
between input x and its nearest center vector c∗ is larger
than a positive value δ(t) (i.e., E > ε and ‖x − c∗‖ >
δ(t)), then add a hidden unit to RAN (i.e., J ← J +
1). Set the following values to the network parameters
for the J th hidden unit (center vector cJ , connection
weights wkJ , and variance σJ):

cJi = xi, i = 1, · · · , I (3)

wkJ = Tk − zk, k = 1, · · · , K (4)

σJ = κ‖x− c∗‖ (5)

where κ is a positive constant. Decrease δ(t) with time
t as follows:

δ(t) = max
[
δmax exp

(
t

τ

)
, δmin

]
> 0 (6)

where τ is a decay constant.
(2) Otherwise

Modify the network parameters as follows:

wNEW
kj = wOLD

kj + α(Tk − zk)yj (7)

cNEW
ji = cOLD

ji +
α

σj
(xi − cji)yj

∑
k

(Tk − zk)σkj (8)

γNEW
k = γOLD

k + α(Tk − zk) (9)

where α is a positive learning ratio.

C. Long-Term Memory

Another module in RAN-LTM is Long-Term Memory
(LTM). Representative input-output pairs are extracted from
the mapping function acquired in RAN and they are stored
in LTM over a long period of time. These pairs are called
‘memory items’ and some of them are retrieved from LTM
to learn with an immediate training sample. The learning of
memory items with a training sample prevents RAN from
forgetting the mapping function acquired in the past even if
training samples are given incrementally.

Although all memory items could be always retrieved to
learn, it is generally desirable that the number of retrieved
memory items are restricted only to effective ones. To estimate
the effectiveness of memory items, we adopt the following
two criteria: (1) the activation of hidden units and (2) the
curvature information of the approximated function. Since the
weights and RBF centers are modified in proportion to the
activation of hidden units, it is considered that the input-output
relations in the neighborhood of RBF centers for the active
hidden units tend to be deteriorated by the interference. The
first criterion is based on this fact. The second criterion is
based on our previous experimental results [9]: memory items
on high curvature parts of approximated functions are more
useful for suppressing the interference as compared with those
on low curvature points. Considering these facts, we can select
only the nearest memory items to the centers for active hidden
units and on high curvature parts of approximated functions.

Hence, we shall retrieve memory items based on the following
probability:

Pj =
1

1 + exp[−ν{yj + H ′(x̃j)}+ λ]
(10)

where ν and λ are positive constants, and yj is the output of the
jth hidden unit. H ′(x̃j) is the following Hessian information
with respect to the nearest memory item x̃j to the jth RBF
center:

H ′(x̃j) = min{
∑

k |Hk(x̃j)|
H0

, 1} (11)

where H0 is a positive constant and Hk(·) is the determinant
of the Hessian matrix of the output z̃k whose element (i, i′)
is given as follows:

∂2z̃k

∂cji∂cji′
=

1
σ2

i σ2
i′

J∑
l=1

wkl(cji−cli)(cji′ −cli′)yl +γk. (12)

The memory items x̃j are often sparsely distributed in a
problem space. In such a case, learning these memory items
could cause new interference even though they are trained
to suppress the interference for a training sample. A remedy
for this new interference is that some neighbor points of re-
trieved memory items are also trained to hold the input-output
relations in the neighborhood of the memory items. These
neighborhood points can be obtained as (x̃j + ∆, g(x̃j + ∆))
where ∆ is a small random value and g(·) is the mapping
function of RAN.

The detailed procedures of generating and retrieving
memory items are shown below.

[Procedure of Generation]

(1) When a training sample (x, T) is given to RAN, calcu-
late the hidden outputs, yj (j = 1, · · · , J).

(2) If all hidden outputs are less than a threshold value θc,
then go to Step 6. Otherwise, go to Step 3.

(3) Obtain all indices j of hidden units whose outputs yj

are larger than θc, and define a set I1 of these indices.
Update the following approximation criterion rj for all
j ∈ I1:

rNEW
j = rOLD

j + 2 exp(−ρ|E|)− 1

where E is the output error and ρ is a positive constant.
If rj > β for j ∈ I1, go to Step 4. Otherwise, go to
Step 6. Here, β is a positive constant.

(4) Calculate the minimum distance between the jth center
cj and memory items x̃m (m = 1, · · · , M) as follows:

d∗j = min
m
‖cj − x̃m‖.

If d∗j > η for j ∈ I1, then go to Step 5. Otherwise go
to Step 6.

(5) Increase the number of memory items M by one (i.e.,
M ← M + 1). Give the jth center vector cj to
RAN as its input, and obtain the output z. Calculate
the Hessian information H ′(cj) in Eq. (11). Store the

triplet (cj , z, H ′(cj)) in LTM as the M th memory item
(x̃M , z̃M , H ′(x̃M)).

(6) Go back to Step 1.

[Procedure of Retrieval]

(1) When a training sample x is given to RAN, calculate
hidden outputs, yj (j = 1, · · · , J).

(2) For the jth hidden unit, find a memory item
(x̃j , z̃j , H

′(x̃j)) whose input vector x̃j is the nearest
to the jth RBF centers cj . Repeat the above operation
for all hidden units.

(3) For each hidden unit, calculate the recall probability Pj

from yj and H ′(x̃j) from Eq. (10).
(4) Generate pseudo training samples, (x̂l, ẑl) (l =

1, · · · , Lj), as follows:

x̂l = x̃j + ∆l

ẑl = g(x̃l)

where Lj is the number of pseudo training samples for
the jth memory item.

(5) Retrieve input-output pairs of memory items, (x̃j , z̃j)
(j = 1, · · · , J), with probability Pj , and pseudo training
samples, (x̂l, ẑl) (l = 1, · · · , Lj).

(6) Go back to Step 1.

III. A FAST INCREMENTAL LEARNING ALGORITHM OF

RAN-LTM

A. Learning Strategy of RBF Networks

As described in Section I, many learning strategies for
RBF networks have been proposed so far [5]. They can be
categorized into two groups in terms of whether RBF centers
are trained or not.

If RBF centers are not trained, the selection strategy of
centers is important. Unfortunately, however, many selection
strategies can be used only for batch learning. Therefore, if we
adopt RBF networks with fixed centers in incremental learning
problems, (almost) all of the incrementally given training
samples should be allocated to networks as their centers. This
is often called memory-based learning, and it would need
much time to learn and large memory capacity to save RBF
centers when the number of training samples is huge. If we
can select essential training samples in incremental learning
settings, the learning could be very fast because the training
of hidden-output connection weights is reduced to solving a
set of simultaneous linear equations [4], [5].

On the other hand, RBF centers in RAN-LTM are trained
based on the gradient descent algorithm. Hence, the training
speed is not so fast in general; however, RAN-LTM generally
attains desired mapping functions with a small number of
RBF centers. There are two main reasons for this: one reason
is due to the adaptability of centers and the other reason
is that centers are automatically allocated in only poorly
approximated regions based on output errors. In this context,
we come up with a variant type of RAN-LTM, in which RBF
centers are fixed and the selection is done by the automatic

allocation mechanism of hidden units in RAN. This will
realize both speedup of learning and small memory capacity
in RAN-LTM.

B. Fast Learning Algorithm of RAN-LTM

A simple implementation of the above RAN-LTM is that
RBF centers are stored in LTM, and the recall probabilities Pj

in Eq. (10) for all memory items are set to 1. The proposed
learning algorithm based on this simple implementation is
shown as follows:
[Learning Algorithm]

(1) Find the nearest center c∗ to an input x and then
calculate the output error E.

(2) If E > ε and ‖x − c∗‖ > δ(t), then add a hidden unit
and generate a memory item (x̃M , z̃M) as follows:

wJ = T − z, cJ = x

x̃M = x, z̃M = T .

Go to Step 8. Otherwise, go to Step 3.
(3) Recall all memory items, (x̃m, z̃m) (m = 1, · · · , M),

from LTM.
(4) For each memory item, generate pseudo training sam-

ples, (x̂l, ẑl) (l = 1, · · · , Lm), as follows:

x̂l = x̃m + ∆l

ẑl = g(x̃l)

where Lm is the number of pseudo training samples for
the mth memory item, g(·) means the mapping function
of RAN, and ∆l is a randomly selected small value.

(5) Calculate hidden outputs for all memory items,
φ(x̃m) = {φ(x̃m1), · · · , φ(x̃mJ)}, and hidden outputs
for pseudo samples, φ(x̂l) = {φ(x̂l1), · · · , φ(x̂lJ)} (l =
1, · · · , Lm). Obtain an N × J matrix Φ whose row
vectors correspond to φ(x̃m) and φ(x̂l). Here, N is the
total number of memory items and pseudo samples.

(6) Using the singular value decomposition (SVD), decom-
pose Φ as follows:

Φ = UHV ′

where U and V are N × J and J × J orthogonal
matrices, and H is a J × J diagonal matrix. Then
calculate a weight matrix W as follows:

W = V H−1U ′D.

(7) Give the input x to RAN-LTM again, and calculate the
output error E. If E > ε, then add a hidden unit and
generate a memory item (x̃M , z̃M) as follows:

wJ = T − z, cJ = x

x̃M = x, z̃M = T .

(8) The learning is over. When a new training sample is
given, go back to 1.

IV. SIMULATIONS

To evaluate the proposed learning algorithm of RAN-LTM,
it is applied to function approximation problems under the
condition that training samples are incrementally given. For
comparison purposes, the following four models are evaluated:

i) RBFN
The conventional RBF network in which all training
samples are set to its RBF centers. The weight connec-
tions are obtained by solving a set of simultaneous linear
equations. When a hidden unit is added to the network,
the incremental operation for the matrix inversion is also
introduced here (see [4] for details).

ii) RAN-LTM (O)
The original RAN-LTM in which training is carried out
based on the gradient descent method (see Section II).

iii) RAN-LTM (N1)
The proposed RAN-LTM in which training is carried
out based on the fast learning algorithm (see Subsection
III-B), but pseudo training samples are not utilized for
learning.

iv) RAN-LTM (N2)
The proposed RAN-LTM in which learning is carried
out based on the fast learning algorithm (see Subsection
III-B). Here, we randomly generate three pseudo training
samples per RBF center.

RAN-LTM (N1) is adopted here to examine the effectiveness
of learning pseudo training samples as well as memory items.
The training time and approximation accuracy are investigated
in the following two problems: one-dimensional function
approximation and prediction of Mackey-Glass time series.

A. Experiment 1

The target function to be approximated is the following one-
dimensional function (see also Fig. 2):

z = f(x) =
20 sin(4π(x + 0.5) cos(10π(x + 0.5)))

x + 10
. (13)

Training samples (x, z) are randomly drawn from the function
in Eq. (13), and they are incrementally given to a network. To
examine the performance depending on the size of problems,
three different regions are defined for input x: R1: {x | 0 <
x < 20}, R2: {x | 0 < x < 40} and R3: {x | 0 < x < 80}.
The numbers of training samples in R1, R2 and R3 are 500,
1000, and 2000, respectively. The approximation accuracy
is estimated for test samples after incremental learning is
completed. The test samples are also randomly drawn from
the same regions, and the numbers of them are 1000, 2000,
and 4000, respectively.

Tables I (a)-(c) show the mean squared errors for training
and test samples, and also show the CPU time for convergence
and the maximum memory size needed for learning of R1, R2,
and R3. To estimate the memory size, we consider almost all
factors to be stored in the main memory such as connection

-2

-1

0

1

2

0 40 60 80

R1
R2

R3

x

z

20

Fig. 2. One-dimensional function f(x).

TABLE I

RESULTS FOR ONE-DIMENSIONAL APPROXIMATION FUNCTION.

(a) Training of R1 (500 training samples)

MODEL Training Test Time Memory
Error Error (min.) (KB)

RBFN 0 0.03976 18.5 2012
RAN-LTM (O) 0.54056 0.54111 30.4 6
RAN-LTM (N1) 0.40817 0.41016 1.5 133
RAN-LTM (N2) 0.15264 0.15886 15.1 823

(b) Training of R2 (1000 training samples)

MODEL Training Test Time Memory
Error Error (min.) (KB)

RBFN 0 0.02285 284 8024
RAN-LTM (O) 0.42472 0.42497 122 11
RAN-LTM (N1) 0.24674 0.24829 32.4 442
RAN-LTM (N2) 0.14118 0.14538 157 1897

(c) Training of R3 (2000 training samples)

MODEL Training Test Time Memory
Error Error (min.) (KB)

RBFN 0 0.01241 4247 32048
RAN-LTM (O) 0.20646 0.20653 431 21
RAN-LTM (N1) 0.17047 0.17092 486 1465
RAN-LTM (N2) 0.09979 0.10192 1694 5743

weights, centers and variances of hidden units, interpolation
matrices for SVD calculations, and memory items.

As seen from Tables I (a)-(c), RBFN realizes very high
approximation accuracy for both training and test samples.
This is because all training samples are stored as RBF centers
and the output errors are always minimized using all samples.
However, training time increases exponentially as the number
of training samples becomes large.

The accuracy of RAN-LTM (O) is not good especially when
the number of training samples is small. Considering that the
learning algorithm is based on the gradient descent method,
the deterioration in accuracy might be due to the convergence
on a local minimum. On the other hand, the approximation
accuracy of RAN-LTM (N1) and RAN-LTM (N2) is rather
good. Hence, one can say that the supervised selection of RBF

centers contributes to realizing good generalization ability in
RAN-LTM.

The learning of RAN-LTM (N1) is very efficient unless the
number of training samples is too large. As seen from Tables
I(a)-(c), however, the learning time of RAN-LTM (N1) and
RAN-LTM (N2) increases distinctively when the number of
training samples is larger than 1000. Interestingly, when the
number of training samples is 2000, RAN-LTM (O) learns
faster than both RAN-LTM (N1) and RAN-LTM (N2) even
if the learning algorithm is based on the gradient descent
method. The computational complexity of SVD calculations in
these two RAN-LTMs is approximately O(J3) where J is the
number of hidden units. Therefore, this result shows that the
computational costs for SVD calculations could be expensive
for large incremental learning problems even if only essential
RBF centers are selected.

As seen from Tables I(a)-(c), RBFN needs large main
memory to carry out learning as compared with the other
models even in the one-dimensional function approximation
problems. Hence, we can say that if the accuracy is considered
as a precedence factor and there are enough memory resources,
RBFN should be adopted here. However, if the memory
resources are limited, the other three RAN-LTM models are
worth adopting especially when a large number of training
samples are incrementally given.

B. Experiment 2

Here, we apply the variant of RAN-LTM to a multi-
dimensional function approximation problem: Mackey-Glass
time series forecasting. Mackey-Glass time series is given by
the following differential equation:

dx(t)
dt

=
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t). (14)

From Eq. (14), we can obtain the time series data x(0),
x(1), x(2), · · ·, x(t), · · ·. Using x prior to time t, we predict
x after t. In this experiment, setting τ = 17, and using four
inputs x(t−18), x(t−12), x(t−6), x(t), we estimate x(t+6).
In this way we generate a thousand data x(118), · · · , x(1117).
These time series data are depicted in Fig. 3. The four models
are applied to the function approximation problem using such
Mackey-Glass time series data.

The first 500 data points are used as training samples, and
the remaining 500 data points are used to test performance.
The training sample is incrementally given to neural networks
at random. Table II shows the experimental results in this
simulation.

As you can see from Table II, the training of RAN-LTM
(N1) and RAN-LTM (N2) is very fast and the errors for both
training and test samples are smaller than the conventional
RBFN. RAN-LTM (O) also has good approximation accuracy,
but it takes quite long time for learning as compared with
RAN-LTM (N1) and RAN-LTM (N2). For test samples, the
prediction performance of RBFN is very poor due to the over
learning of training samples. In this experiment, the number
of hidden units in RBFN is 500, while the numbers of hidden

0.4

0.6

0.8

1

1.2

1.4

118 217 317 417 517 617

x
(t

)

t

Fig. 3. Mackey-Glass time series.

TABLE II

EXPERIMENTAL RESULTS FOR MACKEY-GLASS TIME SERIES.

MODEL Training Test Time Memory
Error Error (sec.) (KB)

RBFN 0.00307 0.75086 1012.6 2024
RAN-LTM (O) 0.00316 0.00316 261.4 1

RAN-LTM (N1) 0.00167 0.00162 0.22 1.5
RAN-LTM (N2) 0.00125 0.00120 0.48 1.9

units in the three RAN-LTM models are less than 10. This
result suggests that the number of hidden units should be
selected to obtain good generalization. In many incremental
learning settings, however, the conventional RBFN can not
select suitable number of hidden units. In this sense, we
can say that the supervised selection of centers is a good
choice in incremental learning problems. Furthermore, RBFN
needs a large memory capacity to store the information of
RBF centers. It seems that the training of pseudo samples in
RAN-LTM (N2) is also effective if we need high accuracy in
approximation. Instead, it takes longer time in training.

V. CONCLUSIONS

In this paper, we proposed a fast incremental learning
algorithm of Resource Allocating Network with Long-Term
Memory (RAN-LTM), in which its centers are not trained
but selected based on output errors (i.e., supervised selec-
tion of RBF centers). This model does not need so much
memory capacity and it realizes robust incremental learning
ability. To verify these characteristics of the modified RAN-
LTM, we applied it to two function approximation problems:
one-dimensional function approximation and prediction of
Mackey-Glass time series. In both experiments, the training
samples were given to the networks incrementally.

From the experimental results, we verified that the proposed
RAN-LTM can learn fast and accurately without large main
memory unless the number of training samples becomes too
large. However, the computational costs for SVD calculations
could be a problem in RBFN and the proposed RAN-LTM
if incremental learning continues for long time. In this case,
the original RAN-LTM, in which RBF centers are trained,
could be rather effective. Furthermore, the training of pseudo
samples as well as memory items in RAN-LTM (N2) is also
effective if we need high accuracy in approximation, although
it might take longer time in learning.

To simplify the learning algorithm as much as possible,
we implemented a fast incremental learning of RAN-LTM in
which all memory items are always retrieved to learn with
a training sample. However, all memory items might not be
always needed for recalling. Introducing an efficient retrieval
mechanism into the proposed variant of RAN-LTM will lead
to a faster incremental learning algorithm. This is left as our
future works.

ACKNOWLEDGMENT

This research was partially supported by the Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-Aid for Young
Scientists (B).

REFERENCES

[1] G.A. Carpenter and S. Grossberg: “The ART of adaptive pattern recogni-
tion by a self-organizing neural network,” IEEE Computer, 21, 3, 77/88
(1988)

[2] C. G. Atkeson, A. W. Moore and S. Schaal: “Locally weighted learning,”
Artificial Intelligence Review, 11, 75/113 (1997)

[3] T. Poggio and F. Girosi: “Networks for approximation and learning,”
IEEE Trans. on Neural Networks, 78, 9, 1481/1497 (1990)

[4] M. J. L. Orr: “Introduction to radial basis function networks,” Technical
Report of Institute for Adaptive and Neural Computation, Division of
Informatics, Edinburgh University (1996)

[5] S. Haykin: Neural Networks-A Comprehensive Foundation (2nd Ed.),
Prentice Hall (1999)

[6] H. Nakayama and M. Yoshida: “Additional learning and forgetting by
potential method for pattern classification,” Proc. Int. Conf. on Neural
Networks 97, 1839/1844 (1997)

[7] K. Yamauchi, N. Yamaguchi, and N. Ishii: “Incremental learning meth-
ods with retrieving of interfered patterns,” IEEE Trans. on Neural
Networks, 10, 6, 1351/1365 (1999)

[8] H.-C. Fu, Y.-P. Lee, C.-C. Chiang, and H.-T. Pao: “Divide-and-conquer
learning and modular perceptron networks,” IEEE Trans. on Neural
Networks, 12, 2, 250/263 (2001)

[9] M. Kobayashi, A. Zamani, S. Ozawa and S. Abe: “Reducing computa-
tions in incremental learning for feedforward neural network with long-
term memory,” Proc. Int. Joint Conf. on Neural Networks, 1989/1994
(2001)

[10] J. Platt: “A resource allocating network for function interpolation,”
Neural Computation, 3, 213/225 (1991)

